

Dilation of a family of *g***-frames**

Mohammad Reza Abdollahpour^{a,*}

^aDepartment of Mathematics, Faculty of Mathematical Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran

ARTICLE INFO

Article history: Received 1 November 2013 Accepted 29 April 2014 Available online 1 July 2014 Communicated by Asghar Rahimi

Keywords:

g-Riesz basis *g*-frame disjointness

2000 MSC: 41A58 42C15

Abstract

In this paper, we first discuss about canonical dual of g-frame
$\Lambda P = \{\Lambda_i P \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}, \text{ where } \Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : I \in I\}$
$i \in I$ } is a g-frame for a Hilbert space \mathcal{H} and P is the orthogonal
projection from \mathcal{H} onto a closed subspace M . Next, we prove
that, if $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ and $\Theta = \{\Theta_i \in B(\mathcal{K}, \mathcal{H}_i) :$
$i \in I$ } be respective g-frames for non zero Hilbert spaces \mathcal{H}
and \mathcal{K} , and Λ and Θ are unitarily equivalent (similar), then Λ
and Θ can not be weakly disjoint. On the other hand, we study
dilation property for g -frames and we show that two g -frames
for a Hilbert space have dilation property, if they are disjoint,
or they are similar, or one of them is similar to a dual g -frame
of another one. We also prove that a family of g-frames for a
Hilbert space has dilation property, if all the members in that
family have the same deficiency.

© (2014) Wavelets and Linear Algebra

1. Introduction

Let \mathcal{H} be a separable Hilbert space. A sequence $F = \{f_i\}_{i \in I}$ is called a frame for \mathcal{H} , if there exist two positive constants A, B such that

$$A||f||^2 \le \sum_{i \in I} |\langle f, f_i \rangle|^2 \le B||f||^2, \quad f \in \mathcal{H}.$$
(1.1)

*Corresponding author

Email address: m.abdollah@uma.ac.ir (Mohammad Reza Abdollahpour)

© (2014) Wavelets and Linear Algebra

If A = B = 1 in (1.1), then we say that $F = \{f_i\}_{i \in I}$ is a Parseval frame for \mathcal{H} . Let $F = \{f_i\}_{i \in I}$ be a frame for \mathcal{H} . In this case,

$$T_F: l_2(I) \to \mathcal{H}, \quad T_F(\{c_i\}_{i \in I}) = \sum_{i \in I} c_i f_i$$

is a bounded and onto operator and its adjoint is $T_F^*(f) = \{\langle f, f_i \rangle\}_{i \in I}$, for all $f \in \mathcal{H}$ [6]. The operators T_F , T_F^* and $S_F = T_F T_F^*$ are called the synthesis, analysis and frame operator of $F = \{f_i\}_{i \in I}$, respectively. If $F = \{f_i\}_{i \in I}$ is a frame for \mathcal{H} , then S_F is an invertible positive operator and we have

$$f = \sum_{i \in I} \langle f, S_F^{-1} f_i \rangle f_i, \quad f \in \mathcal{H}.$$
 (1.2)

A sequence $F = \{f_i\}_{i \in I}$ is called a Riesz basis for \mathcal{H} , if $\overline{\text{span}}\{f_i\}_{i \in I} = \mathcal{H}$ and there exist two positive constants A, B such that for any finite scalar sequence $\{c_i\}$ we have

$$A\sum_{i}|c_{i}|^{2} \leq \left\|\sum_{i}c_{i}f_{i}\right\|^{2} \leq A\sum_{i}|c_{i}|^{2}$$

Let $F = \{f_i\}_{i \in I}$ and $G = \{g_i\}_{i \in I}$ be two frames for a Hilbert space \mathcal{H} . We say that G is a dual frame for F, if

$$f = \sum_{i \in I} \langle f, g_i \rangle f_i, \quad f \in \mathcal{H}.$$

From (1.2), we conclude that $\tilde{F} = \{S_F^{-1}f_i\}_{i \in I}$ is a dual frame of *F*, which is called the canonical dual of *F*. It is proved in [6], each Riesz basis for \mathcal{H} is a frame and has only one dual frame.

The concepts of disjoint frames and strongly disjoint frames introduced by Han and Larson [7], and these notions generalized to frames in Banach spaces by Casazza, Han and Larson [5]. In 2006, more general extension of frames, the so-called *g*-frames, introduced by Sun [9]. Some properties of *g*-frames have been investigated in papers [2, 3, 4].

Throughout this paper, \mathcal{H} and \mathcal{K} are separable Hilbert spaces and $\{\mathcal{H}_i\}_{i\in I}$ is a sequence of separable Hilbert spaces.

Definition 1.1. We call a sequence $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ a *g*-frame for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i \in I}$, if there exist two positive constants *A* and *B* such that

$$A||f||^2 \le \sum_{i \in I} ||\Lambda_i f||^2 \le B||f||^2, \quad f \in \mathcal{H}.$$

A and *B* are called the lower and upper *g*-frame bounds, respectively. We call $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ a tight *g*-frame if A = B and Parseval *g*-frame if A = B = 1.

If there is no confusion, we use g-frame (g-frame for \mathcal{H}) instead of g-frame for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i \in I}$.

