Linear combinations of wave packet frames for L^2(R^d)

Document Type : Research Paper


University of Delhi


In this paper we study necessary and sufficient conditions for some types of linear combinations of wave packet frames to be a frame for L2(Rd). Further, we illustrate our results with some examples and applications.


[1] A. Aldroubi, Portraits of frames, Proc. Amer. Math. Soc., 123(6)(1995), 1661–1668.
[2] P. G. Casazza, G. Kutyniok. Finite frames: Theory and Applications. Birkhauser, 2012.
[3] O. Christensen, Linear combinations of frames and frame packets, Z. Anal. Anwend., 20(4)(2001), 805–815.
[4] O. Christensen, An introduction to frames and Riesz bases, Birkhauser, Boston, 2002.
[5] O. Christensen, A. Rahimi, Frame properties of wave packet systems in L2(Rd), Adv. Compu. Math., 29(2008), 101–111.
[6] A. Cordoba, C. Fefferman, Wave packets and Fourier integral operators, Commun. Partial Differ. Equations,
3(11)(1978), 979–1005.
[7] W. Czaja, G. Kutyniok, D. Speegle, The geometry of sets of prameters of wave packets, Appl. Comput. Harmon. Anal., 20(1)(2006), 108–125.
[8] K. Guo, D. Labate, Some remarks on the unified characterization of reproducing systems, Collect. Math., 57 (3)(2006), 309–318.
[9] C. Heil, D. Walnut, Continuous and discrete wavelet transforms, SIAM Rev., 31(4)(1989), 628–666.
[10] C. Heil, A Basis Theory Primer, Expanded edition. Applied and Numerical Harmonic Analysis, Birkhauser,
 Springer, New York, 2011.
[11] E. Hernandez, D. Labate, G. Weiss, A unified characterization of reproducing systems generated by a finite family II, J. Geom. Anal., 12(4)(2002), 615–662.
[12] E. Hernandez, D. Labate, G. Weiss, E. Wilson, Oversampling, quasi-affine frames and wave packets, Appl. Comput. Harmon. Anal., 16(2004), 111–147.
[13] D. Labate, G. Weiss, E. Wilson, An approach to the study of wave packet systems, Contemp. Math., 345(2004), 215–235.
[14] M. Lacey, C. Thiele, Lp estimates on the bilinear Hilbert transform for 2<p<1, Ann. Math., 146(1997),
[15] M. Lacey, C. Thiele, On Calderons conjecture, Ann. Math., 149(1999), 475–496.
[16] A. K. Sah, L. K. Vashisht, Hilbert transform of irregular wave packet system for L2(R), Poincare J. Anal. Appl.,1(2014), 9–17.
[17] A. K. Sah, L. K. Vashisht, Irregular Weyl-Heisenberg wave packet frames in L2(R), Bull. Sci. Math., 139(1)(2015), 61–74.