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Abstract
Fractional calculus has been used to model physical and engineering pro-
cesses that are found to be best described by fractional differential equa-
tions. Therefore, a reliable and efficient technique as a solution is regarded.
This paper develops approximate solutions for boundary value problems of
differential equations with non-integer order by using the Shannon wavelet
bases. Wavelet bases have different resolution capability for approximating
of different functions. Since for Shannon-type wavelets, the scaling function
and the mother wavelet are not necessarily absolutely integrable, the partial
sums of the wavelet series behave differently and a more stringent condition,
such as bounded variation, is needed for convergence of Shannon wavelet
series. With nominate Shannon wavelet operational matrices of integration,
the solutions are approximated in the form of convergent series with easily
computable terms. Also, by applying collocation points the exact solutions
of fractional differential equations can be achieved by well-known series so-
lutions. Illustrative examples are presented to demonstrate the applicability
and validity of the wavelet base technique. To highlight the convergence,
the numerical experiments are solved for different values of bounded series
approximation.
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1. Introduction

The fractional calculus is a name for the theory of derivatives and integrals of arbitrary order
which unify and generalize the notions of integer-order differentiation and n-fold integration [16].
During the last years, fractional calculus starts to attract much more attention of physicists and
mathematicians. In compare with integer order differential equations, fractional differential equa-
tions (FDEs) show many advantages over the simulation of natural physical process and dynamic
systems with more accurately. For example, the nonlinear oscillation of earthquake can be mod-
eled with fractional derivatives [7], and the fluid dynamic models with fractional derivatives can
eliminate the deficiency arising from the assumption of continuum traffic flow [8, 12]. Owing to
the increasing applications, a considerable attention has been given to exact and numerical solu-
tions of FDEs.
Analytical solution of FDEs either does not exist or seems hard to find. Therefore, during the last
decades, several methods have been used to solve FDEs from numerical points of view, such as
Adomian’s decomposition method [5, 17, 23], variation iteration method [10, 13, 14, 15], homo-
topy perturbation method [9, 22], homotopy analysis method [6, 24], spectral methods [4, 19], and
other methods. In this paper, we apply the Shannon wavelets bases to approximation the solution
of various types of boundary value problems (BVPs) for FDEs.
Wavelet analysis is a relatively new area in mathematic research. It has numerous applications in
approximation theory and has been extensively used in the context of numerical approximation in
the relevant literature during the last two decades. By the way, mathematicians have employed var-
ious types of wavelets. Chen and Wu [2], used Haar wavelet method to solve a class of fractional
convection-diffusion equations by variable coefficients. In [20, 21], a CAS wavelet operational
matrix of fractional order integration has been derived and is used to solve Fredholm and Volterra
integro-differential equations of fractional order. Motivated by the works mentioned above, we
derive a Shannon wavelet operational matrix of fractional order integration, and apply it to solve
BVPs for FDEs that as follows:

Dαy(t) = f (t, y(t),Dβy(t)), 0 ≤ t ≤ 1, (1.1)

subject to the boundary conditions y(0) = y0, y(1) = y1, where α, β are positive fractional or integer
constants. The method reduces the fractional BVP to algebraic equations system.

The rest of the paper is organized as follows. In Section 2, we introduce some preliminaries of
the fractional calculus theory. In Section 3, some relevant properties of the Shannon wavelet bases
and function approximation by these bases are presented. Also, operational matrix of integration
for Shannon wavelet is obtained. Sections 4,5 are devoted to implementing the Shannon wavelet
technique with some numerical experiments.
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2. Preliminaries and basic definitions

In this section, we give some necessary definitions and mathematical preliminaries of the frac-
tional calculus theory [3, 16], which are used further in this paper. There are several definitions
of fractional derivative. Most important types of fractional derivatives are the Riemann-Liouville
and the Caputo, which can be described as follows:

Definition 2.1. Riemann-Liouville’s definition of the fractional order integration for functions
belong to L1[0, a] is as follows:

Iα f (t) =
1
Γ(α)

∫ t

0
(t − τ)α−1 f (τ)dτ, 0 ≤ t ≤ a. (2.1)

Where α, the order of integration is non-negative and for α = 0, we set I0 = I, the identity operator.
Also, Γ(.) denotes the Gamma function.