Let $\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i)$ be given for all $i \in I$. Let us define the set

$$\widehat{\mathcal{H}} = \left\{ \{f_i\}_{i \in I} : f_i \in \mathcal{H}_i, \sum_{i \in I} ||f_i||^2 < \infty \right\}$$

with the inner product given by $\langle \{f_i\}_{i \in I}, \{g_i\}_{i \in I}\rangle = \sum_{i \in I} \langle f_i, g_i \rangle$. It is easy to show that $\widehat{\mathcal{H}}$ is a Hilbert space with respect to the poitwise operations. It is proved in [8], if $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-Bessel sequence for \mathcal{H} , then the operator

$$T_{\Lambda}: \widehat{\mathcal{H}} \to \mathcal{H}, \quad T_{\Lambda}(\{f_i\}_{i \in I}) = \sum_{i \in I} \Lambda_i^*(f_i)$$
 (1.3)

is well defined and bounded and its adjoint is $T_{\Lambda}^* f = {\Lambda_i f}_{i \in I}$ for all $f \in \mathcal{H}$. Also, a sequence $\Lambda = {\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I}$ is a g-frame for \mathcal{H} if and only if the operator T_{Λ} defined in (1.3) is a bounded and onto operator. We call operators T_{Λ} and T_{Λ}^* , the synthesis and analysis operators of Λ , respectively. If $\Lambda = {\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I}$ is a g-frame for \mathcal{H} , then

$$S_{\Lambda}: \mathcal{H} \to \mathcal{H}, \quad S_{\Lambda}f = \sum_{i \in I} \Lambda_i^* \Lambda_i f$$

is a bounded invertible positive operator [9], and every $f \in \mathcal{H}$ has the following representation

$$f = \sum_{i \in I} S_{\Lambda}^{-1} \Lambda_i^* \Lambda_i f = \sum_{i \in I} \Lambda_i^* \Lambda_i S_{\Lambda}^{-1} f.$$
(1.4)

 S_{Λ} is called the *g*-frame operator of Λ . Let $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a *g*-frame for \mathcal{H} with *g*-frame bounds A, B and let $\widetilde{\Lambda}_i = \Lambda_i S_{\Lambda}^{-1}$, for all $i \in I$. Then $\widetilde{\Lambda} = \{\widetilde{\Lambda}_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a *g*-frame for \mathcal{H} with bounds $\frac{1}{B}$ and $\frac{1}{A}$ [9].

Definition 1.2. Let $\Lambda = {\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I}$ and $\Theta = {\Theta_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I}$ be two *g*-frames for \mathcal{H} such that

$$f = \sum_{i \in I} \Theta_i^* \Lambda_i f, \quad f \in \mathcal{H}$$

then Θ is called a dual *g*-frame of Λ .

By (1.4), $\widetilde{\Lambda} = {\widetilde{\Lambda}_i}_{i \in I}$ is a dual *g*-frame of ${\Lambda_i}_{i \in I}$, which is called the canonical dual of $\Lambda = {\Lambda_i}_{i \in I}$.

Definition 1.3. A sequence $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is called

(1) a *g*-Riesz basis for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i \in I}$, if there exist two positive constants *A* and *B* such that for any finite subset $F \subseteq I$ we have

$$A\sum_{i\in F} \|g_i\|^2 \leq \|\sum_{i\in F} \Lambda_i^* g_i\|^2 \leq B\sum_{i\in F} \|g_i\|^2, \quad g_i \in \mathcal{H}_i,$$

and $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is g-complete, i.e.,

$$\{f: \Lambda_i f = 0, \forall i \in I\} = \{0\}.$$

(2) a *g*-orthonormal basis for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i \in I}$, if for all $f \in \mathcal{H}$, $\sum_{i \in I} ||\Lambda_i f||^2 = ||f||^2$, and

$$\langle \Lambda_i^* g_i, \Lambda_j^* g_j \rangle = \delta_{ij} \langle g_i, g_j \rangle, \quad g_i \in \mathcal{H}_i, g_j \in \mathcal{H}_j, \quad i, j \in I$$

2. Dilation of g-frames

The concepts of disjoint g-frames and strongly disjoint g-frames were introduced in [1]. In this section, we investigate dilation of g-frames and we show that disjoint g-frames for a Hilbert space have dilation property.

Definition 2.1. Let $\Lambda = {\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I}$ and $\Theta = {\Theta_i \in B(\mathcal{K}, \mathcal{H}_i) : i \in I}$ be *g*-frames for Hilbert spaces \mathcal{H} and \mathcal{K} , respectively. Then Λ and Θ are called

- (1) disjoint, if $RangeT^*_{\Lambda} \cap RangeT^*_{\Theta} = \{0\}$ and $RangeT^*_{\Lambda} + RangeT^*_{\Theta}$ is a closed subspace of $\widehat{\mathcal{H}}$.
- (2) complementary pair, if $RangeT^*_{\Lambda} \cap RangeT^*_{\Theta} = \{0\}$ and

$$RangeT^*_{\Lambda} + RangeT^*_{\Theta} = \mathcal{H}.$$

(3) weakly disjoint if $RangeT^*_{\Lambda} \cap RangeT^*_{\Theta} = \{0\}.$

Proposition 2.2 ([1]). Two g-frames $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ and $\Theta = \{\Theta_i \in B(\mathcal{K}, \mathcal{H}_i) : i \in I\}$ are disjoint if and only if $\{\Gamma_i \in B(\mathcal{H} \oplus \mathcal{K}, \mathcal{H}_i) : i \in I\}$ is a g-frame for $\mathcal{H} \oplus \mathcal{K}$ with respect to $\{\mathcal{H}_i\}_{i \in I}$, where

$$\Gamma_i: \mathcal{H} \oplus \mathcal{K} \to \mathcal{H}_i, \quad \Gamma_i(f \oplus g) = \Lambda_i f + \Theta_i g,$$
(2.1)

for all $i \in I$.

