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Abstract
Many optimization problems can be reduced to a problem with
an increasing and co-radiant objective function by a suitable
transformation of variables. Functions, which are increasing
and co-radiant, have found many applications in microeconomic
analysis. In this paper, the abstract convexity of positive valued
affine increasing and co-radiant (ICR) functions are discussed.
Moreover, the basic properties of this class of functions such as
support set, subdifferential and maximal elements of support set
are characterized. Finally, as an application, necessary and suf-
ficient conditions for the global minimum of the difference of
two strictly positive valued affine ICR functions are presented.
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1. Introduction

In the study of mathematical analysis, functions which can be represented as the upper en-
velopes of a subset of a certain class H of sufficiently simple (elementary) functions are called
abstract convex with respect to H [7, 9].

Some classes of increasing functions are abstract convex. For example, the class of increasing
and positively homogeneous (IPH) functions [4], increasing and convex-along-rays (ICAR) func-
tions [8], and increasing and co-radiant (ICR) functions [2, 5] are of this type. Also, the class of
non-positive valued affine ICR functions [1] are another class of increasing functions which are
abstract convex [1]. In this paper, the abstract convexity of positive valued affine ICR functions is
investigated, where a positive valued affine ICR function is the affine transformation of a positive
valued ICR function on a constant. Moreover, some properties of positive valued affine ICR func-
tions in the framework of abstract convexity are obtained. Finally, the maximal elements of the
support set of this class of functions are characterized.

One of the most important global optimization problems is minimizing a DC function (differ-
ence of two convex functions) [10], i.e.,

minimize f (x) subject to x ∈ X,

where f (x) = q(x) − p(x) and p, q are convex functions. In a general case, DC function can be
replaced by DAC function (difference of two abstract convex functions). For example, one can
observe minimizing of the difference of two increasing and convex along rays functions [8, 6],
minimizing of the difference of two ICR functions [3] and minimizing of the difference of two
non-positive valued affine ICR functions [1]. In this paper, the functions p and q are replaced by
positive valued affine ICR functions and then necessary and sufficient conditions for the global
minimum of f are presented.

The paper is organized as follows. Necessary definitions and results about the positive valued
ICR functions are provided in Section 2. Section 3 is devoted to studying the abstract convexity
of positive valued affine ICR functions. In Section 4, the maximal elements of the support set
for strictly positive valued affine ICR functions are investigated. Finally, in Section 5, necessary
and sufficient optimality conditions for the difference of two strictly positive valued affine ICR
functions are given.

2. Preliminaries

In this section, some preliminaries and notations are stated. Let X be a real topological vector
space which is equipped with a closed convex pointed cone S ⊆ X (the latter means that S ∩(−S ) =

{0} ). In this case, x ≤ y if y− x ∈ S , and x < y if y− x ∈ S \ {0}. Let f : X → [0,+∞] be a function.
A vector x∗ ∈ X is called a global minimum of the function f over X if f (x∗) = infx∈X f (x).
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Definition 2.1. A function f : X → [0,+∞] is called co-radiant if f (λx) ≥ λ f (x) for all x ∈ X and
all λ ∈ (0, 1]. It is clear that f is co-radiant if f (λx) ≤ λ f (x) for all x ∈ X and all λ ≥ 1.

Definition 2.2. A function f : X → [0,+∞] is called increasing if x ≥ y implies f (x) ≥ f (y). A
function f : X → [0,+∞] is called strictly increasing on A ⊆ X, if for each x, y ∈ A such that x < y
implies f (x) < f (y).

Remark 2.3. A function f : X → [0,+∞] is called an ICR function if f is an increasing and
co-radiant function. In particular, we say that an ICR function f : X → [0,+∞] is strictly ICR, if
f is strictly increasing on X \ (−S ) and f is co-radiant.

Definition 2.4. [7]. Let X be a non-empty set and f : X −→ [0,+∞] be a function. Consider
H : = {h : X → [0,+∞] : h is a function} .

(1) The support set of f with respect toH is defined by

supp( f ,H) : = {h ∈ H : h(x) ≤ f (x), ∀ x ∈ X} .

(2) The function f is called abstract convex with respect to H or H-convex if there exists a
subset 4 ofH such that

f (x) = sup
h∈4

h(x), ∀ x ∈ X.

(3) The subdifferential of the function f at a point x0 ∈ dom f := {x ∈ X : f (x) < +∞} with
respect toH orH-subdifferential of f is defined by

∂H f (x0) : = {h ∈ H : h(x0) ∈ R, f (x) − f (x0) ≥ h(x) − h(x0),∀ x ∈ X} .

Note that the setH in the Definition 2.4 is called the set of elementary functions.
The function hc : X −→ [0,+∞] is defined by

hc(x) := h(x) + c, (x ∈ X)

is called anH-affine function, where h ∈ H and c ∈ R. In addition, the set of allH-affine functions
is denoted by HH := {hc : h ∈ H , c ∈ R}.

