Wavelets and Linear Algebra

http://wala.vru.ac.ir

On L-rays of toeplitz matrices

Asma Ilkhanizadeh Manesh ${ }^{\text {a,* }}$
${ }^{a}$ Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O. Box: 7713936417, Rafsanjan, Iran.

Article Info

Article history:

Received 15 June 2022
Accepted 27 November 2022
Available online 5 May 2023 Communicated by Abbas Salemi

Keywords:
Majorization, Integral row stochastic, Toeplitz matrices.

2010 MSC:
15A36.

Abstract

A toeplitz matrix or diagonal-constant matrix is a matrix in which each descending diagonal from left to right is constant. A matrix R is called integral row stochastic, if each row has exactly a nonzero entry, +1 , and other entries are zero. In this paper, we present L-rays of integral row stochastic toeplitz matrices, and we provide an algorithm for constructing these matrices.

(C) (2023) Wavelets and Linear Algebra

[^0]
1. Introduction

Any n-by- n matrix A of the form

$$
\left(\begin{array}{cccccc}
a_{0} & a_{-1} & a_{-2} & \ldots & \ldots & a_{-(n-1)} \\
a_{1} & a_{0} & a_{-1} & \ddots & & \vdots \\
a_{2} & a_{1} & \ddots & & \ddots & \vdots \\
\vdots & \ddots & & \ddots & a_{-1} & a_{-2} \\
\vdots & & \ddots & a_{1} & a_{0} & a_{-1} \\
a_{n-1} & \ldots & \ldots & a_{2} & a_{1} & a_{0}
\end{array}\right)
$$

is a toeplitz matrix. If $A=\left[a_{i j}\right]$, then we have $a_{i j}=a_{i+1 j+1}=a_{i-j}$.
A toeplitz matrix may be defined as a matrix $A=\left[a_{i j}\right]$ where $a_{i j}=c_{i-j}$, for constants c_{1-n}, \ldots, c_{n-1}. The set of n-by- n toeplitz matrices is a subspace of the vector space of n-by- n matrices under matrix addition and scalar multiplication.

Toeplitz matrices are also closely connected with Fourier series, because the multiplication operator by a trigonometric polynomial, compressed to a finite-dimensional space, can be represented by such a matrix. Similarly, one can represent linear convolution as multiplication by a toeplitz marrix.

If each row of a matrix R has exactly a nonzero entry, +1 , and its other entries zero, R is called integral row stochastic . The collection of all n-by- n integral row stochastic toeplitz matrices is denoted by $\mathcal{T} \mathcal{R}(n)$.

For each $1 \leq k \leq n$ define

$$
L^{(k)}=\{(k, 1),(k, 2), \ldots,(k, k),(k-1, k), \ldots,(1, k)\} .
$$

Note that $L^{(k)}$ consists of the first k positions in row k and column k. The sets $L^{(k)}$ are shaped like an L (backward). See [5].

For instance, for $n=5$

$$
\begin{aligned}
L^{(1)} & =\{(1,1)\}, \\
L^{(2)} & =\{(2,1),(2,2),(1,2)\}, \\
L^{(3)} & =\{(3,1),(3,2),(3,3),(2,3),(1,3)\}, \\
L^{(4)} & =\{(4,1),(4,2),(4,3),(4,4),(3,4),(2,4),(1,4)\}, \\
L^{(5)} & =\{(5,1),(5,2),(5,3),(5,4),(5,5),(4,5),(3,5),(2,5),(1,5)\} .
\end{aligned}
$$

Let $A \in \mathbf{M}_{n}$. For each $1 \leq k \leq n$ define

$$
\sigma_{k}(A)=\sum_{(i, j) \in L^{(k)}} a_{i j},
$$

and

$$
\sigma(A)=\left(\sigma_{1}(A), \sigma_{2}(A), \ldots, \sigma_{n}(A)\right) .
$$

$\sigma(A)$ is called the L-ray of A.
A matrix in \mathbf{M}_{n} is doubly stochastic if it is componentwise nonnegative and the entries sum of each row and each column is 1 . In [4], the author presented descriptions of L-rays of permutation matrices and doubly stochastic matrices. For more information we refer the reader to [1, 2, 3].