Proposition 2.3 ([1]). Two g-frames $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ and $\Theta = \{\Theta_i \in B(\mathcal{K}, \mathcal{H}_i) : i \in I\}$ are complementary pair if and only if $\{\Gamma_i \in B(\mathcal{H} \oplus \mathcal{K}, \mathcal{H}_i) : i \in I\}$ is a g-Riesz basis for $\mathcal{H} \oplus \mathcal{K}$ with respect to $\{\mathcal{H}_i\}_{i \in I}$, where Γ_i is defined by (2.1), for all $i \in I$.

Proposition 2.4 ([1]). *Two g-frames* $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ and $\Theta = \{\Theta_i \in B(\mathcal{K}, \mathcal{H}_i) : i \in I\}$ are weakly disjoint if and only if

$$\{f \oplus g : \Gamma_i(f \oplus g) = 0, \forall i \in I\} = \{0\},\$$

where where Γ_i is defined by (2.1), for all $i \in I$.

Proposition 2.5. Let $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ and $\Theta = \{\Theta_i \in B(\mathcal{K}, \mathcal{H}_i) : i \in I\}$ be Parseval g-frames for \mathcal{H} and \mathcal{K} , respectively. Then $RangeT^*_{\Lambda} \oplus RangeT^*_{\Theta} = \widehat{\mathcal{H}}$ if and only if $\{\Gamma_i\}_{i \in I}$ is a g-orthonormal basis for $\mathcal{H} \oplus \mathcal{K}$, where Γ_i is defined by (2.1), for all $i \in I$.

Proof. If $\{\Gamma_i\}_{i \in I}$ is a *g*-orthonormal basis for $\mathcal{H} \oplus \mathcal{K}$ then

$$\begin{split} \|f\|^2 + \|g\|^2 &= \sum_{i \in I} \|\Gamma_i(f \oplus g)\|^2 \\ &= \sum_{i \in I} \|\Lambda_i f\|^2 + \sum_{i \in I} \|\Theta_i g\|^2 + 2Re \sum_{i \in I} \langle \Lambda_i f, \Theta_i g \rangle, \end{split}$$

and

$$Re\sum_{i\in I} \langle \Lambda_i f, \Theta_i g \rangle = 0, \quad f \in \mathcal{H}, \ g \in \mathcal{K}.$$
 (2.2)

If we replace g by ig in (2.2), then

$$Im\sum_{i\in I}\langle \Lambda_i f, \Theta_i g\rangle = 0, \quad f\in \mathcal{H}, \ g\in \mathcal{K}.$$

Therefore $RangeT^*_{\Lambda} \perp RangeT^*_{\Theta}$. Since $\Gamma = \{\Gamma_i \in B(\mathcal{H} \oplus \mathcal{K}, \mathcal{H}_i) : i \in I\}$ is a *g*-orthonormal basis, T^*_{Γ} is onto. But $RangeT^*_{\Lambda} + RangeT^*_{\Theta} = RangeT^*_{\Gamma}$, hence $RangeT^*_{\Lambda} + RangeT^*_{\Theta} = \widehat{\mathcal{H}}$. For the converse implication, we have

$$\begin{split} \sum_{i \in I} \|\Gamma_i(f \oplus g)\|^2 &= \sum_{i \in I} \|\Lambda_i f + \Theta_i g\|^2 = \sum_{i \in I} \|\Lambda_i f\|^2 + \sum_{i \in I} \|\Theta_i g\|^2 \\ &= \|f\|^2 + \|g\|^2 = \|f \oplus g\|^2, \end{split}$$

for all $f \oplus g \in \mathcal{H} \oplus \mathcal{K}$. If $\{g_i\}_{i \in I} \in \widehat{\mathcal{H}}$, then $\{g_i\}_{i \in I} = \{\Lambda_i f\}_{i \in I} + \{\Theta_i g\}_{i \in I}$ for some $f \in \mathcal{H}$ and for some $g \in \mathcal{K}$. Therefor $g_i = \Lambda_i f + \Theta_i g$, for all $i \in I$. We have

$$\begin{split} \left\|\sum_{i\in I}\Gamma_i^*g_i\right\|^2 &= \left\|\sum_{i\in I}(\Lambda_i^*g_i\oplus\Theta_i^*g_i)\right\|^2 = \left\|\sum_{i\in I}\Lambda_i^*g_i\right\|^2 + \left\|\sum_{i\in I}\Theta_i^*g_i\right\|^2 \\ &= \left\|\sum_{i\in I}\Lambda_i^*(\Lambda_if+\Theta_ig)\right\|^2 + \left\|\sum_{i\in I}\Theta_i^*(\Lambda_if+\Theta_ig)\right\|^2 \\ &= \left\|f+\sum_{i\in I}\Lambda_i^*\Theta_ig\right\|^2 + \left\|g+\sum_{i\in I}\Theta_i^*\Lambda_if\right\|^2. \end{split}$$

