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1. Introduction

Let f be a convex function defined on the segment [a, b] of the real line. Then the following
inequality holds:

f
(a + b

2
)
≤

1
b − a

∫ b

a
f (x) dx ≤

1
2
(
f (a) + f (b)

)
. (1.1)

These inequalities are well known as the Hermite-Hadamard inequalities (see [4]). There are
many generalizations of these inequalities for classes of non-convex functions such as quasiconvex
functions [8, 9], p-functions [8], ICAR (increasing and convex-along-rays) functions [3], IPH
(increasing and positively homogeneous) functions [1] and B-convex and B−1-convex functions
[11].
For instance [9], if f : [0, 1] −→ R is an arbitrary nonnegative quasiconvex function, then for any
u ∈ (0, 1) one has

f (u) ≤
1

min(u, 1 − u)

∫ 1

0
f (x) dx. (1.2)

If
D =

{
(x, y) ∈ R2

+ | 0 ≤ x ≤ a, 0 ≤
y
x
≤ ν

}
that a > 0 and ν > 0, then for each ICAR function f we have:

f
(a
3
,
νa
3

)
≤

1
A(D)

∫
D

f (x, y) dxdy,

where A(D) is the area of D.
The class of topical functions is another class of abstract convex functions that some Hermite-
Hadamard inequalities for these functions were presented in [2]. For example, if f : D −→ R is a
topical function that

D = {(x, y) ∈ R2 | a ≤ x ≤ a + δ, 0 ≤ y ≤ x − a},

where a, δ ∈ R and δ ≥ 3, then

f
(1
3
δ + a,

1
3
δ
)
≤

2
δ2

∫
D

f (x, y) dxdy.

The class of sub-topical functions is a natural extension of topical functions. These functions
were introduced and examined in [5, 6, 7, 10]. In the present paper some Hermite-Hadamard
type inequalities for sub-topical functions are given. Examples for particular domains are also
presented.
This article has the following structure: In Section 2, we provide some preliminaries, definitions
and results relative to sub-topical functions. In Section 3, we consider Hermite-Hadamard type
inequalities for the class of sub-topical functions. Finally, some examples of such inequalities for
functions defined on R2 are given in Section 4.
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2. Preliminaries

We assume that Rn is equipped with coordinate-wise order relation. A function f : Rn −→

R = [−∞,+∞] is said to be increasing if f (x) ≤ f (y) for each x, y ∈ Rn such that x ≤ y.
The function f is called plus sub-homogeneous if f (x + λ1) ≤ f (x) + λ for all x ∈ Rn and all
λ ≥ 0, where 1 = (1, . . . , 1) ∈ Rn. It is easy to see that f is plus sub-homogeneous if and only if
f (x + λ1) ≥ f (x) + λ for all x ∈ Rn and all λ ≤ 0. The following definitions and results can be
found in [9, 10].

Definition 2.1. A function f : Rn −→ R is called sub-topical if it is increasing and plus sub-
homogeneous.

Remark 2.2. A function f : Rn −→ R is called topical if it is increasing and f (x + λ1) = f (x) + λ
for all x ∈ Rn and all λ ∈ R. It is clear that any topical function is sub-topical.

Lemma 2.3. Let f : Rn −→ R be a sub-topical function.
(i) If there exists x ∈ Rn such that f (x) = +∞, then f ≡ +∞.
(ii) If there exists x ∈ Rn such that f (x) = −∞, then f ≡ −∞.

It follows from Lemma 2.3 that a sub-topical function is either finite (i.e., finite-valued at each
x ∈ Rn) or identically +∞ or −∞. Now, we present the following simple examples.

Example 2.4. Let a ∈ Rn be such that a ≥ 0 and 〈a, 1〉 ≤ 1. Then the linear function

f (x) = 〈a, x〉, (x ∈ Rn),

is sub-topical.