In this paper, we investigate the image set $\sigma(\mathcal{T} \mathcal{R}(n))=\{\sigma(A): A \in \mathcal{T R}(n)\}$ for the class of integral row stochastic toeplitz matrices. We call this the L-ray problem. We show that they are associated with majorization theory. The book [6] is a comprehensive study of majorization theory and its applications.

2. L-rays of integral row stochastic toeplitz matrices

In this section, we characterize L-rays of integral row stochastic toeplitz matrices.
Example 2.1. Let

$$
\mathcal{T} \mathcal{R}(2)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Then

$$
\sigma(\mathcal{T} \mathcal{R}(2))=\{(1,1),(0,2)\} .
$$

One can obtain the following proposition directly from the definition of an integral row stochastic toeplitz matrix.

Proposition 2.2. Let $A \in \mathcal{T} \mathcal{R}(n)$. Then $0 \leq \sigma_{1}(A) \leq 1$, and for each $k(2 \leq k \leq n) 0 \leq \sigma_{k}(A) \leq 2$.
The notation $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\{0,1,2\}^{n}$ means that $x_{i} \in\{0,1,2\}$ for each $1 \leq i \leq n$. A real vector $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is called monotone whenever $x_{1} \leq x_{2} \leq \ldots \leq x_{n}$.

We use the following variation of majorization.
Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$. Then $x<^{*} y$ if $\sum_{i=1}^{k} x_{i} \leq \sum_{i=1}^{k} y_{i}$ for $k<n$ and $\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}$.

The following algorithm constructs an integral row stochastic toeplitz matrix $A=\left(a_{i j}\right)$. Note that $e=(1,1, \ldots, 1)$.

Algorithm

Input: A monotone vector $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\{0,1,2\}^{n}$ with $x<^{*} e$.

1. Initialize: Let $A=\left(a_{i j}\right)=0_{n}$ (the zero matrix).
2. for $k=1,2, \ldots, n$ do
(a) If $x_{k}=1$,

If $k=\min \left\{1 \leq i \leq k: x_{i} \neq 0\right\}$, let $a_{1 k}=1$.
Else $s=\max \left\{1 \leq i \leq k-1: x_{i} \neq 0\right\}$ and $l=$ the number of obtained rows
in the stage $x_{s}=1$, let $a_{(l+1) k}=1$.
(b) If $x_{k}=2$,

Let m be the number 2 s in the vector x.

$$
\text { for } i=1,2, \ldots, m \text { do }
$$

Let $a_{k i}=a_{(k-m) k}=1$.
Output: A.
In the following theorem we describe the L-rays of integral row stochastic toeplitz matrices. Remember that $\operatorname{card}(\mathrm{A})$ is the number of its elements, where A is a finite set.

Theorem 2.3. $\sigma(\mathcal{T} \mathcal{R}(n))=\left\{x \in\{0,1,2\}^{n} \mid x<^{*} e, x\right.$ is monotone $\}$.
Furthermore, if $x \in\{0,1,2\}^{n}, x<^{*} e$ and x is monotone, then Algorithm offers an integral row stochastic toeplitz matrix A with $\sigma(A)=x$.

Proof. First, assume that $x=\sigma(A)$ where $A \in \mathcal{T} \mathcal{R}(n)$. Proposition 2.2 ensures that $x \in\{0,1,2\}^{n}$. We see that for each $k \leq n$

$$
\begin{aligned}
\sum_{r=1}^{k} x_{r} & =\sum_{r=1}^{k} \sigma_{r}(A) \\
& =\sum_{i, j \leq k} r_{i j} \leq k,
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{r=1}^{n} x_{r} & =\sum_{r=1}^{n} \sigma_{r}(A) \\
& =\sum_{i, j \leq n} r_{i j} \\
& =n .
\end{aligned}
$$

These imply that $x<^{*} e$. Now, we claim that x is monotone. As A is an integral row stochastic toeplitz matrix, we have two steps.
Step 1. If $A=I_{n}$, then $x=e$, and so x is monotone.
Step 2. If

$$
A=\left(\begin{array}{lllllll}
& & & & 1 & & \\
& & & & & 1 & 0 \\
& & & & & & \ddots \\
& & & & & & \\
1 & & & 0 & & & \\
& 1 & & & & & \\
& 0 & \ddots & & & & \\
& & & & 1 & & \\
& &
\end{array}\right)
$$

where $a_{1 k}, a_{2(k+1)}, \ldots, a_{t n}, a_{(t+1) 1}, a_{(t+2) 2}, \ldots, a_{n(k-1)} \neq 0$, we consider three cases.
Case 1. $k=t+1$;
We observe that

$$
\sigma_{1}(A)=\cdots=\sigma_{k-1}(A)=0
$$

and

$$
\sigma_{k}(A)=\cdots=\sigma_{n}(A)=2
$$

That is, $x=(0, \ldots, 0,2, \ldots, 2)$.
Case 2. $k>t+1$;