Since $\sum_{i \in I} \Lambda_i^* \Theta_i g = 0$ and $\sum_{i \in I} \Theta_i^* \Lambda_i f = 0$,

$$\left\|\sum_{i\in I}\Gamma_{i}^{*}g_{i}\right\|^{2} = \|f\|^{2} + \|g\|^{2} = \sum_{i\in I}\|\Lambda_{i}f\|^{2} + \sum_{i\in I}\|\Theta_{i}g\|^{2}$$
$$= \sum_{i\in I}\|\Lambda_{i}f + \Theta_{i}g\|^{2} = \sum_{i\in I}\|g_{i}\|^{2}.$$

So

$$\left\|\sum_{i\in I}\Gamma_i^*g_i\right\|^2 = \sum_{i\in I}\|g_i\|^2, \quad \{g_i\}_{i\in I}\in\widehat{\mathcal{H}}.$$
(2.3)

By (2.3) we have

$$\|\Gamma_i^* g_i\|^2 = \|g_i\|^2; \quad i \in I, \ g_i \in \mathcal{H}_i.$$
(2.4)

Again, (2.3) implies that

$$\|\Gamma_i^* g_i + \Gamma_j^* g_j\|^2 = \|g_i\|^2 + \|g_j\|^2; \quad i, j \in I, \quad g_i \in \mathcal{H}_i, g_j \in \mathcal{H}_j,$$

or

 $\|\Gamma_i^* g_i\|^2 + \|\Gamma_j^* g_j\|^2 + 2Re\langle \Gamma_i^* g_i, \Gamma_j^* g_j \rangle = \|g_i\|^2 + \|g_j\|^2; \quad g_i \in \mathcal{H}_i, g_j \in \mathcal{H}_j,$ for all $i, j \in I$. Therefore, by (2.4)

$$\langle \Gamma_i^* g_i, \Gamma_j^* g_j \rangle = \delta_{ij} \langle g_i, g_j \rangle, \quad g_i \in \mathcal{H}_i, \, g_j \in \mathcal{H}_j,$$

for all $i, j \in I$.

Let $F = \{f_i\}_{i \in I}$ be a Riesz basis for a Hilbert space \mathcal{H} with unique dual frame $\tilde{F} = \{\tilde{f}_i\}_{i \in I}$. If $M \subset \mathcal{H}$ is a closed subspace of \mathcal{H} and P is the orthogonal projection form \mathcal{H} onto M, then $PF = \{Pf_i\}_{i \in I}$ is a frame for M with dual frame $P\tilde{F} = \{Pf_i\}_{i \in I}$. In general, $P\tilde{F} = \{Pf_i\}_{i \in I}$ is not the canonical dual of $PF = \{Pf_i\}_{i \in I}$. But, if P commutes with the frame operator S_F , then $P\tilde{F} = \{P\tilde{f}_i\}_{i \in I}$ is the canonical dual of $PF = \{Pf_i\}_{i \in I}$ (see [7]). Here, we generalize this result to g-frames.

Proposition 2.6. Let P be an orthogonal projection from H onto a closed subspace M and let $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a g-frame for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i \in I}$. Then $\Lambda P = \{\Lambda_i P \in \mathcal{H}_i\}$ $B(\mathcal{H}, \mathcal{H}_i) : i \in I$ is a g-frame for M with respect to $\{\mathcal{H}_i\}_{i \in I}$ and

$$\forall i \in I, \quad \widetilde{\Lambda_i P} = \widetilde{\Lambda_i} P \Leftrightarrow PS_{\Lambda}^{-1} = S_{\Lambda}^{-1} P,$$

where $\widetilde{\Lambda} = \{\widetilde{\Lambda_i} \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ and $\widetilde{\Lambda P} = \{\widetilde{\Lambda_i P} \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ are canonical dual of Λ and ΛP , respectively.

Proof. Let $f \in M$ and A, B be the g-frame bounds for Λ , then

$$A||f||^{2} = A||Pf||^{2} \le \sum_{i \in I} ||\Lambda_{i}Pf||^{2} \le B||Pf||^{2} = B||f||^{2}.$$

If $\Lambda_i P = \Lambda_i P$, for all $i \in I$, then $\Lambda_i PS_{\Lambda P}^{-1} = \Lambda_i S_{\Lambda}^{-1} P$, for all $i \in I$. Therefore, we have $PS_{\Lambda P}^{-1} = S_{\Lambda}^{-1} P$, and so $PS_{\Lambda P}^{-1} = PS_{\Lambda}^{-1} P$, which implies that $S_{\Lambda}^{-1} P = PS_{\Lambda}^{-1} P$. By taking adjoint we get $PS_{\Lambda}^{-1} = PS_{\Lambda}^{-1} P$, and hence $PS_{\Lambda}^{-1} = S_{\Lambda}^{-1}P$.