Lemma 2.2. For α, β > 0, f ∈ C[0,∞), the Riemann-Liouville fractional order integral has
following important properties:

I) Iα(Iβ f (t)) = Iα+β f (t),

II) Iαtβ =
Γ(β + 1)
Γ(α + β + 1)

tα+β.

Definition 2.3. The Riemann-Liouville fractional derivative of order α is defined as:

Dα f (t) =


dm f (t)

dtm , α = m ∈ N,
1

Γ(m − α)
d

dtm

∫ t

0

f (τ)
(t − τ)α−m+1 dτ, t > 0, 0 < m − 1 < α < m,

(2.2)

and the Caputo’s type derivative of this order is defined as:

Dα
∗ f (t) =


dm f (t)

dtm , α = m ∈ N,
1

Γ(m − α)

∫ t

0

f (m)(τ)
(t − τ)α−m+1 dτ, t > 0, 0 < m − 1 < α < m,

(2.3)

as well as D0 = D0
∗ = I.

Lemma 2.4. The Riemann-Liouville fractional derivative is the left inverse of the Riemann-Liouville
fractional integral of the same order i.e.

Dα(Iα) f (t) = f (t).

Theorem 2.5. If m = ⌈α⌉,

I) Iα(Dα f (t)) = f (t) −∑m−1
i=0

tα−i−1

Γ(α − i)
limz→0+ Dm−i−1Im−α f (z),

II) Iα(Dα
∗ f (t)) = f (t) −∑m−1

i=0
ti

i!

[
Di f (t)

]
t=0

.
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3. Shannon wavelet operational matrix of the fractional integration

This section is devoted to introduction of Shannon wavelet bases, function approximation with
these bases and establish the operational matrix of fractional integration.

3.1. The Shannon wavelet
Wavelets are a family of functions constructed from dilation and translation of a single function

called the mother wavelet. The scaling function for the Shannon multiresolution analysis is sinc
function that defined on R, and is given below

φ(t) = sinc(t) =


sin(πt)
πt

, t , 0,

1, t = 0.

Theorem 3.1 ([1]). The function φ(t) is a scaling function of a multiresolution analysis and the
corresponding mother wavelet is defined by

ψ(t +
1
2

) = 2φ(2t) − φ(t).

Theorem 3.2 ([1]). Let j, k be non-negative integers. Then the family

{ψ j,k(t) = 2 j/2ψ(2 jt − k)}∞j,k=0,

is an orthonormal bases of L2(R).

In above theorem, j, k are dilatation and translation parameters, respectively.

3.2. Function approximation
In this section we express the convergence of orthogonal wavelet series when the mother

wavelet is of Shannon-type. Also we show how to approximate a reasonable function with these
wavelet bases.

Theorem 3.3 ([1]). Let y(t) ∈ L2(R) ∩ L1(R), if y(t) is of bounded variation on every bounded
interval, then the wavelet series

y j(t) =
∑

k

⟨y, ψ j,k⟩ψ j,k(t),

converges to y(t) as j→ ∞, at every point of continuity of y(t).

