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1. Introduction

Let f be a convex function defined on the segment [a, b] of the real line. Then the following
inequality holds:
a+b

1 b 1
f( _;——jﬁﬂﬁdxs—ﬂmrhﬂM) (L.1)
-aJ, 2

These inequalities are well known as the Hermite-Hadamard inequalities (see [4]). There are
many generalizations of these inequalities for classes of non-convex functions such as quasiconvex
functions [8, 9], p-functions [8], ICAR (increasing and convex-along-rays) functions [3], IPH
(increasing and positively homogeneous) functions [1] and B-convex and B~!-convex functions
[11].

For instance [9], if f : [0, 1] — R is an arbitrary nonnegative quasiconvex function, then for any
u € (0, 1) one has

1 1
7)< s [ fas (12)
min(u, 1 —u) J,
If
:{(x,y)e]RilOSxSa, OSXSV}
X
that a > 0 and v > 0, then for each ICAR function f we have:
a va
= 5 dxdy,
133 A(D)ff(x ) dxdy

where A(D) is the area of D.

The class of topical functions is another class of abstract convex functions that some Hermite-
Hadamard inequalities for these functions were presented in [2]. For example, if f : D — Risa
topical function that

D={(x,y)eR*|la<x<a+6, 0<y<x-—al,

where a,6 € R and § > 3, then

f(%5+a =6) < sz(x y) dxdy.

The class of sub-topical functions is a natural extension of topical functions. These functions
were introduced and examined in [5, 6, 7, 10]. In the present paper some Hermite-Hadamard
type inequalities for sub-topical functions are given. Examples for particular domains are also
presented.

This article has the following structure: In Section 2, we provide some preliminaries, definitions
and results relative to sub-topical functions. In Section 3, we consider Hermite-Hadamard type
inequalities for the class of sub-topical functions. Finally, some examples of such inequalities for
functions defined on R? are given in Section 4.
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2. Preliminaries

We assume that R” is equipped with coordinate-wise order relation. A function f : R" —
R = [—o0, +0c0] is said to be increasing if f(x) < f(y) for each x, y € R” such that x < y.
The function f is called plus sub-homogeneous if f(x + A1) < f(x) + A for all x € R" and all
A>0,where 1 =(1,...,1) € R" Itis easy to see that f is plus sub-homogeneous if and only if
f(x+ A1) > f(x) + A for all x € R" and all 4 < 0. The following definitions and results can be
found in [9, 10].

Definition 2.1. A function f : R” — R is called sub-topical if it is increasing and plus sub-
homogeneous.

Remark 2.2. A function f : R" — R is called topical if it is increasing and f(x + A1) = f(x) + 4
for all x € R" and all A4 € R. It is clear that any topical function is sub-topical.

Lemma 2.3. Let f : R" — Rbea sub-topical function.
(i) If there exists x € R" such that f(x) = +oo, then f = +oo.
(i) If there exists x € R" such that f(x) = —oo, then f = —oo.

It follows from Lemma 2.3 that a sub-topical function is either finite (i.e., finite-valued at each
x € R") or identically +oco or —co. Now, we present the following simple examples.

Example 2.4. Let a € R” be such that a > 0 and {(a, 1) < 1. Then the linear function
fx) =(a,x), (xeR?),

is sub-topical.

Example 2.5. Functions of the form
l n
@) = < In ;:1 ), (xeR"),

where ¢; € R", a; > 0,i = 1,2,...,n, and 8 > max,<;<,{a;, 1), are sub-topical. Indeed, since the
functions In and exp are increasing, it is clear that the function f is increasing. To see that f is
plus sub-homogeneous, let x € R" and A > 0. Then

1 n
- {aj,x+A1)
; In ( i; e )

1 n
= - In ( Z elar0 A1)
i=1

1 A6 C {aj,x)
i In (e ; e\ )

= %( In(e") +In( Zn: e<“””‘>))

f(x+ A1)

IA

1 n
_ - (aj,x)
= /l+91n(i:§1e )
= A+ f(x).
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Example 2.6. Let {f;},<;<x be a set of real valued sub-topical functions. Put

S = min{fi(x),..., i)},  Fx) = max{fi(x),..., i)}, (xeR".
Then the functions f and F are sub-topical.