Now we assume that $PS_{\Lambda}^{-1} = S_{\Lambda}^{-1}P$ and $f \in M$, then

$$f = \sum_{i \in I} (\Lambda_i P)^* (\widetilde{\Lambda_i P}) f = \sum_{i \in I} P \Lambda_i^* \Lambda_i P S_{\Lambda P}^{-1} f.$$
(2.5)

Since $f \in M \subseteq \mathcal{H}$, we can write $f = \sum_{i \in I} \Lambda_i^* \Lambda_i S_{\Lambda}^{-1} f$ or

$$f = Pf = \sum_{i \in I} P\Lambda_i^* \Lambda_i S_{\Lambda}^{-1} Pf$$

Now, (2.5) and our assumption imply that

$$\begin{split} 0 &= \sum_{i \in I} P \Lambda_i^* \Lambda_i (P S_{\Lambda P}^{-1} - S_{\Lambda}^{-1} P) f = \sum_{i \in I} P \Lambda_i^* \Lambda_i P (P S_{\Lambda P}^{-1} - S_{\Lambda}^{-1} P) f \\ &= S_{\Lambda P} (P S_{\Lambda P}^{-1} f - S_{\Lambda}^{-1} P f), \end{split}$$

for all $f \in M$. Therefor $PS_{\Lambda P}^{-1} = S_{\Lambda}^{-1}P$, and so $\widetilde{\Lambda_i P} = \widetilde{\Lambda_i}P$, for all $i \in I$.

Let $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ and $\Theta = \{\Theta_i \in B(\mathcal{K}, \mathcal{H}_i) : i \in I\}$ be g-frames for Hilbert spaces \mathcal{H} and \mathcal{K} , respectively. We recall that Λ and Θ are unitarily equivalent (similar), if there exists a unitary (an invertible) operator $U \in B(\mathcal{H}, \mathcal{K})$ such that

$$\Lambda_i = \Theta_i U, \quad i \in I.$$

Proposition 2.7. Let $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ and $\Theta = \{\Theta_i \in B(\mathcal{K}, \mathcal{H}_i) : i \in I\}$ be g-frames for non zero Hilbert spaces \mathcal{H} and \mathcal{K} , respectively. If Λ and Θ are unitarily equivalent (similar), then

$$\overline{span}\{\Gamma_i^*(\mathcal{H}_i)\}_{i\in I}\neq \mathcal{H}\oplus \mathcal{K}_i$$

where Γ_i is defined by (2.1), for all $i \in I$.

Proof. Let $U \in B(\mathcal{H}, \mathcal{K})$ be a unitary (an invertible) operator such that $\Lambda_i = \Theta_i U$ for any $i \in I$. If $0 \neq g \in \mathcal{K}$, then there exists $f \in \mathcal{H}$ and Uf = -g. Then $\Theta_i(Uf + g) = 0$, for all $i \in I$. Hence

$$\{f \oplus g : \Gamma_i(f \oplus g) = 0, i \in I\} \neq \{0\},\$$

consequently $\overline{span}\{\Gamma_i^*(\mathcal{H}_i)\}_{i \in I} \neq \mathcal{H} \oplus \mathcal{K}, (\text{see } [8]).$

Corollary 2.8. Let $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ and $\Theta = \{\Theta_i \in B(\mathcal{K}, \mathcal{H}_i) : i \in I\}$ be respective *g*-frames for non zero Hilbert spaces \mathcal{H} and \mathcal{K} . If Λ and Θ are unitarily equivalent (similar), then Λ and Θ can not be weakly disjoint. Moreover, If Λ and Θ are unitarily equivalent (similar), then $\Gamma = \{\Gamma_i \in B(\mathcal{H} \oplus \mathcal{K}, \mathcal{H}_i) : i \in I\}$ is not a *g*-frame for $\mathcal{H} \oplus \mathcal{K}$, where Γ_i is defined by (2.1), for all $i \in I$.

Let $\{e_{ij}\}_{j\in J_i}$ be an orthonormal basis for \mathcal{H}_i , for every $i \in I$. It is proved in [8], $\{E_{ij}\}_{i\in I, j\in J_i}$ is an orthonormal basis for $\widehat{\mathcal{H}}$, where

$$(E_{ij})_k = \begin{cases} e_{ij}, & i = k\\ 0, & i \neq k. \end{cases}$$
(2.6)

We use the above fact in the rest of this paper.

Proposition 2.9. Let $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a g-frame for Hilbert space \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i \in I}$. Then there exist a Hilbert space $\mathcal{H} \subset K$ and a g-Riesz basis $\Delta = \{\Delta_i \in B(K, \mathcal{H}_i) : i \in I\}$ for K with respect to $\{\mathcal{H}_i\}_{i \in I}$, such that $\Lambda_i = \Delta_i P_{\mathcal{H}}$ for all $i \in I$, where $P_{\mathcal{H}}$ is the orthogonal projection from K onto \mathcal{H} .