Then

$$
\begin{aligned}
\sigma_{1}(A) & =\cdots=\sigma_{t}(A)=0, \\
\sigma_{t+1}(A) & =\cdots=\sigma_{k-1}(A)=1,
\end{aligned}
$$

and

$$
\sigma_{k}(A)=\cdots=\sigma_{n}(A)=2
$$

Thus, $x=(0, \ldots, 0,1, \ldots, 1,2, \ldots, 2)$.
Case 3. $k<t+1$;
In this case,

$$
\begin{gathered}
\sigma_{1}(A)=\cdots=\sigma_{k-1}(A)=0, \\
\sigma_{k}(A)=\cdots=\sigma_{t}(A)=1,
\end{gathered}
$$

and

$$
\sigma_{t+1}(A)=\cdots=\sigma_{n}(A)=2
$$

Hence $x=(0, \ldots, 0,1, \ldots, 1,2, \ldots, 2)$.
In any case, we deduce that x is monotone.
For the converse, suppose that $x \in\{0,1,2\}^{n}, x<^{*} e$ and x is monotone. We claim that Algorithm constructs some $A \in \mathcal{T} \mathcal{R}(n)$ such that $x=\sigma(A)$.

Claim: After each iteration k (of step 2) the present matrix A has the property $\sigma_{i}(A)=x_{i}$ for each $i=1,2, \ldots, k$.

Proof of Claim: By induction on k we prove it. If $k=1$ there is nothing to prove. Suppose that $k \leq n$ and the statement holds for $k^{\prime}<k$. We consider three cases.

Case 1. If $x_{k}=0$;
We see A is not modified. So $\sigma_{k}(A)=0$, and the induction statement holds in this case.
Case 2. If $x_{k}=1$;
If $k=\min \left\{1 \leq i \leq k: x_{i} \neq 0\right\}$ then $a_{1 k}=1$, and so $\sigma_{k}(A)=x_{k}$. If not; $a_{l+1 k}=1$ and hence $\sigma_{k}(A)=x_{k}$.

Case 3. If $x_{k}=2$;
Algorithm ensures that $a_{k i}=a_{(k-m) k}=1$ for each $1 \leq i \leq m$. This follows that $\sigma_{k}(A)=x_{k}$. So the induction statement holds, and then $\sigma(A)=x$.

It remains to prove that $A \in \mathcal{T} \mathcal{R}(n)$.
Define

$$
\begin{aligned}
& I_{0}=\left\{1 \leq i \leq n: x_{i}=0\right\}, \\
& I_{1}=\left\{1 \leq i \leq n: x_{i}=1\right\},
\end{aligned}
$$

and

$$
I_{2}=\left\{1 \leq i \leq n: x_{i}=2\right\} .
$$

We see that

$$
\begin{equation*}
n=\operatorname{card}\left(\mathrm{I}_{0}\right)+\operatorname{card}\left(\mathrm{I}_{1}\right)+\operatorname{card}\left(\mathrm{I}_{2}\right) . \tag{2.1}
\end{equation*}
$$

Step 1. $\operatorname{card}\left(\mathrm{I}_{0}\right)=0$;

As $x<^{*} e$, we have

$$
\begin{aligned}
n & =\sum_{i=1}^{n} x_{i} \\
& =\operatorname{card}\left(\mathrm{I}_{1}\right)+2 \operatorname{card}\left(\mathrm{I}_{2}\right) .
\end{aligned}
$$

The relation (2.1) shows that $\operatorname{card}\left(\mathrm{I}_{2}\right)=0$, and so $x=e$. Algorithm states that $A=I_{n}$, and then $A \in \mathcal{T} \mathcal{R}(n)$.
Step 2. $\operatorname{card}\left(\mathrm{I}_{0}\right) \neq 0$;
If $\operatorname{card}\left(\mathrm{I}_{1}\right)=0$; then $x=(0, \ldots, 0,2, \ldots, 2)$. Since $x<^{*} e$, this implies that $n=2 \operatorname{card}\left(\mathrm{I}_{2}\right)$, and then $\operatorname{card}\left(\mathrm{I}_{2}\right)=\operatorname{card}\left(\mathrm{I}_{0}\right)=\frac{\mathrm{n}}{2}$. Now, by applying Algorithm for x, we observe that $A \in \mathcal{T} \mathcal{R}(n)$.