Example 2.5. Functions of the form

f (x) =
1
θ

ln
( n∑

i=1

e〈ai,x〉), (x ∈ Rn),

where ai ∈ Rn, ai ≥ 0, i = 1, 2, . . . , n, and θ ≥ max1≤i≤n〈ai, 1〉, are sub-topical. Indeed, since the
functions ln and exp are increasing, it is clear that the function f is increasing. To see that f is
plus sub-homogeneous, let x ∈ Rn and λ ≥ 0. Then

f (x + λ1) =
1
θ

ln
( n∑

i=1

e〈ai,x+λ1〉)
=

1
θ

ln
( n∑

i=1

e〈ai,x〉eλ〈ai,1〉)
≤

1
θ

ln
(
eλθ

n∑
i=1

e〈ai,x〉)
=

1
θ

(
ln

(
eλθ

)
+ ln

( n∑
i=1

e〈ai,x〉))
= λ +

1
θ

ln
( n∑

i=1

e〈ai,x〉)
= λ + f (x).
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Example 2.6. Let { fi}1≤i≤k be a set of real valued sub-topical functions. Put

f (x) = min{ f1(x), . . . , fk(x)}, F(x) = max{ f1(x), . . . , fk(x)}, (x ∈ Rn).

Then the functions f and F are sub-topical.

Let us mention some properties of the set Γ of all sub-topical functions f : Rn −→ R.
(1) We have Γ + R = Γ, that is, if f ∈ Γ and c ∈ R, then f + c ∈ Γ.
(2) Γ is a convex set.
(3) Γ is a complete lattice, that is, if { fβ}β∈B is an arbitrary family of elements of Γ and

f (x) = sup
β∈B

fβ(x), (x ∈ Rn),

then the function f belongs to Γ.
(4) Γ is closed under the pointwise convergence of functions.
Remark 2.7. Every finite sub-topical function f is continuous on Rn. Indeed, let {xk} ⊂ Rn, x ∈ Rn,
xk −→ x and ε > 0. Then, for sufficiently large k we have x − ε1 ≤ xk ≤ x + ε1, whence, since f is
increasing and plus sub-homogeneous, we obtain

f (x) − ε ≤ f (x − ε1) ≤ f (xk) ≤ f (x + ε1) ≤ f (x) + ε.

These inequalities imply the continuity of f at x.
Now, we recall some definitions from abstract convexity. Consider a set X and a set H of

functions h : X −→ R. The function f : X −→ R is called abstract convex with respect to H (or
H-convex) if there exists a subset U of H such that

f (x) = sup
h∈U

h(x), (x ∈ X).

The set H is called the set of elementary functions. Consider the function ϕ : Rn × Rn × R −→ R
defined by

ϕ(x, y, α) = min
1≤i≤n
{α, xi + yi}, (x, y ∈ Rn, α ∈ R).

Let (y, α) ∈ Rn × R be arbitrary. Denote by ϕ(y,α) the function defined on Rn by the formula
ϕ(y,α)(x) = ϕ(x, y, α). It is clear that ϕ(y,α) is a sub-topical function on Rn. Let Xϕ = {ϕ(y,α) | y ∈
Rn, α ∈ R}, then it is known that any function f defined on Rn is sub-topical if and only if f is
Xϕ-convex. It is also known that the function f : Rn −→ R is sub-topical if and only if

f (x) ≥ ϕ(−y,α)(x) + f (y + α1) − α, ∀x, y ∈ Rn, ∀α ∈ R. (2.1)

Formula (2.1) implies the following statement.