Proof. Let $\Theta_i = \Lambda_i S_{\Lambda}^{-\frac{1}{2}}$, for all $i \in I$. Then $\Theta = \{\Theta_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a Parseval *g*-frames for \mathcal{H} and $RangeT_{\Theta}^* = RangeT_{\Lambda}^*$. Let *P* be the orthogonal projection from $\widehat{\mathcal{H}}$ onto $RangeT_{\Theta}^*$. We define the operators

$$\varphi_i: P^{\perp}\widehat{\mathcal{H}} \to \mathcal{H}_i, \quad \varphi_i(g) = \sum_{j \in J_i} \langle g, P^{\perp}E_{ij} \rangle e_{ij},$$
(2.7)

for all $i \in I$, where E_{ij} is defined by (2.6). Then $\varphi = \{\varphi_i \in B(P^{\perp}\widehat{\mathcal{H}}, \mathcal{H}_i) : i \in I\}$ is a Parseval *g*-frame for $P^{\perp}\widehat{\mathcal{H}}$. In fact

$$\sum_{i\in I} \|\varphi_i g\|^2 = \sum_{i\in I} \left\| \sum_{j\in J_i} \langle g, P^{\perp} E_{ij} \rangle e_{ij} \right\|^2 = \sum_{i\in I} \sum_{j\in J_i} |\langle g, P^{\perp} E_{ij} \rangle|^2 = \|g\|^2,$$

for all $g \in P^{\perp} \widehat{\mathcal{H}}$. We have

$$\begin{split} \sum_{i \in I} \langle \Theta_i f, \varphi_i g \rangle &= \sum_{i \in I} \left\langle \Theta_i f, \sum_{j \in J_i} \langle g, P^{\perp} E_{ij} \rangle e_{ij} \right\rangle \\ &= \sum_{i \in I} \sum_{j \in J_i} \langle \Theta_i f, e_{ij} \rangle \overline{\langle g, P^{\perp} E_{ij} \rangle} \\ &= \left\langle \sum_{i \in I} \sum_{j \in J_i} \langle \Theta_i f, e_{ij} \rangle P^{\perp} E_{ij}, g \right\rangle \\ &= \langle P^{\perp} T_{\Theta}^* f, g \rangle = \langle 0, g \rangle = 0, \end{split}$$

for all $f \in \mathcal{H}$ and $g \in P^{\perp} \widehat{\mathcal{H}}$. So,

$$RangeT_{\Theta}^* \perp RangeT_{\varphi}^*.$$
(2.8)

On the other hand, if $g = \{g_i\}_{i \in I} \in P^{\perp} \widehat{\mathcal{H}}$ then we have

$$\varphi_i g = \sum_{j \in J_i} \langle g, P^{\perp} E_{ij} \rangle e_{ij} = \sum_{j \in J_i} \langle \{g_i\}_{i \in I}, E_{ij} \rangle e_{ij}$$
$$= \sum_{j \in J_i} \langle g_i, e_{ij} \rangle e_{ij} = g_i,$$

so, $g = \{\varphi_i g\}_{i \in I}$. Thus

$$P^{\perp}g = \{\varphi_i(P^{\perp}g)\}_{i \in I}; \ g = Pg + T^*_{\varphi}(P^{\perp}g), \quad g \in \widehat{\mathcal{H}}.$$

consequently

$$\widehat{\mathcal{H}} = RangeT_{\Theta}^* + RangeT_{\varphi}^*.$$
(2.9)

According to the Proposition 2.5, (2.8) and (2.9) imply that $\{\Gamma_i\}_{i \in I}$ is a *g*-orthonormal basis for $\mathcal{H} \oplus P^{\perp} \widehat{\mathcal{H}}$, where

$$\Gamma_i : \mathcal{H} \oplus P^{\perp} \mathcal{H} \to \mathcal{H}_i, \quad \Gamma_i(f \oplus g) = \Theta_i f + \varphi_i g.$$
 (2.10)

We define the operator $F \in \mathcal{B}(\mathcal{H} \oplus P^{\perp}\widehat{\mathcal{H}})$ by $F(f \oplus g) = S_{\Lambda}^{\frac{1}{2}} f \oplus g$, then *F* is invertible. Let $\Delta_i = \Gamma_i F$, for all $i \in I$. In this case, $\{\Delta_i\}_{i \in I}$ is a *g*-Riesz basis for $K = \mathcal{H} \oplus P^{\perp}\widehat{\mathcal{H}}$ (see [2]). Clearly, $\Delta_i P_{\mathcal{H}} = \Lambda_i$, for all $i \in I$.

Definition 2.10. Let \mathcal{F} be a family of *g*-frames for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i \in I}$. We say that \mathcal{F} has dilation property, if there is a larger Hilbert space $\mathcal{H} \subset K$ such that for every $\Lambda = \{\Lambda_i\}_{i \in I} \in \mathcal{F}$, there exists a *g*-Riesz basis $\Gamma = \{\Gamma_i\}_{i \in I}$ for *K* such that $\Lambda_i = \Gamma_i P_{\mathcal{H}}$, for all $i \in I$, where $P_{\mathcal{H}}$ is orthogonal projection from *K* onto \mathcal{H} .

In the next proposition we provide some sufficient conditions, under which a family of *g*-frames with two members has dilation property.

Proposition 2.11. Let $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ and $\Theta = \{\Theta_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be two g-frames for Hilbert spaces \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i \in I}$. If one of the following conditions holds, then $\mathcal{F} = \{\Lambda, \Theta\}$ has the dilation property.

- (1) Λ and Θ are similar.
- (2) Λ and Θ are disjoint.
- (3) Θ is similar to a dual g-frame of Λ .