Let us mention some properties of the set I' of all sub-topical functions f : R" — R.
(1) WehaveI' + R =T, thatis,if feI'andc € R, then f +c €T
(2) I' is a convex set.
(3) I is a complete lattice, that is, if { fg}zep 1s an arbitrary family of elements of I' and
JS(x) =sup fp(x), (xR,

BEB
then the function f belongs to I.
(4) I is closed under the pointwise convergence of functions.

Remark 2.”7. Every finite sub-topical function f is continuous on R”". Indeed, let {x;} C R", x € R",
x; — x and € > 0. Then, for sufficiently large k we have x — €l < x; < x + €1, whence, since f is
increasing and plus sub-homogeneous, we obtain

Jx)—e< f(x—€l) < f(x) < f(x+€l) < f(x) +e.
These inequalities imply the continuity of f at x.

Now, we recall some definitions from abstract convexity. Consider a set X and a set H of
functions 4 : X — R. The function f : X — R is called abstract convex with respect to H (or
H-convex) if there exists a subset U of H such that

f(x) =suph(x), (xe€X).

heU

The set H is called the set of elementary functions. Consider the function ¢ : R" X R" X R — R
defined by
p(x, y,@) = minfa, x; +yi}, (¥, y € R", @ € R).
<i<n

Let (y,a) € R" X R be arbitrary. Denote by ¢, the function defined on R" by the formula
Po.a)(X) = @(x,y,a). Itis clear that ¢, 1s a sub-topical function on R". Let X, = {¢n) | ¥ €
R", @ € R}, then it is known that any function f defined on R” is sub-topical if and only if f is
X, -convex. It is also known that the function f : R" — R is sub-topical if and only if

)2 oyn@+fy+al)—a, Vx, yeR", YaeR. 2.1
Formula (2.1) implies the following statement.
Proposition 2.8. Let f be a sub-topical function defined on R", U C R", V C R such that 0 € V,
and A = U x V. Then the function

Salx) = ;u)PA (@) + f+al)—a), (xeR")

is sub-topical and it possesses the properties:
(i) fa(x) < f(x) forall x e R".
(i) fa(x) = f(x) forall x € U.
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Proof. Since the function ¢, )(x) + f(y + @l) — a is sub-topical for any (y,a) € A, and since
the pointwise supremum of a family of sub-topical functions is sub-topical, so the function fj is
sub-topical.

According to Equation (2.1), It is clear that f(x) < f(x) for all x € R".

Now, let x € U. Since 0 € V, so (x,0) € A. Then

Sax) = @ro(x) + f(x+0x1) =0 = f(x).
This implies that fy(x) = f(x). O]

3. Hermite-Hadamard Type Inequalities

Let D c R” be a closed domain, that is, D is a bounded set such that cl(intD) = D. Let Q(D)
be the set of all points (y, @) € D X R such that

1
— o) dx =1,
A(D)fDSD( ya (%) dx

where A(D) = [ dx.

Proposition 3.1. Assume that the set Q(D) is nonempty and let f be a sub-topical function. Then
the following inequality holds:

1
sup (fy+al)—a) < D) ff(x)dx— 1. (3.1)

(v, @)D
Proof. Since f is sub-topical, it follows from (2.1) that
Py () + fy+al)—a < f(x), Vx,yeD, VaeR.