Proposition 2.8. Let f be a sub-topical function defined on Rn, U ⊂ Rn, V ⊂ R such that 0 ∈ V,
and ∆ = U × V. Then the function

f∆(x) = sup
(y,α)∈∆

(
ϕ(−y,α)(x) + f (y + α1) − α

)
, (x ∈ Rn)

is sub-topical and it possesses the properties:
(i) f∆(x) ≤ f (x) for all x ∈ Rn.
(ii) f∆(x) = f (x) for all x ∈ U.
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Proof. Since the function ϕ(−y,α)(x) + f (y + α1) − α is sub-topical for any (y, α) ∈ ∆, and since
the pointwise supremum of a family of sub-topical functions is sub-topical, so the function f∆ is
sub-topical.
According to Equation (2.1), It is clear that f∆(x) ≤ f (x) for all x ∈ Rn.
Now, let x ∈ U. Since 0 ∈ V , so (x, 0) ∈ ∆. Then

f∆(x) ≥ ϕ(−x,0)(x) + f (x + 0 × 1) − 0 = f (x).

This implies that f∆(x) = f (x).

3. Hermite-Hadamard Type Inequalities

Let D ⊂ Rn be a closed domain, that is, D is a bounded set such that cl(intD) = D. Let Q(D)
be the set of all points (y, α) ∈ D × R such that

1
A(D)

∫
D
ϕ(−y,α)(x) dx = 1,

where A(D) =
∫

D
dx.

Proposition 3.1. Assume that the set Q(D) is nonempty and let f be a sub-topical function. Then
the following inequality holds:

sup
(y,α)∈D

(
f (y + α1) − α

)
≤

1
A(D)

∫
D

f (x) dx − 1. (3.1)

Proof. Since f is sub-topical, it follows from (2.1) that

ϕ(−y,α)(x) + f (y + α1) − α ≤ f (x), ∀x, y ∈ D, ∀α ∈ R.

Let (y, α) ∈ Q(D). It follows from the definition of Q(D) that

A(D)
(
1 + f (y + α1) − α

)
=

∫
D

(
ϕ(−y,α)(x) + f (y + α1) − α

)
dx ≤

∫
D

f (x) dx.

Therefore
f (y + α1) + 1 − α ≤

1
A(D)

∫
D

f (x) dx.

This completes the proof.

Remark 3.2. For each (y, α) ∈ Q(D) we have also the following inequality, which is weaker than
(3.1)

f (y + α1) + 1 − α ≤
1

A(D)

∫
D

f (x) dx. (3.2)

Note that if f (x) = ϕ(−y,α)(x), then in (3.2) the equality holds. Indeed,

ϕ(−y,α)(y + α1) + 1 − α = α + 1 − α = 1 =
1

A(D)

∫
D
ϕ(−y,α)(x) dx.



Daryaei/ Wavelets and Linear Algebra 10(2) (2023) 51- 62 56

Remark 3.3. We can generalize the inequality from the right-hand side of (1.1). Indeed, let f be a
sub-topical function and D ⊂ Rn be a convex closed domain. By setting α = 0 in (2.1), we have
ϕ(−x,0)(y) + f (x) ≤ f (y) for all x, y ∈ D. Now, let y ∈ D be a minimal element of the set D (note
that the point y ∈ D is called a minimal point of the set D, if x ∈ D and x ≤ y implies that x = y).
So we get the following inequality:∫

D
f (x) dx ≤ f (y)A(D) +

∫
D

max
1≤i≤n
{0, xi − yi} dx. (3.3)

In the following, we characterize the set Q(D), that D is a bounded closed interval of R. Let
D = [a, b], that a < b, l = b − a and y ∈ D. Let (y, α) ∈ Q(D), then a < y + α. Indeed, if y + α ≤ a,
then ϕ(−y,α)(x) = α for all x ∈ D. So,

1 =
1

A(D)

∫
D
ϕ(−y,α)(x) dx =

1
b − a

∫ b

a
α dx =

1
b − a

(b − a)α = α.

We conclude that y + 1 ≤ a. But a ≤ y, which yields y + 1 ≤ y, that is a contradiction. Hence
a < y + α.
Now, based on whether the point y + α belongs to the interval D or not, we consider two case:
case (i): y + α ≥ b.
In this case,

ϕ(−y,α)(x) = x − y, ∀x ∈ D.