Hence, square integrable function y(t) can be expanded into Shannon series as

y(t) =
∞∑
j=0

∞∑
k=0

c j,kψ j,k(t), (3.1)
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where c j,k = ⟨y(t), ψ j,k(t)⟩. The series expansion y(t) is inclusive infinite terms and will be termi-
nated with finite terms, that is

y(t) ≈ ym(t) =
m−1∑
j=0

m−1∑
k=0

c j,kψ j,k(t). (3.2)

In matrix form
y(t) ≈ CTΨ(t), (3.3)

where C and Ψ(t) are m2 × 1 matrices, given by

C = [c0,0, c0,1, . . . , c0,m−1, c1,0, c1,1, . . . , c1,m−1, . . . , cm−1,0, cm−1,1, . . . , cm−1,m−1]T ,

Ψ(t) = [ψ0,0(t), ψ0,1(t), . . . , ψ0,m−1(t), . . . , ψm−1,0(t), ψm−1,1(t), . . . , ψm−1,m−1(t)]T .

Now, By taking the collocation points as following:

ti =
i

m2 − 1
, i = m j + k, j, k = 0, 1, ...,m − 1, (3.4)

we defined the Shannon matrix Ψm2×m2 as

Ψm2×m2 = [Ψ (0) ,Ψ
(

1
m2 − 1

)
,Ψ

(
2

m2 − 1

)
, . . . ,Ψ

(
m2 − 2
m2 − 1

)
,Ψ (1)]. (3.5)

Eventually, for vector ym = [ym(t0), ym(t1), · · · , ym(tm2−1)], the Shannon coefficients c j,k; j, k =
0, 1, . . . ,m − 1 can be determined by

CT = ymΨ
−1
m2×m2 . (3.6)

For example, when m = 2, the Shannon matrix is expressed as

Ψ4×4 =


1 0.826993 0.413497 3.89817 × 10−17

−0.63662 0.699057 0.699057 −0.63662
0.212207 0.372702 −0.521783 −0.63662
−0.900316 0.988616 −0.737913 0.300105


3.3. Integration of Shannon wavelets

The integration of the Shannon function vector Ψ(t) can be approximated by Shannon wavelet
operational matrix of integration Pm2×m2 as follows:∫ t

0
Ψ(τ)dτ ≈ Pm2×m2Ψ(t). (3.7)

Our purpose is to derive the Shannon wavelet operational matrix of the fractional integration,
namely Pα

m2×m2 . For this point, we introduce the m2-set of block-pulse functions on [0, 1) as follows

b j(t) =

 1, j
1

m2 ≤ t < ( j + 1)
1

m2 ,

0, o.w.,
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for j = 0, 1, . . . ,m2 − 1. The functions b js are disjoint and orthogonal,

∫ 1

0
bi(t)b j(t)dt =

 0, i , j,
1

m2 , i = j.
(3.8)

The Shannon wavelets can be expanded into m2-set of block-pulse functions as

Ψ(t) = Ψm2×m2B(t), (3.9)

where B(t) = [b0(t), b1(t), . . . , bm2−1(t)]T .
In Ref.[11], Kilicman and Al Zhour have given the block-pulse operational matrix of the fractional
integration as

IαB(t) ≈ Fα
m2×m2B(t), (3.10)

where

Fα
m2×m2 = (

1
m2 )α

1
Γ(α + 2)


1 ζ1 ζ2 . . . ζm2−1

0 1 ζ1 . . . ζm2−2

0 0 1 . . . ζm2−3
...

. . .
...

0 0 0 . . . 1


, (3.11)

with ζk = (k + 1)α+1 − 2kα+1 + (k − 1)α+1, for k = 1, 2, . . . ,m2 − 1.
Next, to determine the Shannon wavelet operational matrix of the fractional integration, we let

IαΨ(t) ≈ Pα
m2×m2Ψ(t). (3.12)

By using Eqs. (3.9), (3.10) we have

Pα
m2×m2Ψ(t) ≈ IαΨm2×m2B(t) ≈ Ψm2×m2Fα

m2×m2B(t)

⇒ Pα
m2×m2 ≈ Ψm2×m2Fα

m2×m2Ψ
−1
m2×m2 . (3.13)

For example, when m = 2, α = 1.5 the Shannon wavelet operational matrix of integration is given
by

P1.5
4×4 =


0.344784 0.029417 −0.648696 0.167481
−0.017471 −0.045238 −0.152993 0.003118
0.049062 0.062126 −0.048808 −0.009804
−0.125848 0.032364 0.105076 −0.100288


.