Let (y, @) € Q(D). It follows from the definition of Q(D) that

ADY1 + fy+al)—a) = f (@ymX) + fy+al) —a)dx < ff(x) dx.
D D

Therefore |
+1- d
fora+i-as oo [ fx
This completes the proof. L

Remark 3.2. For each (y, @) € Q(D) we have also the following inequality, which is weaker than

3.1)

f(y+a1) +1-a< m ff(X)dX (32)

Note that if f(x) = ¢y)(x), then in (3.2) the equality holds. Indeed,

1
90_,’a(y+a1)+1—04:a+1—04:lz—fgp_,’a(x)dx,
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Remark 3.3. We can generalize the inequality from the right-hand side of (1.1). Indeed, let f be a
sub-topical function and D C R” be a convex closed domain. By setting @ = 0 in (2.1), we have
Yx0 ) + f(x) < f(y) for all x, y € D. Now, let y € D be a minimal element of the set D (note
that the point y € D is called a minimal point of the set D, if x € D and x < y implies that x = y).
So we get the following inequality:

f f(x)dx < f(MA(D) + f max{0, x; - y;} dx. (3.3)
D p lsisn

In the following, we characterize the set Q(D), that D is a bounded closed interval of R. Let
=[a,b],thata < b, =b—-aandy e D. Let (y,a) € Q(D), thena < y + . Indeed, if y + a < a,
then ¢y (x) = @ for all x € D. So,

1
1= A(D)fgo(_ya)(x)dx——f adx—

We conclude that y + 1 < a. But a < y, which yields y + 1 < y, that is a contradiction. Hence
a<y+a.

Now, based on whether the point y + a belongs to the interval D or not, we consider two case:
case (i): y+a > b.

In this case,

90(—y,a)(x) =X—-), Yx € D.
Then
1 b 1 b 1
1:b—a ; ‘P(—y,a)(x)dx:m ) (x—y)dx:E(b+a)—y,

So,y = %(b +a)— 1. Since a < y < b, we conclude that [ > 2. On the other hand, y + @ > b. This
implies that a > l+ 1. It is easy to see that if y = (a+b)— I,I>2anda > L+ 1,theny € D,

y+a>band ;- fcp(ya)(x)dx—l 50 (y, @) € Q(D).
case (i1): a<y+a<b
We get

xX-Yy, a<x<y+ta,
a, y+a<x<b.

‘10(—y,a)(x) = {

Then

1 = —f P—ya)(x) dx

b
= d d
b—a(ja\ (x—-y) x+fy+aa x)

-1
= b )(y +2(a — a)y + (@* + a* — 2ab)).

This implies that @ > 1 and y = a —a + V2l(a —1). Buta <y < b, so we must have / > 2 and
— VIl -2)<a <1+ VI(I-2). Also, in this case a < y + @ < b. Therefore we get @ < %l + 1.
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Since [ > 2, it is easy to check that %l +1 <[+ VIl(I-2). Also [ > 2 implies that « > 1. Hence, in
this case, (y,@) € Q(D) ifandonlyif /> 2, y=a—-a+ V2l(e—-1)and - VIl -2) < a < %l+ 1.
We have proved the following proposition.

Proposition 3.4. Let D = [a,b] that —c0o < a < b < oo, and | = b — a. We have the following
assertions:

(i) Q(D) = 0 if and only if [ < 2.

(ii) If l = 2, then Q(D) ={(y,a) |y =a, a > 2}.

(iii) If 1 > 2, then Q(D) = {(y, @) | y = 3(a+b)—1, @ > I+ 1}U{(y,@) |y = a—a+ 2(a - 1), I-
Vi(l-2)<a< %l+1}.

Remark 3.5. Let f be a sub-topical function and consider the bounded closed interval D = [a, b].
If we set y = a, then by (3.3) we have

b
f f(x)dx < f(a)(b—a) + %(b —a)’.

Now, we describe the set Q(D), that D is a convex closed domain in R?. Let (X,%) € D and
@ € R. Consider the line R = {(x,y) € R> | y = x+y},thaty = y — % Set S = {(x,y) € R? |
x>k+a, y>2y+al, S’ =R*\int(S),D,=DNS,D,=DNnS'"NR and D; =DNS'NR",
that R* and R~ are upper half-plane and lower half-plane defined by the line R, respectively; i.e.,
R* ={(x,y) e R”* | y>x+vy}and R~ = {(x,y) € R?> | y < x +y}. Then we conclude that
D = D; U D, U D5 and int(D;) N int(D;) = 0, for i # j. See Figure 1.
Now, we define the function g : R —R by

g(x’y):min{d,’x_x’y_)_;}, ((X’Y)ERZ)-

Then we conclude that

)]

’ (X,}’)EDl,

g(x’y): X=X, (x’y)€D27
y—J, (x,y) € Ds.

