Document Type : Research Paper


1 Department of Mathematics, Marand Branch, Islamic Azad University, Marand, Islamic Republic of Iran.

2 Department of Mathematics, Faculty of Tabriz Branch, Technical and Vocational University (TVU), East Azarbaijan, Islamic Republic of Iran.



    In this note, we intend to introduce the concept of weaving continuous g-frames in Hilbert spaces. In addition, we present some new result for these frames and also we show that it is enough to check that on smaller measurable space than the given measurable space. We investigate the relationship between these frames and c-woven also, the sufficient and condition will be given. Finally, we verify the perturbation of weaving c-g-frames.


[1] M.R. Abdollahpour and M.H. Faroughi, Continuous G-frames in Hilbert spaces, Southeast Asian Bull. Math., 32(1) (2008), 1-19.
[2] S.T. Ali, J.P. Antoine  and J.P. Gazeau, Continuous frames in Hilbert spaces, Ann. Phys., 222(1) (1993), 1-37.
[3] S.H. Avazzadeh, R.A. Kamyabi and R.R. Tousi, Continuous frames and g-frames, Bull. Iran. Math. Soc., 40(4) (2014), 1047-1055.
[4] T. Bemrose, P.G. Casazza, K. Gr"ochenic, M.C. Lammers and R.G. Lynch, Weaving frames, Oper. Matrices, 10(4) (2016), 1093-1116.
[5] P.G. Casazza and O. Christensen, Perturbation of operators and application to frame theory, J. Fourier Anal. Appl., 3(5) (1997), 543-557.
[6] P.G. Casazza and R.G. Lynch, Weaving properties of Hilbert space frames, International Conference on Sampling Theory and Applications (SampTA), (2015), 110-114.
[7] P.G. Casazza, G. Kutyniok and S. Li, Fusion frames and distributed processing, Appl. Comput. Harmon. Anal., 25(1) (2008), 114-132.
[8] O. Christensen, An Introduction to Frames and Riesz Bases, Birkh"auser, Boston, 2016.
[9] X. Chun, and Z. Ming, Some equalities and inequalities of g-continuous frames, Sci. China, Math., 53(10) (2010), 2621-2632.
[10] M.A. Dehghan and M.A. Hasankhani Fard, G-continuous frames and coorbit spaces, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 24(3) (2008), 373-383.
[11] R.J. Duffin and A.C. Schaeffer, A class of nonharmonik Fourier series, Trans. Am. Math. Soc., 72(1) (1952), 341-366.
[12] M.H. Faroughi and E. Osgooei, C-Frames and C-Bessel mappings, Bull. Iran. Math. Soc., 38(1) (2012), 203-222.
[13] Y. Fu and W. Zhang, Some new inequalities for dual continuous g-frames, Mathematics, 7(662) (2019), http://DOI.org/10.3390/math7080662.
[14] L. Gu avruc ta, Frames for operators, Appl. Comput. Harmon. Anal., 32(1) (2012), 139-144.
[15] G. Kaiser, A Friendly Guide to Wavelets, Birkh"auser, Boston, 1994.
[16] A. Rahimi, A. Najati and Y.N. Dehghan, Continuous frames in Hilbert spaces, Methods Funct. Anal. Topol., 12(2) (2006), 170-182.
[17] T. Strohmer and R. Heath Jr, Grassmannian frames with applications to conding and Communications, Appl. Comput. Harmon. Anal., 14(3) (2003), 257-275.
[18] W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl., 322(1) (2006), 437-452.
[19] L.K. Vashisht and Deepshikha, On continuous weaving frames, Adv. Pure Appl. Math., 8(1) (2017), 15--31.
[20] L.K. Vashisht and Deepshikha, Weaving properties of generalized continuous frames generated by an iterated function system, J. Geom. Phys., 110 (2016), 282-295.
[21] L.K. Vashisht, S. Garg, Deepshikha and P.K. Das, On generalized weaving frames in Hilbert spaces, Rocky Mt. J. Math., 48(2) (2018), 661-685.