4. Implementation of method

In this section we will explain how one can implement our method for solving the Caputo and
Riemann-Liouville FDEs. For this purpose, 1 < α ≤ 2 and 0 ≤ β ≤ 1, have been selected, but this
approach is generalizable for different values of α, β.
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4.1. Caputo FDEs
Consider the BVP (1.1) with Caputo type FDE given by

Dα
∗y(t) = f (t, y(t),Dβ

∗y(t)), 0 ≤ t ≤ 1, (4.1)
y(0) = y0, y(1) = y1, (4.2)

where 1 < α ≤ 2, 0 ≤ β ≤ 1.
Now, we apply the integral operator Iα to both sides of Eq. (4.1). In view of the Theorem 2.5,
immediately obtain that

y(t) = Iα f (t, y(t),Dβ
∗y(t)) + c0 + c1t. (4.3)

By considering the boundary conditions (4.2), we find c0, c1. Then, by substituting c0, c1 into
Eq. (4.3), we obtain

y(t) = Iα f (t, y(t),Dβ
∗y(t)) − tIα f (1, y(1),Dβ

∗y(1)) + t(y1 − y0) + y0. (4.4)

We approximate the solution of above equation by relations (3.3) and (3.12). By this process we
achieve to a system of algebraic equations which by solving it, Shannon coefficients and therefore
approximate solution of BVP (4.1), (4.2) is obtained.

4.2. Riemann-Liouville FDEs
Consider the BVP (4.1), (4.2) with Riemann-Liouville derivative type. In this case, by accord-

ing to the Theorem 2.5 and apply the integral operator Iα to both sides of FDE, we obtain

y(t) = Iα f (t, y(t),Dβy(t)) + c0tα−1 + c1tα−2. (4.5)

If α = 2, boundary conditions will result

c1 = y0, c0 = y1 − y0 − Iα f
(
1, y(1),Dβy(1)

)
, (4.6)

for 1 < α < 2, we have the above relation with y0 = 0. Similar to subsection 4.1, by using these
relationships FDE of Riemann-Liouville type reduces to system of algebraic equations. Then, we
solve this system for obtain numerical solution of BVP.

5. Numerical experiments

In this section we give two examples for demonstrate the efficiency of the Shannon wavelet
bases to approximate the solution of BVP for both types of FDEs.

Example 1. Consider the following BVP with Caputo derivative,

Dα
∗y(t) = −y(t) + h(t), t ∈ [0, 1]. (5.1)

y(0) = 0, y(1) = 1,
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Table 1: Absolute errors for m = 2, 3, 4, 5 of Example 1.

t m = 2 m = 3 m = 4 m = 5
0.1 6.524 × 10−1 1.168 × 10−2 2.022447 × 10−2 1.53841 × 10−3

0.2 2.02808 × 10−1 1.0218 × 10−2 4.79714 × 10−3 3.34711 × 10−3

0.3 1.6273 × 10−1 1.14727 × 10−3 4.039 × 10−3 5.55269 × 10−3

0.4 2.16207 × 10−1 7.30182 × 10−3 5.9573 × 10−3 8.0235 × 10−3

0.5 1.37637 × 10−2 1.8914 × 10−3 4.24281 × 10−3 1.04288 × 10−2

0.6 1.6848 × 10−1 3.9868 × 10−3 3.74331 × 10−3 1.22764 × 10−2

0.7 1.07519 × 10−1 9.78823 × 10−4 5.93811 × 10−3 1.29417 × 10−2

0.8 1.41586 × 10−1 8.2192 × 10−4 8.00243 × 10−3 1.16871 × 10−2

0.9 2.76946 × 10−1 2.96354 × 10−3 6.34614 × 10−3 7.67873 × 10−3

where 1 < α ≤ 2. For α =
3
2

and h(t) = t2 +
2
√

t
Γ(1.5)