Then

1 =
1

b − a

∫ b

a
ϕ(−y,α)(x) dx =

1
b − a

∫ b

a
(x − y) dx =

1
2

(b + a) − y.

So, y = 1
2 (b + a) − 1. Since a ≤ y ≤ b, we conclude that l ≥ 2. On the other hand, y + α ≥ b. This

implies that α ≥ 1
2 l + 1. It is easy to see that if y = 1

2 (a + b) − 1, l ≥ 2 and α ≥ 1
2 l + 1, then y ∈ D,

y + α ≥ b and 1
b−a

∫ b

a
ϕ(−y,α)(x) dx = 1, so (y, α) ∈ Q(D).

case (ii): a < y + α < b.
We get

ϕ(−y,α)(x) =

x − y, a ≤ x ≤ y + α,

α, y + α ≤ x ≤ b.

Then

1 =
1

b − a

∫ b

a
ϕ(−y,α)(x) dx

=
1

b − a

( ∫ y+α

a
(x − y) dx +

∫ b

y+α

α dx
)

=
−1

2(b − a)
(
y2 + 2(α − a)y + (α2 + a2 − 2αb)

)
.

This implies that α > 1 and y = a − α +
√

2l(α − 1). But a ≤ y ≤ b, so we must have l > 2 and
l −
√

l(l − 2) ≤ α ≤ l +
√

l(l − 2). Also, in this case a < y + α < b. Therefore we get α < 1
2 l + 1.
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Since l > 2, it is easy to check that 1
2 l + 1 < l +

√
l(l − 2). Also l > 2 implies that α > 1. Hence, in

this case, (y, α) ∈ Q(D) if and only if l > 2, y = a− α+
√

2l(α − 1) and l−
√

l(l − 2) ≤ α < 1
2 l + 1.

We have proved the following proposition.

Proposition 3.4. Let D = [a, b] that −∞ < a < b < ∞, and l = b − a. We have the following
assertions:
(i) Q(D) = ∅ if and only if l < 2.
(ii) If l = 2, then Q(D) = {(y, α) | y = a, α ≥ 2}.
(iii) If l > 2, then Q(D) = {(y, α) | y = 1

2 (a+b)−1, α ≥ 1
2 l+1}∪{(y, α) | y = a−α+

√
2l(α − 1), l−

√
l(l − 2) ≤ α < 1

2 l + 1}.

Remark 3.5. Let f be a sub-topical function and consider the bounded closed interval D = [a, b].
If we set y = a, then by (3.3) we have∫ b

a
f (x) dx ≤ f (a)(b − a) +

1
2

(b − a)2.

Now, we describe the set Q(D), that D is a convex closed domain in R2. Let (x̄, ȳ) ∈ D and
ᾱ ∈ R. Consider the line R = {(x, y) ∈ R2 | y = x + γ}, that γ = ȳ − x̄. Set S = {(x, y) ∈ R2 |

x ≥ x̄ + ᾱ, y ≥ ȳ + ᾱ}, S ′ = R2 \ int(S ), D1 = D ∩ S , D2 = D ∩ S ′ ∩ R+ and D3 = D ∩ S ′ ∩ R−,
that R+ and R− are upper half-plane and lower half-plane defined by the line R, respectively; i.e.,
R+ = {(x, y) ∈ R2 | y ≥ x + γ} and R− = {(x, y) ∈ R2 | y ≤ x + γ}. Then we conclude that
D = D1 ∪ D2 ∪ D3 and int(Di) ∩ int(D j) = ∅, for i , j. See Figure 1.
Now, we define the function g : R2 −→ R by

g(x, y) = min{ᾱ, x − x̄, y − ȳ}, ((x, y) ∈ R2).

Then we conclude that

g(x, y) =


ᾱ, (x, y) ∈ D1,

x − x̄, (x, y) ∈ D2,

y − ȳ, (x, y) ∈ D3.

