Legendre wavelets method for numerical solution of time-fractional heat equation

Document Type : Research Paper

Authors

Department of Mathematics, Faculty of Mathematics, Yazd University, Yazd, Islamic Republic of Iran

Abstract

In this paper, we develop an efficient Legendre wavelets collocation method for well known time-fractional heat equation. In the proposed method, we apply operational matrix of fractional integration to obtain numerical solution of the inhomogeneous time-fractional heat equation with lateral heat loss and Dirichlet boundary conditions. The power of this manageable method is confirmed. Moreover, the use of Legendre wavelets is found to be accurate, simple and fast.

Keywords


[1] A. Carpinteri and F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics, Springer Verlag,
Wien, New York, 1997.
[2] K. S. Miller and B. Ross,An Introduction to the Fractional Calculus and Fractional Differential Equations,
Wiley, New York, 1993.
[3] K. B. Oldham and J. Spanier, The Fractional Calculus. Academic Press, New York, 1974.
[4] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego, 1999.
[5] I. Podlubny. Fractional-order systems and fractional-order controllers. Report UEF-03-94, Slovak Academy of
Sciences, Institute of Experimental Physics, Kosice, Slovakia, November 1994, 18p.
[6] R. Gorenflo and F. Mainardi, Fractional calculus: integral and differential equations of fractional order, in: A.
carpinteri, f. mainardi (eds.), fractals and fractional calculus in continuum mechanics, Springer, New York,
(1997), 223–276.
[7] W. R. Schneider and W. Wyess, Fractional diffusion and wave equations, J. Math. Phys., 30(1989), 134–144.
[8] U. Lepik, Solving pdes with the aid of two-dimensional haar wavelets, Comput. Math. Appl., 61(2011), 1873–
1879.
[9] U. Anderson and B. Engquist, A contribution to wavelet-based subgrid modeling, Appl. Comput. Harmon.
Model, 7(1999), 151–164.
[10] C. Cattani, Haar wavelets based technique in evolution problems, Chaos,Proc. Estonian Acad. Sci. Phys. Math,
1(2004), 45–63.
[11] N. Coult, Explicit formulas for wavelet-homogenized coefficients of elliptic operators, Appl. Comput. Harmon.
Anal, 21(2001), 360–375.
[12] X. Chen, J. Xiang, B. Li, and Z. He, A study of multiscale wavelet-based elements for adaptive finite element
analysis, Adv. Eng. Softw, 41(2010),196–205.
[13] G. Hariharan, K. Kannan, and K.R. Sharma, Haar wavelet method for solving fishers equation, Appl. Math.
Comput, 211(2)(2009), 284–292.
[14] P. Mrazek and J. Weickert, From two-dimensional nonlinear diffusion to coupled haar wavelet shrinkage, J. Vis.
Commun. Image. Represent, 18(2007),162–175.
[15] W. Fan and P. Qiao, A 2-d continuous wavelet transform of mode shape data for damage detection of plate
structures, Internat. J. Solids Structures, 46(2003), 6473–6496.
[16] J. E. Kim, G.-W. Yang, and Y.Y. Kim, Adaptive multiscale wavelet-galerkin analysis for plane elasticity problems and its application to multiscale topology design optimation, internat. j. solids structures, Comput. Appl.
Math., 40(2003), 6473–6496.
[17] Y. Shen and W. Li, The natural integral equations of plane elasticity problems and its wavelet methods, Appl.
Math. Comput., 150 (2)(2004),417–438.
[18] Z. Chun and Z. Zheng, Three-dimensional analysis of functionally graded plate based on the haar wavelet
method, Acta. Mech. Solida. Sin., 20(2)(2007), 95–102.
[19] H. F. Lam and C. T. Ng, A probabilistic method for the detection of obstructed cracks of beam-type structures
using spacial wavelet transform,Probab. Eng. Mech., 23(2008), 239–245.
[20] J. Majak, M. Pohlak, M. Eerme, and T. Lepikult, Weak formulation based haar wavelet method for solving
differential equations, Appl. Math. Comput., 211(2009), 488–494.
[21] L. M. S. Castro, A. J. M. Ferreira, S. Bertoluzza, R.C. Patra, and J.N. Reddy, A wavelet collocation method for
the static analysis of sandwich plates ussing a layerwise theory, Compos. Struct., 92(2010), 1786–1792.
[22] M. H. Heydari, M. R. Hooshmandasl, M. F. Maalek Ghaini and F. Fereidouni, Two-dimensional Legendre
wavelets for solving fractional Poisson equation with Dirichlet boundary conditions Engineering Anal. Boun.
Elem., 37(2013),1331-1338.
[23] L. Nanshan and E. B. Lin, Legendre wavelet method for numerical solutions of partial differential equations,
Numer. Methods Partial Dierential Equations, 26(1):81–94, 2009.
[24] M. U. Rehman and R. A. Khan, The legendre wavelet method for solving fractional differential equations,
Commun. Nonlinear Sci. Numer. Simul., 227(2)(2009), 234–244.
[25] A. Kilicman and Z.A. Al Zhour, Kronecker operational matrices for fractional calculus and some applications,
Appl. Math. Comput., 187(1)(2007), 250–65.
[26] M. H. Heydari, M. R. Hooshmandasl, F. M. Maalek Ghaini and F. Mohammadi, Wavelet Collocation Method for
Solving Multiorder Fractional Differential Equations, J. Appl. Math., vol. 2012, Article ID 542401, 19 pages,
2012. doi:10.1155/2012/542401.
[27] A. M. Wazwaz, Partial differential equations and solitary waves theory, Springer, Chicago, 2009.