, the problem has exact solution y(t) = t2. By

integration of order α of Eq. (5.1) and incorporate boundary conditions, using the implementation
method described in subsection 4.1 results in the following integral representation

y(t) = −Iαy(t) + tIαy(1) + f (t), (5.2)

where f (t) = Iαh(t) − tIαh(1) + t. Substituting (3.3), (3.12) into Eq. (5.2) and using of collocation
points, gives the following algebraic system

CTΨ(t) = −CT Pα
m2×m2Ψ(t) + tCT Pα

m2×m2Ψ(1) + f (t). (5.3)

The numerical and exact solutions for m = 5 are shown in Fig. 1. Also, the absolute errors for
different values of m is shown in the Table 1.

Figure 1: Exact and approximate solutions for m = 5 of Example 1.

Example 2. In this example, we consider the BVP for inhomogeneous linear FDE with Riemann-
Liouville derivative [18],

Dαy(t) + ay(t) = g(t), t ∈ [0, 1]. (5.4)

y(0) = 0, y(1) =
1

Γ(α + 2)
,
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Table 2: Absolute errors for m = 4 and α = 1.2, 1.4, 1.6, 1.8, 2 of Example 2.

t α = 1.2 α = 1.4 α = 1.6 α = 1.8 α = 2
0.1 1.04608 × 10−4 2.81088 × 10−6 1.11985 × 10−5 8.9320 × 10−6 5.75332 × 10−6

0.2 1.30891 × 10−4 1.86078 × 10−5 3.81944 × 10−6 4.77092 × 10−6 2.67848 × 10−6

0.3 1.50119 × 10−4 3.11931 × 10−5 1.48163 × 10−6 2.88336 × 10−6 1.94724 × 10−6

0.4 1.67075 × 10−4 4.62302 × 10−5 9.52422 × 10−6 4.72392 × 10−7 8.8283 × 10−7

0.5 1.83896 × 10−4 6.76519 × 10−5 2.45552 × 10−5 9.14024 × 10−6 3.61203 × 10−6

0.6 1.94832 × 10−4 9.04528 × 10−5 4.34921 × 10−5 2.1600 × 10−5 1.09074 × 10−5

0.7 1.91477 × 10−4 1.06158 × 10−4 6.0055 × 10−5 3.38937 × 10−5 1.87395 × 10−5

0.8 1.65897 × 10−4 1.06068 × 10−4 6.71504 × 10−5 4.12024 × 10−5 2.42607 × 10−5

0.9 1.07803 × 10−4 7.77512 × 10−5 5.36694 × 10−5 3.51453 × 10−5 2.18447 × 10−5

where 1 < α ≤ 2, a ∈ R. For g(t) = t +
atα+1

Γ(α + 2)
, the exact solution of the problem is y(t) =

tα+1

Γ(α + 2)
. With respect to the subsection 4.2, for 1 < α ≤ 2, since y(0) = 0 the unique integral

representation for Eq. (5.4) is given by

y(t) = −aIαy(t) + atα−1Iαy(1) + f (t), (5.5)

where f (t) = Iαg(t) − tα−1Iαg(1) +
tα−1

Γ(α + 2)
. As well as, the corresponding algebraic system with

Eq. (5.5) is
CTΨ(t) = −aCT Pα

m2×m2Ψ(t) + atα−1CT Pα
m2×m2Ψ(1) + f (t). (5.6)

We solve (5.6) with a =
3

57
, m = 4 and α = 1.2, 1.4, 1.6, 1.8, 2, for calculate Shannon coefficients

vector and finally to obtain numerical solution of BVP (5.4). The numerical results are shown in
Fig. 2 and Table 2 represents the absolute errors of this example.

Figure 2: The numerical solutions for different values of α for Example 2.
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