Some classes of interval tensors and their properties

Document Type : Research Paper


Department of Mathematics, Faculty of Sciences, University of Hormozgan, P. O. Box 3995, Bandar Abbas, Iran



First, we define and investigate some new classes of interval tensors, called interval exceptionally regular tensors  ($ER-$tensor) and interval $wP-$tensors which is relevant to interval strictly semi-positive tensors. Also, we show that $ER-$tensor is a wide class of interval tensors, which includes many important structured tensors. Second, some classes of interval matrices are extended to interval tensors, such as interval $R(R_0)$-tensor and column sufficient interval tensor. We discuss their relationships with interval positive semi-definite tensors and some other structured interval tensors. In addition,  necessary and sufficient conditions for interval (strictly) copositive and interval $E_0$-tensors are presented and investigated. Finally, we extend the concept of the column sufficient interval matrix to the column sufficient interval tensor.


[1] H. Bozorgmanesh, M. Hajarian and A.Th. Chronopoulos, Interval Tensors and their application in solving multi-linear
      systems of equations, Comput. Math. Appl., 79(3) (2020), 697-715.
[2] H. Chen, L. Qi and Y. Song, Column sufficient tensors and tensor complementarity problems, Front. Math. China, 13(2)
     (2018), 255-276.
[3] R.W. Cottle, J.-Sh. Pang and R.E. Stone, The Linear Complementarity Problem, Society for Industrial and Applied 
     Mathematics, 2009.
[4] R.W. Cottle, J.-Sh. Pang and V. Venkateswaran, Sufficient matrices and the linear complementarity problem, Linear
      Algebra Appl., 114 (1989), 231-249.
[5] W. Ding, Z. Luo and L. Qi., P-Tensors, P_0-Tensors, and Tensor Complementarity Problem,  arXiv preprint:
      arXiv:1507.06731, 2015.
[6] W. Ding, L. Qi and Y. Wei, $\mathcal{M}$-tensors and nonsingular $\mathcal{M}$-tensors, Linear Algebra Appl.,
      439(10) (2013), 3264-3278.
[7] M. Fiedler, J. Nedoma, J. Ramík, J. Rohn and K. Zimmermann, Linear Optimization Problems with Inexact Data, Springer,
     New York, 2006. 
[8] M. Heyouni, F. Saberi-Movahed and A. Tajaddini, A tensor format for the generalized Hessenberg method for solving 
      Sylvester tensor equations, J. Comput. Appl. Math., 377 (2020),112878.
[9] M. Hladík, Stability of the linear complementarity problem properties under interval uncertainty, CEJOR, Cent. Eur. J. 
      Oper. Res., 29(3) (2021), 875-889.
[10] M. Hladík, D. Daney and E. Tsigaridas, Characterizing and approximating eigenvalue sets of symmetric interval 
       matrices, Comput. Math. Appl., 62(8) (2011), 3152-3163.
[11] T.G. Kolda and W.B. Brett, Tensor decompositions and applications, SIAM Rev., 51(3) (2009), 455-500. 
[12] R.E. Moore, Interval Arithmetic and Automatic Error Analysis in Digital Computing (Ph.D. thesis), Stanford Univ Calif 
        Applied Mathematics And Statistics Labs, 1962.
[13] R.E. Moore, R.B. Kearfott and M.J. Cloud, Introduction to Interval Analysis, SIAM, Philadelphia, PA, 2009.
[14] S. Rahmati and M.A. Tawhid, On intervals and sets of hypermatrices (tensors), Front. Math. China, 15(6) (2020), 
[15] J. Rohn, Bounds on eigenvalues of interval matrices, ZAMM, Z. Angew. Math. Mech., 78(3) (1998), 24-27.
[16] S.M. Rump., Fast interval matrix multiplication, Numer. Algorithms, 61(1) (2012), 1-34.
[17] Y. Song and L. Qi, Properties of some classes of structured tensors, J. Optim. Theory Appl., 165(3) (2015), 854-873.
[18] Y. Song and L. Qi, Properties of tensor complementarity problem and some classes of structured tensors, 
        arXiv:1412.0113v1, 2014.
[19] Y. Wang, Zh.-H. Huang and X.-L. Bai, Exceptionally Regular Tensors and Tensor Complementarity Problems,
       Optimization Methods and Software, 31(4) (2016), 815-828. 
[20] Y. Yang and Q. Yang, Further results for Perron–Frobenius theorem for nonnegative tensors, SIAM J. Matrix Anal. 
        Appl., 31(5) (2010), 2517-2530.
[21] L. Zhang, L. Qi and G. Zhou, M-tensors and some applications, SIAM J. Matrix Anal. Appl., 35(2) (2014), 437-452.