Indeed, if (x,y) € D, then (x,y) e D,x > X+a@andy > y+a. So,a < x—Xanda <y-}.
Therefore, we obtain that g(x,y) = @. If (x,y) € D,, then (x,y) € D,y > x + 7y and (x,y) € int(S).
Since y =y — X, so

y—-y=>x-—2Xx 3.4)

On the other hand, (x,y) ¢ int(S), so we obtain that either x < X —a@ or y < y — @. By using (3.4),
in both cases we get g(x,y) = x— X. If (x,y) € D3, by an argument similar to the previous case, we
obtain that g(x,y) =y —¥.

In the sequel, for the convex closed domain D  R?, we need to define the following notations:

xf,)l = min x, an4 = max x,
(x,y)eD (x,y)eD

and

D . D
= min y, = max Yy.
Ym (x,y)eD Y M (x,y)eD Y
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N
+
Qi

‘y=z+r
Figure 1: D is a convex closed domain in R?

Note that since D is a compact set and the functions x and y are continuous on D, these functions
attain their minimum and maximum values on D. For example, (x2, o) € D, for some y, € R.

Lemma 3.6. Let (%, ), @) € Q(D). Then & > min{x> — x,y> — §}.

Proof. By contradiction, suppose that @ < min{x? — %, y? — 3}. So, @ < x? — xand @ < y© - y. By
definition of x2 and y2, we get

a<x—X and a<y-y, V(x,y) eD. 3.5)

This implies that g(x,y) = @ for all (x,y) € D. Since ((X,¥), @) € Q(D), we have

_ 1 _ V[ addy e AD) -
l—A(D)Lg(x,y)dxdy—A(D)‘[Dadxdy—A(D)a—oz.

On the other hand, by setting (x, y) = (X, ¥) in (3.5), we obtain that @ < 0, which is a contradiction.
This completes the proof. ]

Remark 3.7. 1f we set
A(D;)
ﬁi = >
A(D)
then we have 0 < 5; < 1 (i = 1,2,3) and B; + 3, + B3 = 1. From Lemma 3.6, it is clear that if
((x,y),@) € Q(D), then 8, + 33 > 0.

i=1,2,3,
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In the following theorems, we characterize the set Q(D), that D C R? is a convex closed
domain.
Note that for the set D, we assume that

1 1
Xp=—— dxd d Yp=—— dxdy.
TR Jy e Y= g [ vy
Theorem 3.8. Let ((X,y),@) € Q(D) and set y =y — X. Then we have
(B2 + B3)x = Bra + B2 Xp, + B3(Yp, —y) — 1. (3.6)

Proof. We have

1 1 ) i )
mfl)g(x,y)dxdy M(Lladxdy+Lz(x—x)dxdy+fl)3(y_y)dxdy)

1
- m(A(Dl)df + fD 2 xdxdy — A(Dy)% + f ydxdy — A(D3)9)

D3

1
= ——(AD)a + A(Dy)Xp, — A(Dy)% + A(D3)Yp, — A(D3)5)

A(D)
= Bia+ B2 Xp, — (B2 + B3)x + B3(Yp, — ¥).
But, 15 [, &% y)dxdy = 1,50 (B2 + B3)% = 1@ + BaXp, + B3s(Yp, —7) — 1. O

In the following, we present the converse of Theorem 3.8.

Theorem 3.9. Let (%,y) € D and set y = y — %. Consider the line R = {(x,y) € R* | y = x + y}.
Assume that @ > min{x? — x, y? — y} is such that (B, + 33)X = 1@ + B Xp, + Bs(Yp, —y) — 1. Then
((x,y), @) € Q(D).