Proof. (1) Let $T \in B(\mathcal{H})$ be an invertible operator and $\Theta_i = \Lambda_i T$, for all $i \in I$. By Proposition 2.9, then there exist a Hilbert space $\mathcal{H} \subset K$ ($K = \mathcal{H} \oplus P^{\perp} \widehat{\mathcal{H}}$, where $P_{\mathcal{H}}$ is the orthogonal projection from $\widehat{\mathcal{H}}$ onto $RangeT^*_{\Lambda}$) and a g-Riesz basis $\Gamma = \{\Gamma_i \in B(K, \mathcal{H}_i) : i \in I\}$ for K with $\Lambda_i = \Gamma_i P_{\mathcal{H}}$ for all $i \in I$. Let us define $\Delta_i \in B(K, \mathcal{H}_i)$ by $\Delta_i = \Gamma_i(T \oplus I)$, where

$$T \oplus I : K \to K$$
, $(T \oplus I)(f \oplus g) = Tf \oplus g$.

Since $T \oplus I$ is invertible and $\Gamma = {\Gamma_i}_{i \in I}$ is a *g*-Riesz basis for *K*, then $\Delta = {\Delta_i}_{i \in I}$ is a *g*-Riesz basis for *K* and $\Theta_i = \Delta_i P_{\mathcal{H}}$ for all $i \in I$.

(2) Since $\Lambda = {\Lambda_i}_{i \in I}$ and $\Theta = {\Theta_i}_{i \in I}$ are disjoint, by Proposition 2.2, ${\{\psi_i\}_{i \in I} \text{ and } \{\varphi_i\}_{i \in I} \text{ are } g$ -frames for $\mathcal{H} \oplus \mathcal{H}$, where for all $i \in I$, $\psi_i, \varphi_i : \mathcal{H} \oplus \mathcal{H} \to \mathcal{H}_i$ defined by

$$\psi_i(f \oplus g) = \Lambda_i f + \Theta_i g, \quad \varphi_i(f \oplus g) = \Theta_i f + \Lambda_i g, \quad f, g \in \mathcal{H}.$$

From the other hand, $\{\psi_i\}_{i\in I}$ and $\{\varphi_i\}_{i\in I}$ are similar. Hence by (1), there exist a Hilbert space $\mathcal{H} \oplus \mathcal{H} \subset K$, and two *g*-Riesz basis $\Gamma = \{\Gamma_i\}_{i\in I}$ and $\Delta = \{\Delta_i\}_{i\in I}$ for *K* with respect to $\{\mathcal{H}_i\}_{i\in I}$, such that $\psi_i = \Gamma_i P_{\mathcal{H} \oplus \mathcal{H}}$ and $\varphi_i = \Delta_i P_{\mathcal{H} \oplus \mathcal{H}}$ for all $i \in I$, where $P_{\mathcal{H} \oplus \mathcal{H}}$ is the orthogonal projection from *K* onto $\mathcal{H} \oplus \mathcal{H}$. If we identify \mathcal{H} by $\mathcal{H} \oplus 0 \oplus 0$ and consider $P_{\mathcal{H}}$ is the orthogonal projection from *K* onto $\mathcal{H} \oplus 0 \oplus 0$, then $\Lambda_i = \Gamma_i P_{\mathcal{H}}$ and $\Theta_i = \Delta_i P_{\mathcal{H}}$ for all $i \in I$.

(3) Let $\phi = \{\phi_i\}_{i \in I}$ be a dual *g*-frame for $\Lambda = \{\Lambda_i\}_{i \in I}$ and $T \in B(\mathcal{H})$ be an invertible operator so that $\Theta_i = \phi_i T$, for all $i \in I$. By Theorem 2.9 of [1], there exists a Hilbert space $\mathcal{H} \subset K$ and two *g*-Riesz basis $\Gamma = \{\Gamma_i\}_{i \in I}$ and $\Delta = \{\Delta_i\}_{i \in I}$ for *K* with $\Lambda_i = \Gamma_i P_{\mathcal{H}}$ and $\phi_i = \Delta_i P_{\mathcal{H}}$ for all $i \in I$, where $P_{\mathcal{H}}$ is the orthogonal projection from *K* onto \mathcal{H} . Let us define

$$W_i: K \to \mathcal{H}_i, \quad W_i = \Delta_i(T \oplus I), \quad i \in I.$$

Then $W = \{W_i\}_{i \in I}$ is a g-Riesz basis for K with respect to $\{\mathcal{H}_i\}_{i \in I}$, and $\Theta_i = W_i P_{\mathcal{H}}$, for all $i \in I$. \Box

Definition 2.12. Let $\Lambda = {\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I}$ be a *g*-frame for \mathcal{H} . We define the deficiency of Λ to be dim(*RangeT*^*_{\Lambda})^{\perp}.

In the following theorem we provide a sufficient condition for a family of g-frame \mathcal{F} such that \mathcal{F} has the dilation property.

Theorem 2.13. Let \mathcal{F} be a family of g-frames for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i\in I}$. Then \mathcal{F} has the dilation property if all members of \mathcal{F} have the equal deficiency.