Indeed, if (x, y) ∈ D1, then (x, y) ∈ D, x ≥ x̄ + ᾱ and y ≥ ȳ + ᾱ. So, ᾱ ≤ x − x̄ and ᾱ ≤ y − ȳ.
Therefore, we obtain that g(x, y) = ᾱ. If (x, y) ∈ D2, then (x, y) ∈ D, y ≥ x + γ and (x, y) < int(S ).
Since γ = ȳ − x̄, so

y − ȳ ≥ x − x̄. (3.4)

On the other hand, (x, y) < int(S ), so we obtain that either x ≤ x̄ − ᾱ or y ≤ ȳ − ᾱ. By using (3.4),
in both cases we get g(x, y) = x− x̄. If (x, y) ∈ D3, by an argument similar to the previous case, we
obtain that g(x, y) = y − ȳ.
In the sequel, for the convex closed domain D ⊂ R2, we need to define the following notations:

xD
m = min

(x,y)∈D
x, xD

M = max
(x,y)∈D

x,

and
yD

m = min
(x,y)∈D

y, yD
M = max

(x,y)∈D
y.
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Figure 1: D is a convex closed domain in R2

Note that since D is a compact set and the functions x and y are continuous on D, these functions
attain their minimum and maximum values on D. For example, (xD

m, y0) ∈ D, for some y0 ∈ R.

Lemma 3.6. Let ((x̄, ȳ), ᾱ) ∈ Q(D). Then ᾱ > min{xD
m − x̄, yD

m − ȳ}.

Proof. By contradiction, suppose that ᾱ ≤ min{xD
m − x̄, yD

m − ȳ}. So, ᾱ ≤ xD
m − x̄ and ᾱ ≤ yD

m − ȳ. By
definition of xD

m and yD
m, we get

ᾱ ≤ x − x̄ and ᾱ ≤ y − ȳ, ∀(x, y) ∈ D. (3.5)

This implies that g(x, y) = ᾱ for all (x, y) ∈ D. Since ((x̄, ȳ), ᾱ) ∈ Q(D), we have

1 =
1

A(D)

∫
D

g(x, y) dxdy =
1

A(D)

∫
D
ᾱ dxdy =

A(D)
A(D)

ᾱ = ᾱ.

On the other hand, by setting (x, y) = (x̄, ȳ) in (3.5), we obtain that ᾱ ≤ 0, which is a contradiction.
This completes the proof.

Remark 3.7. If we set
βi =

A(Di)
A(D)

, i = 1, 2, 3,

then we have 0 ≤ βi ≤ 1 (i = 1, 2, 3) and β1 + β2 + β3 = 1. From Lemma 3.6, it is clear that if
((x̄, ȳ), ᾱ) ∈ Q(D), then β2 + β3 > 0.



Daryaei/ Wavelets and Linear Algebra 10(2) (2023) 51- 62 59

In the following theorems, we characterize the set Q(D), that D ⊂ R2 is a convex closed
domain.
Note that for the set D, we assume that

XD =
1

A(D)

∫
D

x dxdy and YD =
1

A(D)

∫
D

y dxdy.

Theorem 3.8. Let ((x̄, ȳ), ᾱ) ∈ Q(D) and set γ = ȳ − x̄. Then we have

(β2 + β3)x̄ = β1ᾱ + β2XD2 + β3(YD3 − γ) − 1. (3.6)

Proof. We have

1
A(D)

∫
D

g(x, y) dxdy =
1

A(D)

( ∫
D1

ᾱ dxdy +

∫
D2

(x − x̄) dxdy +

∫
D3

(y − ȳ) dxdy
)

=
1

A(D)

(
A(D1)ᾱ +

∫
D2

x dxdy − A(D2)x̄ +

∫
D3

y dxdy − A(D3)ȳ
)

=
1

A(D)

(
A(D1)ᾱ + A(D2)XD2 − A(D2)x̄ + A(D3)YD3 − A(D3)ȳ

)
= β1ᾱ + β2XD2 − (β2 + β3)x̄ + β3(YD3 − γ).