Proof. By an argument similar to the proof of Theorem 3.8, we have

1
AD) ng(x,y) dxdy = 1@ + BoXp, — (B2 + B3)X + B3(Yp, — ¥).

So by hypothesis, we get /ﬁ fD g(x,y)dxdy = 1, thus ((x,y), @) € Q(D). ]

Based on that some of 8; may be zero or not, we can deduce some special cases from Theorem
3.9, that in the following we present these cases.

Corollary 3.10. Lety e Rand set X =Yp—y—landy=Yp—1. Let DC R" ={(x,y) e R? | y <
x+ 7y} If (X,5) € D, then (%,5),&) € Q(D) for all @ >y, — 3.

Proof. Since D C R™, we obtain that inf(D,) = 0. This implies that 8, = 0. Let @ > yb — 7.
So we get int(D) = 0 and therefore 8; = 0. On the other hand, we have 8; + 8, + 83 = 1. So
B3 = 1. Hence we obtain that ((X, ), @) satisfies in Equation (3.6). Note that since int(D) # 0, we
get y§ > yb. This implies that y), — § > min{x}, — %,y% — y}. By Theorem 3.9, we deduce that
((x,9), @) € Q(D). U
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The proof of the following corollary is similar to the Corollary 3.10, so we omit it.

Corollary 3.11. Lety e Rand set ¥ = Xp—1landy = Xp+y—1. Let D C Rt = {(x,y) e R? | y >
x+ vy} If (X,¥) € D, then ((x,y),@) € Q(D) forall & > xf,, - X

Corollary 3.12. Let y € R and assume the line R = {(x,y) € R* | y = x + y} is such that
int(D;) # 0 fori =2,3. Set x = $,Xp, + B3(Yp, —y) — landy = X +y. If (X,¥) € D, then we have
((x,y),@) € Q(D) forall @ > min{xfl - X, yf,l -y}

Proof. Since int(D;) # 0 for i = 2,3, we get §; # 0 for i = 2,3. Now, let @ > min{x}, — X, y}, — }.
This implies that 8; = 0. So 5, + B3 = 1. Therefore by hypothesis, ((%, ), @) satisfies in Equation
(3.6). Hence Theorem 3.9 implies that ((X, y), @) € Q(D). ]

Corollary 3.13. Let (%,y) € Dand sety =y — % Let D C R~ = {(x,y) € R? | y < x + y}. Assume
min{x2 - x,y? -y} < @ < yfl —y is such that B3x = i@ + B3(Yp, —y) — 1. Then (X,y), @) € Q(D).

Proof. Since D C R™, we get int(D,) = 0. So B, = 0. Now, let min{x? — x,y? -y} < @ <
yﬁ —y. This implies that int(D;) # @ fori = 1,3. So 8; > 0 for i = 1,3. On the other hand
B3x = Bia+B3(Yp, —y)— 1, therefore we conclude that ((X, ¥), @) satisfies in Equation (3.6). Hence
Theorem 3.9 implies that ((%, y), @) € Q(D). O

The proof of the following corollary is similar to the Corollary 3.13, so we omit it.
Corollary 3.14. Let (%,y) € D and set’y =y — %. Let D C R* = {(x,y) € R? | y > x + y}. Assume
min{x}, — X,y — 3} < @ < x5 — % be such that > = p1@ + B Xp, — 1. Then ((%,7), @) € Q(D).
4. Examples

In this section, we present some examples.

Example 4.1. Let D c R? be the square with vertices (a, 0), (0, a), (a, 2a) and (2a, a), that is
D={xy)|0<x<a, —x+a<y<x+alU{x,y)|la<x<2a, x—a<y<-x+3al},

where a > 4. Consider the line R = {(x,y) € R? | y = x + y} that |y| < Va2 — 4a This line passes
through the interior of the set D and divides D into two parts.

