Inverse eigenvalues problem of distance matrices via unit lower triangular matrices

Document Type : Research Paper


Department of Mathematics, Arak University, Arak, Iran, P. O. Box 38156-8-8349.



In this paper, for a given set of real numbers such as $\sigma$ with only one positive number and zero summation, we find a distance matrix in which the given set $\sigma$ is its spectrum.
Finally,  we solve special cases of the inverse eigenvalue problem in which the matrix solution is a regular spherical distance matrix.


[1] A.Y. Alfakih, On the eigenvalues of Euclidean distance matrices, Appl. Comput. Math., 27 (2008), 237-250.
[2] A.Y. Alfakih and H. Wolkowicz, Two theorems on Euclidean distance matrices and Gale transform, Linear Algebra Appl., 
     340 (2002), 149-154.
[3] F. Critchley, On certain linear mapping between inner-product and squard-distance matrices, Linear Algebra Appl., 105      (1988), 91-107.
[4] M. Fiedler, Eigenvalues of nonnegative symmetric matrices, Linear Algebra Appl., 9 (1974), 119-142.
[5] S. Friedland, Inverse eigenvalue problems, Linear Algebra Appl., 17 (1971), 15-51.
[6] T.L. Hayden, R. Reams and J. Wells, Methods for constructing distance matrices and the inverse eigenvalues problem, 
      Linear Algebra Appl., 295 (1999), 97-112.
[7] T.L. Hayden and P. Tarazaga, Distance matrices and regular figures, Linear Algebra Appl., 195 (1993), 9-16.
[8] G. Jaklic and J. Modic, A note on Methods for constructing distance matrices and the inverse eigenvalue problem, 
      Linear Algebra Appl., 437(11) (2012), 2781-2792.
[9] A.M.  Nazari, P. Aslami and A. Nezami, Inverse eigenvalue problem of bisymmetric nonnegative matrices, J. Math. Ext.
     16(8) (2022), 1-14.
[10] A.M. Nazari and F. Mahdinasab, Inverse eigenvalue problem of distance matrix via orthogonal matrix, Linear Algebra 
       Appl., 450 (2014), 202-216.
[11] A.M. Nazari, A. Mashayekhi and A. Nezami, On the inverse eigenvalue problem of symmetric nonnegative matrices, 
       Mathematical Sciences, 14 (2020), 11-19.
[12] I.J. Schoenberg,  Metric spaces and positive definite functions, Trans. Am. Math. Sot., 44 (1938), 522-536.
[13] I.J. Schoenberg, On certain metric spaces arising from Euclidean spaces by change of metric and their embedding in 
       Hilbert space, Annals of Math., 38(4) (1937), 787-793.
[14] I.J. Schoenberg, Remarks to Maurice Frechet article Sur la definition axiomatique dune classe despaces distancies 
       vectoriellement applicable sur lespace de Hilbert, Annals of Math., 38 (1935), 724-732.
[15] P. Tarazaga, T.L. Hayden and J. Wells, Circum-Euclidean distance matrices and faces, Linear Algebra Appl., 232 (1996), 77-96.