But, 1
A(D)

∫
D

g(x, y) dxdy = 1, so (β2 + β3)x̄ = β1ᾱ + β2XD2 + β3(YD3 − γ) − 1.

In the following, we present the converse of Theorem 3.8.

Theorem 3.9. Let (x̄, ȳ) ∈ D and set γ = ȳ − x̄. Consider the line R = {(x, y) ∈ R2 | y = x + γ}.
Assume that ᾱ > min{xD

m − x̄, yD
m − ȳ} is such that (β2 + β3)x̄ = β1ᾱ+ β2XD2 + β3(YD3 − γ)− 1. Then

((x̄, ȳ), ᾱ) ∈ Q(D).

Proof. By an argument similar to the proof of Theorem 3.8, we have

1
A(D)

∫
D

g(x, y) dxdy = β1ᾱ + β2XD2 − (β2 + β3)x̄ + β3(YD3 − γ).

So by hypothesis, we get 1
A(D)

∫
D

g(x, y) dxdy = 1, thus ((x̄, ȳ), ᾱ) ∈ Q(D).

Based on that some of βi may be zero or not, we can deduce some special cases from Theorem
3.9, that in the following we present these cases.

Corollary 3.10. Let γ ∈ R and set x̄ = YD − γ − 1 and ȳ = YD − 1. Let D ⊂ R− = {(x, y) ∈ R2 | y ≤
x + γ}. If (x̄, ȳ) ∈ D, then ((x̄, ȳ), ᾱ) ∈ Q(D) for all ᾱ ≥ yD

M − ȳ.

Proof. Since D ⊂ R−, we obtain that int(D2) = ∅. This implies that β2 = 0. Let ᾱ ≥ yD
M − ȳ.

So we get int(D1) = ∅ and therefore β1 = 0. On the other hand, we have β1 + β2 + β3 = 1. So
β3 = 1. Hence we obtain that ((x̄, ȳ), ᾱ) satisfies in Equation (3.6). Note that since int(D) , ∅, we
get yD

M > yD
m. This implies that yD

M − ȳ > min{xD
m − x̄, yD

m − ȳ}. By Theorem 3.9, we deduce that
((x̄, ȳ), ᾱ) ∈ Q(D).
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The proof of the following corollary is similar to the Corollary 3.10, so we omit it.

Corollary 3.11. Let γ ∈ R and set x̄ = XD − 1 and ȳ = XD + γ− 1. Let D ⊂ R+ = {(x, y) ∈ R2 | y ≥
x + γ}. If (x̄, ȳ) ∈ D, then ((x̄, ȳ), ᾱ) ∈ Q(D) for all ᾱ ≥ xD

M − x̄.

Corollary 3.12. Let γ ∈ R and assume the line R = {(x, y) ∈ R2 | y = x + γ} is such that
int(Di) , ∅ for i = 2, 3. Set x̄ = β2XD2 + β3(YD3 − γ) − 1 and ȳ = x̄ + γ. If (x̄, ȳ) ∈ D, then we have
((x̄, ȳ), ᾱ) ∈ Q(D) for all ᾱ ≥ min{xD

M − x̄, yD
M − ȳ}.

Proof. Since int(Di) , ∅ for i = 2, 3, we get βi , 0 for i = 2, 3. Now, let ᾱ ≥ min{xD
M − x̄, yD

M − ȳ}.
This implies that β1 = 0. So β2 + β3 = 1. Therefore by hypothesis, ((x̄, ȳ), ᾱ) satisfies in Equation
(3.6). Hence Theorem 3.9 implies that ((x̄, ȳ), ᾱ) ∈ Q(D).