We are looking for a point ((X,y), @) € Q(D) that (x,y) € D N R and int(D;) = 0. First, we
must calculate Xp, and Yp,. It is clear that A(D) = 2a*, A(D,) = a(a —y) and A(D3) = a(a + y).
We have

1 1
, = xdxdy = —=(Ba —vy)
D ADy) sz y 4( Y
and
Y, ! f dxd 1(3 +7v)
= X = —(2a .
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On the other hand, we have 8, = 5 and 83 = ;7. Now, according to Corollary 3.12, we put

X = BaXp, +B:3(Yp,—y) -1
-y 3a- +7v,3a+
azyla-y 4 7(0 7_y)_1

2a 4 2a 4
L, 13

= —_—— —_—— —a_
1a) T27 7%

and y = X + y. By hypothesis, we have |y| < Va? — 4a. By a simple calculation, this implies that
(%,5) € D. But x5 = yb = 2a, so it follows from Corollary 3.12 that ((%, ), @) € Q(D) for any
a > min{2a—X, 2a—y} (a simple calculation shows that ((x, ), @) € Q(D) for any & > tyz+%a+1).
It follows from Remark 3.2 that the following inequality holds for each sub-topical function f:

1 1 _ 1
f(—572——7+—a—1+a,——y2+—y+

2 4 4a 2 4

3 1

—a—l+&)—c‘y+1§—2ff(x,y)dxdy
as Jp

for each @ > ﬁyz + %a + 1.

Example 4.2. Now we consider the set D C R? as a solid half-disk with radius a. In other words,
D in polar coordinates has the following form:

D={rO)|0=r<a, —37<9<7T}

4;

We assume that a > %. Consider the line R = {(x,y) e R* |y =x} so D C R~ = {(x,y) €
R? | y < x}). We are looking for a point ((X, ), @) € Q(D) that (x,7) € D N R and int(D;) = 0.
According to Corollary 3.10, we must calculate Y. We have A(D) = %az and

fdx ———2a
Yp = A(D) y y

Therefore (%,y) = (— a -1, %( —1). Since a > é‘ﬁ” we conclude that (x,y) € D. But,

= %. It follows from Corollary 3.10 that ((x,¥),@) € Q(D) for any @ > (75 ?)a +1. It
follows from Remark 3.2 that the following inequality holds for each sub-topical function f:

2 2 2
\/_a—l a——\/_a—l+(x)—c_x+1S—ff(x,y)dxdy
3 na* Jp

f(-

foreacha/>(f+ )a+1

Example 4.3. Let a > 3. We will now consider the square in R? formed by the points (0, 0), (0, a),
(a,0) and (a, a) as vertices, which we denoted as D.

Consider the line R = {(x,y) € R? | y = x}. We are looking for a point ((%,7),a) € Q(D)
that (x,y) € D N R and int(Dy) # 0. Let x € [0,5 — 1) be arbitrary. So (x,X) € RN D. Now let
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@ be such that int(D;) # 0. We have A(D) = a?, A(D,) = (a — (¥ + @))* and A(D,) = A(D») =
1(d* - (a— (x + @)))*. So we get

f v dud _13a(3’c+d/)—2(fc+d/)2
n T3 2a-Gra)

and

v 1 f dd 13a(x +a) - 2(x + @)?
= X = — .
5T A0y ) T T3 2a-Gra)

According to Theorem 3.9, we must have (8, + 83)X = 1@ + 5:Xp, + B3Yp, — 1. Substituting the
quantities in this equation and simplifying, gives (@ + (X — a))® = —a® + 3a*(X + 1). Therefore

&=a—X+v-a3+3a2(% + 1).

Note that since x € [0, % — 1), we get 0 < X + @ < a. This implies that int(D;) # (. Summarizing,
we have ((X,X),a — X + \"/—a3 +3a*(x + 1)) € Q(D) for each x € [0, 5 - 1).

On the other hand, the minimal point of the set D is (0, 0). So (3.3) implies the following inequal-
ity:

ff(x) dx < a*£(0,0) + %a3,
D 3
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