If $\operatorname{card}\left(\mathrm{I}_{1}\right) \neq 0$; if $\operatorname{card}\left(\mathrm{I}_{2}\right)=0$, then, since $x<^{*} e$, we obtain a contradiction. So $\operatorname{card}\left(\mathrm{I}_{2}\right) \neq 0$. By the relation (2.1) and $x<^{*} e$, we have

$$
n=\operatorname{card}\left(\mathrm{I}_{1}\right)+2 \operatorname{card}\left(\mathrm{I}_{2}\right) \Rightarrow \operatorname{card}\left(\mathrm{I}_{0}\right)=\operatorname{card}\left(\mathrm{I}_{2}\right) .
$$

Let m be the number $2 \cdot \mathrm{~s}$. So $\operatorname{card}\left(\mathrm{I}_{0}\right)=\mathrm{m}$. Algorithm ensures that

$$
A=\left(\begin{array}{lllllll}
& & & & 1 & & \\
& & & & & 1 & 0 \\
& & & & & & \ddots \\
& & & & & & \\
1 & & & 0 & & & \\
& 1 & & & & & \\
& 0 & \ddots & & & & \\
& & & & 1 & & \\
& & & &
\end{array}\right)
$$

where the entries of the positions $(1, m+1),(2, m+2), \ldots,(n-2 m, n-m),(n-2 m, n-m),(n-$ $2 m+1, n-m+1), \ldots,(n-m, n),(n-m+1,1), \ldots,(n, m)$ are 1 and the other entries are zero. This means that $A \in \mathcal{T} \mathcal{R}(n)$, as desired.

Let $x \in \sigma(\mathcal{T} \mathcal{R}(n))$. Algorithm constructs an integral row stochastic toeplitz matrix A with $\sigma(A)=x$. This A is shown by $A(x)$ and it is called the canonical integral row stochastic toeplitz matrix with L-ray x.

Example 2.4. (i) Consider $x=(0,1,1,2)$. We observe that $x<^{*} e$. Algorithm constructs the following matrix.

$$
A=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right) .
$$

(ii) Let $x=(0,0,0,2,2,2)$. Then $x<^{*} e$ and the matrix constructed by Algorithm is

$$
A=\left(\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right) .
$$

(iii) Let $x=(0,0,0,1,1,2,2,2)$. So $x<^{*} e$ and the desired matrix is

$$
\left(\begin{array}{llllllll}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

(iv) If $x=(1,2,0)$, then we can not use the Algorithm.

References

[1] C. Bebeacua, T. Mansour, A. Postnikov and S. Severini, On the X-rays of permutations, Electron. Notes Discrete Math., 20 (2005), 193-203.
[2] R.A. Brualdi and G. Dahl, Constructing (0,1)-matrices with given line sums and a zero block, in: G.T. Herman, A. Kuba (Eds.), Advances in Discrete Tomography and Its Applications, Birkhuser, Boston, (2007), 113-123.
[3] R.A. Brualdi and E. Fritscher, Hankel and Toeplitz X-rays of permutations, Linear Algebra Appl., 449 (2014), 350-380.
[4] G. Dahl, L-rays of permutation matrices and doubly stochastic matrices, Linear Algebra Appl., 480 (2015), 127-143.
[5] G.T. Herman, A. Kuba (Eds.), Discrete Tomography: Foundations, Algorithms, and Applications, Birkhuser, Basel, 1999.
[6] A.W. Marshall, I. Olkin and B.C. Arnold, Inequalities: Theory of Majorization and Its Applications, Springer, New York, 2011.

[^0]: *Corresponding author
 Email address: a.ilkhani@vru.ac.ir (Asma Ilkhanizadeh Manesh)