Proof. Fix a *g*-frame $\Lambda = {\Lambda_i}_{i \in I}$ in \mathcal{F} and let $\Theta = {\Theta_i}_{i \in I}$ be any *g*-frame in \mathcal{F} . Let $K = \mathcal{H} \oplus P^{\perp} \widehat{\mathcal{H}}$ and $M = \mathcal{H} \oplus Q^{\perp} \widehat{\mathcal{H}}$, where *P* and *Q* are the orthogonal projection from $\widehat{\mathcal{H}}$ onto $RangeT^*_{\Lambda}$ and $RangeT^*_{\Theta}$, respectively. We define

$$\varphi_i: P^{\perp}\widehat{\mathcal{H}} \to \mathcal{H}_i, \quad \varphi_i(g) = \sum_{j \in J_i} \langle g, P^{\perp} E_{ij} \rangle e_{ij},$$

and

$$\psi_i: Q^{\perp}\widehat{\mathcal{H}} \to \mathcal{H}_i, \quad \psi_i(h) = \sum_{j \in J_i} \langle h, Q^{\perp} E_{ij} \rangle e_{ij},$$

for all $i \in I$, where E_{ij} is defined by 2.6. Then $\varphi = \{\varphi_i\}_{i \in I}$ and $\psi = \{\psi_i\}_{i \in I}$ are respective *g*-frames for $P^{\perp}\widehat{\mathcal{H}}$ and $Q^{\perp}\widehat{\mathcal{H}}$. Now, we consider bounded operators

$$\Gamma_i: K \to \mathcal{H}_i, \quad \Gamma_i(f \oplus g) = \Lambda_i f + \varphi_i g,$$
(2.11)

and

$$\Phi_i: M \to \mathcal{H}_i, \quad \Phi_i(f \oplus h) = \Theta_i f + \psi_i h. \tag{2.12}$$

A argument similar to the proof of Proposition 2.9 shows that

$$\mathcal{H} = RangeT^*_{\Lambda} + RangeT^*_{\omega}, \quad RangeT^*_{\Lambda} \perp RangeT^*_{\omega}$$

So by Proposition 2.3, $\Gamma = {\Gamma_i}_{i \in I}$ is a *g*-Riesz basis for *K* with respect to ${\mathcal{H}_i}_{i \in I}$. Similarly, $\Phi = {\Phi_i}_{i \in I}$ is a *g*-Riesz basis for *M* with respect to ${\mathcal{H}_i}_{i \in I}$. Since dim $(RangeT^*_{\Lambda})^{\perp} = \dim(RangeT^*_{\Theta})^{\perp}$, there is a unitary operator *W* from $(RangeT^*_{\Lambda})^{\perp}$ onto $(RangeT^*_{\Theta})^{\perp}$. In fact, if ${x_i}_{i \in J}$ and ${y_i}_{i \in J}$ are orthonormal bases for $(RangeT^*_{\Lambda})^{\perp}$ and $(RangeT^*_{\Theta})^{\perp}$, respectively, then we may consider

$$W: (RangeT^*_{\Lambda})^{\perp} \to (RangeT^*_{\Theta})^{\perp}, \quad Wf = \sum_{i \in J} \langle f, x_i \rangle y_i.$$

It is easy to show that W is a unitary operator. Let us define

$$\Delta_i: K \to \mathcal{H}_i, \quad \Phi_i(f \oplus g) = \Theta_i f + \psi_i W g, \quad i \in I.$$

Since $\Delta_i = \Phi_i F$, for all $i \in I$ and the operator

$$F: K \to M, \quad F(f \oplus g) = f \oplus Wg$$

is invertible, $\Delta = \{\Delta_i\}_{i \in I}$ is a *g*-Riesz basis for *K*. Clearly, $\Gamma_i P_{\mathcal{H}} = \Lambda_i$ and $\Delta_i P_{\mathcal{H}} = \Theta_i$ for ever $i \in I$, therefore \mathcal{F} has the dilation property.

References

- [1] M. R. Abdollahpour: Dilation of dual g-frames to dual g-Riesz bases, Banach J. Math. Anal. in press.
- [2] M. R. Abdollahpour and F. Bagarello, On some properties of g-frames and g-coherent states, Nuovo Cimento Soc. Ital. Fis. B, 125(11) (2010), 1327–1342.
- [3] M. R. Abdollahpour and A. Najati, *Besselian g-frames and near g-Riesz bases*, Appl. Anal. Discrete Math., 5 (2011), 259-270.
- [4] M. R. Abdollahpour and A. Najati, *g-Frames and Hilbert-Schmidt operators*, Bull. Iran. Math. Soc., 37(4) (2011), 141-155.
- [5] P. G. Casazza, D. Han and D. R. Larson, Frames for Banach spaces, Contemp. Math., 247(1999), 149–182.
- [6] O. Christensen, An Introduction to Frame and Riesz Bases, Birkhauser 2002.
- [7] D. Han and D. R. Larson, Frames, bases and group representations, Mem. Amer. Math. Soc., 147(697)(2000).
- [8] A. Najati, M. H. Faroughi and A. Rahimi, *G-frames and stability of g-frames in Hilbert spaces*, Methods Func. Anal. Topology, 4(2008), 271–286.
- [9] W. Sun, G-frames and G-Riesz bases, J. Math. Anal. Appl., 322 (2006), 437–452.