Corollary 3.13. Let (x̄, ȳ) ∈ D and set γ = ȳ − x̄. Let D ⊂ R− = {(x, y) ∈ R2 | y ≤ x + γ}. Assume
min{xD

m − x̄, yD
m − ȳ} < ᾱ < yD

M − ȳ is such that β3 x̄ = β1ᾱ+ β3(YD3 − γ)− 1. Then ((x̄, ȳ), ᾱ) ∈ Q(D).

Proof. Since D ⊂ R−, we get int(D2) = ∅. So β2 = 0. Now, let min{xD
m − x̄, yD

m − ȳ} < ᾱ <
yD

M − ȳ. This implies that int(Di) , ∅ for i = 1, 3. So βi > 0 for i = 1, 3. On the other hand
β3 x̄ = β1ᾱ+β3(YD3 −γ)−1, therefore we conclude that ((x̄, ȳ), ᾱ) satisfies in Equation (3.6). Hence
Theorem 3.9 implies that ((x̄, ȳ), ᾱ) ∈ Q(D).

The proof of the following corollary is similar to the Corollary 3.13, so we omit it.

Corollary 3.14. Let (x̄, ȳ) ∈ D and set γ = ȳ − x̄. Let D ⊂ R+ = {(x, y) ∈ R2 | y ≥ x + γ}. Assume
min{xD

m − x̄, yD
m − ȳ} < ᾱ < xD

M − x̄ be such that β2 x̄ = β1ᾱ + β2XD2 − 1. Then ((x̄, ȳ), ᾱ) ∈ Q(D).

4. Examples

In this section, we present some examples.

Example 4.1. Let D ⊂ R2 be the square with vertices (a, 0), (0, a), (a, 2a) and (2a, a), that is

D = {(x, y) | 0 ≤ x ≤ a, −x + a ≤ y ≤ x + a} ∪ {(x, y) | a ≤ x ≤ 2a, x − a ≤ y ≤ −x + 3a},

where a ≥ 4. Consider the line R = {(x, y) ∈ R2 | y = x + γ} that |γ| ≤
√

a2 − 4a This line passes
through the interior of the set D and divides D into two parts.

We are looking for a point ((x̄, ȳ), ᾱ) ∈ Q(D) that (x̄, ȳ) ∈ D ∩ R and int(D1) = ∅. First, we
must calculate XD2 and YD3 . It is clear that A(D) = 2a2, A(D2) = a(a − γ) and A(D3) = a(a + γ).
We have

XD2 =
1

A(D2)

∫
D2

x dxdy =
1
4

(3a − γ)

and
YD3 =

1
A(D3)

∫
D3

y dxdy =
1
4

(3a + γ).
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On the other hand, we have β2 =
a−γ
2a and β3 =

a+γ

2a . Now, according to Corollary 3.12, we put

x̄ = β2XD2 + β3(YD3 − γ) − 1

=
a − γ

2a
3a − γ

4
+

a + γ

2a

(3a + γ

4
− γ

)
− 1

= −
1

4a
γ2 −

1
2
γ +

3
4

a − 1

and ȳ = x̄ + γ. By hypothesis, we have |γ| ≤
√

a2 − 4a. By a simple calculation, this implies that
(x̄, ȳ) ∈ D. But xD

M = yD
M = 2a, so it follows from Corollary 3.12 that ((x̄, ȳ), ᾱ) ∈ Q(D) for any

ᾱ ≥ min{2a− x̄, 2a−ȳ} (a simple calculation shows that ((x̄, ȳ), ᾱ) ∈ Q(D) for any ᾱ ≥ 1
4aγ

2+ 3
4a+1).

It follows from Remark 3.2 that the following inequality holds for each sub-topical function f :

f
(
−

1
4a
γ2 −

1
2
γ +

3
4

a − 1 + ᾱ,−
1

4a
γ2 +

1
2
γ +

3
4

a − 1 + ᾱ
)
− ᾱ + 1 ≤

1
a2

∫
D

f (x, y) dxdy

for each ᾱ ≥ 1
4aγ

2 + 3
4a + 1.

