[1] J. J. Benedetto, P. J. S. G. Ferreira, Modern Sampling Theory, Springer Science and Business Media, New York,
2001.
[2] Y. M. Chen, Y. B. Wu, Wavelet method for a class of fractional convection-diffusion equation with variable
coefficients, J. Comput. Sci., 1 (2010), 146-149.
[3] K. Diethelm, The Analysis of Fractional Differential Equations, Springer-Verlag, Berlin, 2010.
[4] V. J. Ervin, J.P. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Dierential Equations, 22 (2006), 558-576.
[5] V. D. Gejji, H. Jafari, Solving a multi-order fractional differential equation, Appl. Math. Comput., 189 (2007)
541-548.
[6] I. Hashim, O. Abdulaziz, S. Momani, Homotopy analysis method for fractional IVPs, Commun. Nonlinear Sci.
Numer. Simul., 14 (2009), 674-684.
[7] J. He, Nonlinear oscillation with fractional derivative and its applications, International Conference on Vibrating Engineering, Dalian, China, (1998), 288-291.
[8] J. He, Some applications of nonlinear fractional differential equations and their approximations, Bull. Sci.
Technol., 15 (1999), 86-90.
[9] S. Hosseinnia, A. Ranjbar, S. Momani, Using an enhanced homotopy perturbation method in fractional differential equations via deforming the linear part, Comput. Math. Appl., 56 (2008), 3138-3149.
[10] M. Inc, The approximate and exact solutions of the space- and time-fractional Burgers equations with initial
conditions by variational iteration method, J. Math. Anal. Appl., 345 (2008), 476-484.
[11] A. Kilicman, Z.A.A. Al Zhour, Kronecker operational matrices for fractional calculus and some applications,
Appl. Math. Comput., 187 (2007), 250-265.
[12] K. Moaddy, S. Momani, I. Hashim, The non-standard finite difference scheme for linear fractional PDEs in fluid
mechanics, Comput. Math. Appl., 61 (2011), 1209-1216.
[13] S. Momani, Z. Odibat, Analytical approach to linear fractional partial differential equations arising in fluid
mechanics, Phys. Lett. A, 355 (2006), 271-279.
[14] Y. Nawaz, Variational iteration method and homotopy perturbation method for fourth-order fractional integrodifferential equations, Comput. Math. Appl., 61 (2011), 2330-2341.
[15] Z. Odibat, S. Momani, The variational iteration method: an efficient scheme for handling fractional partial
differential equations in fluid mechanics, Comput. Math. Appl., 58 (2009), 2199-2208.
[16] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
[17] S. S. Ray, K. S. Chaudhuri, R. K. Bera, Analytical approximate solution of nonlinear dynamic system containing
fractional derivative by modified decomposition method, Appl. Math. Comput., 182 (2006), 544-552.
[18] M. U. Rehman, R. A. Khan, A numerical method for solving boundary value problems for fractional differential
equations, Applied Mathematical Modelling, 36 (2012), 894-907.
[19] A. Saadatmandi, M. Dehghan, A new operational matrix for solving fractional-order differential equations,
Comput. Math. Appl., 59 (2010), 1326-1336.
[20] H. Saeedi, M. Mohseni Moghadam, Numerical solution of nonlinear Volterra integro-differential equations of
arbitrary order by CAS wavelets, Appl. Math. Comput., 16 (2011), 1216-1226.
[21] H. Saeedi, M. Mohseni Moghadam, N. Mollahasani, G. N. Chuev, A CAS wavelet method for solving nonlinear
Fredholm integro-differential equations of fractional order, Commun. Nonlinear Sci. Numer. Simul., 16 (2011),
1154-1163.
[22] N. H. Sweilam, M. M. Khader, R. F. Al-Bar, Numerical studies for a multi-order fractional differential equation,
Phys. Lett. A, 371 (2007), 26-33.
[23] Q. Wang, Numerical solutions for fractional KdV-Burgers equation by Adomian decomposition method, Appl.
Math. Comput., 182 (2006), 1048-1055.
[24] M. Zurigat, S. Momani, A. Alawneh, Analytical approximate solutions of systems of fractional algebraicdifferential equations by homotopy analysis method, Comput. Math. Appl., 59 (2010), 1227-1235.