Example 4.2. Now we consider the set D ⊂ R2 as a solid half-disk with radius a. In other words,
D in polar coordinates has the following form:

D =
{
(r, θ) | 0 ≤ r ≤ a, −

3π
4
≤ θ ≤

π

4

}
.

We assume that a ≥ 3
√

2π
3π−4 . Consider the line R = {(x, y) ∈ R2 | y = x} (so D ⊂ R− = {(x, y) ∈

R2 | y ≤ x}). We are looking for a point ((x̄, ȳ), ᾱ) ∈ Q(D) that (x̄, ȳ) ∈ D ∩ R and int(D1) = ∅.
According to Corollary 3.10, we must calculate YD. We have A(D) = π

2 a2 and

YD =
1

A(D)

∫
D

y dxdy = −
2
√

2
3π

a.

Therefore (x̄, ȳ) =
(
− 2

√
2

3π a − 1,−2
√

2
3π a − 1

)
. Since a ≥ 3

√
2π

3π−4 , we conclude that (x̄, ȳ) ∈ D. But,
yD

M = a
√

2
. It follows from Corollary 3.10 that ((x̄, ȳ), ᾱ) ∈ Q(D) for any ᾱ ≥

( 1
√

2
+ 2

√
2

3π

)
a + 1. It

follows from Remark 3.2 that the following inequality holds for each sub-topical function f :

f
(
−

2
√

2
3π

a − 1 + ᾱ,−
2
√

2
3π

a − 1 + ᾱ
)
− ᾱ + 1 ≤

2
πa2

∫
D

f (x, y) dxdy

for each ᾱ ≥
( 1
√

2
+ 2

√
2

3π

)
a + 1.

Example 4.3. Let a > 3. We will now consider the square in R2 formed by the points (0, 0), (0, a),
(a, 0) and (a, a) as vertices, which we denoted as D.

Consider the line R = {(x, y) ∈ R2 | y = x}. We are looking for a point ((x̄, ȳ), ᾱ) ∈ Q(D)
that (x̄, ȳ) ∈ D ∩ R and int(D1) , ∅. Let x̄ ∈ [0, a

3 − 1) be arbitrary. So (x̄, x̄) ∈ R ∩ D. Now let
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ᾱ be such that int(D1) , ∅. We have A(D) = a2, A(D1) = (a − (x̄ + ᾱ))2 and A(D2) = A(D3) =
1
2 (a2 − (a − (x̄ + ᾱ)))2. So we get

XD2 =
1

A(D2)

∫
D2

x dxdy =
1
3

3a(x̄ + ᾱ) − 2(x̄ + ᾱ)2

2a − (x̄ + ᾱ)

and

YD3 =
1

A(D3)

∫
D3

y dxdy =
1
3

3a(x̄ + ᾱ) − 2(x̄ + ᾱ)2

2a − (x̄ + ᾱ)
.

According to Theorem 3.9, we must have (β2 + β3)x̄ = β1ᾱ + β2XD2 + β3YD3 − 1. Substituting the
quantities in this equation and simplifying, gives (ᾱ + (x̄ − a))3 = −a3 + 3a2(x̄ + 1). Therefore

ᾱ = a − x̄ +
3
√
−a3 + 3a2(x̄ + 1).

Note that since x̄ ∈ [0, a
3 − 1), we get 0 < x̄ + ᾱ < a. This implies that int(D1) , ∅. Summarizing,

we have
(
(x̄, x̄), a − x̄ + 3

√
−a3 + 3a2(x̄ + 1)

)
∈ Q(D) for each x̄ ∈ [0, a

3 − 1).
On the other hand, the minimal point of the set D is (0, 0). So (3.3) implies the following inequal-
ity: ∫

D
f (x) dx ≤ a2 f (0, 0) +

2
3

a3.
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