The function l : X × X × R++ −→ [0,+∞] is defined by

l(x, y, α) := max {0 ≤ λ ≤ α : λy ≤ x} , ∀ x, y ∈ X, ∀ α > 0 (2.1)

was introduced in [2] with the convention max ∅ = 0. We define

R++ := {α ∈ R : α > 0} .

In the following proposition, some properties of the function l are stated.
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Proposition 2.5. [2]. For every x, y, x′, y′ ∈ X; γ ∈ (0, 1]; µ, α, α′ ∈ R++, one has

l(µx, y, α) = µl(x, y,
α

µ
),

l(x, µy, α) =
1
µ

l(x, y, µα), (2.2)

x ≤ x′ =⇒ l(x, y, α) ≤ l(x′, y, α),

y ≤ y′ =⇒ l(x, y′, α) ≤ l(x, y, α),

α ≤ α′ =⇒ l(x, y, α) ≤ l(x, y, α′),

l(γx, y, α) ≥ γl(x, y, α),

l(x, γy, α) ≤
1
γ

l(x, y, α),

l(x, y, α) = α⇔ αy ≤ x. (2.3)

The following theorem for the class of positive ICR functions will be used later.

Theorem 2.6. [2]. Let f : X −→ [0,+∞] be a function. Then the following assertions are
equivalent:

(i) f is ICR.

(ii) λ f (y) ≤ f (x) for all x, y ∈ X and all λ ∈ (0, 1] such that λy ≤ x.

(iii) l(x, y, α) f (αy) ≤ α f (x) for all x, y ∈ X and all α ∈ R++, with the convention 0 × (+∞) = 0.

We now consider the set of elementary positive valued ICR functions

L :=
{
l(y,α) : y ∈ X, α ∈ R++

}
,

where, for each (y, α) ∈ X×R++, the function l(y,α) : X −→ [0,+∞] is defined by l(y,α)(x) = l(x, y, α)
for all x ∈ X. Then the following results are valid.

Theorem 2.7. [2]. Let f : X → [0,+∞] be a function. Then f is an ICR function if and only if
there exists a set A ⊆ L such that

f (x) = sup
l(y,α)∈A

l(y,α)(x), (x ∈ X).

In this case, one can take A :=
{
l(y,α) ∈ L : f (αy) ≥ α

}
. Hence, f is an ICR function if and only if it

is L-convex.

Theorem 2.8. [2]. Let f : X → [0,+∞] be an ICR function. Then

supp( f , L) =
{
l(y,α) ∈ L : f (αy) ≥ α

}
.
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Definition 2.9. Let H0 := { f : X −→ [0,+∞] : f is a function} . Consider H0 with the natural
pointwise order relation of functions. A function f ∈ H0 is called a maximal element of the
set H0 if

f̄ ∈ H0, f̄ (x) ≥ f (x), ∀ x ∈ X =⇒ f̄ (x) = f (x), ∀ x ∈ X.

The following theorem characterizes the maximal elements of the support set of f : X −→
[0,+∞] with respect to L, where f is a positive valued ICR function.

Theorem 2.10. [3]. Let f : X −→ [0,+∞] be a strictly ICR function. Let y ∈ X be such that
ε := max {α : f (αy) ≥ α} < +∞. Then, l(y,ε) is a maximal element of the support set of f if and
only if f (εy) = ε.

Remark 2.1. In this paper, the class of positive valued ICR functions f : X −→ [0,+∞] with
lim inf

x−→0+
f (x) = 0 are considered.

3. Abstract Convexity of Positive Valued Affine ICR Functions

In this section, first the support set of positive valued affine ICR functions is characterized.
Then the abstract convexity of this class of functions in terms of HL(the set of all L-affine functions)
is investigated, where

HL :=
{
l(y,α),c : l(y,α) ∈ L, c ∈ R

}
,

and
l(y,α),c(x) := l(y,α)(x) + c, ∀ c ∈ R,∀ x ∈ X.

Finally, the subdifferential of this class of functions is obtained.

Definition 3.1. A function fa of the form fa := f + a is called (strictly) positive valued affine ICR
function if a ∈ R and f : X −→ [0,+∞] is a (strictly) positive valued ICR function.

Now the support set of positive valued ICR functions in terms of HL is characterized.

Proposition 3.2. Let f : X −→ [0,+∞] be an ICR function. Then

supp( f ,HL) =
{
l(y,α),c ∈ HL : c ≤ 0, f (αy) ≥ α + c

}
.

Proof. Let l(y,α),c ∈ supp( f ,HL). Then

l(y,α),c(x) ≤ f (x), ∀ x ∈ X. (3.1)

By definition l in (2.1) and in view of Remark 2.2, lim inf
x−→0+

f (x) = 0, then c ≤ 0. Furthermore,
by setting x = αy in (3.1) and using (2.3), the inequality α + c ≤ f (αy) is obtained. Therefore,
l(y,α),c ∈

{
l(y,α),c ∈ HL : c ≤ 0, f (αy) ≥ α + c

}
.

Now, suppose that l(y,α),c ∈
{
l(y,α),c ∈ HL : c ≤ 0, f (αy) ≥ α + c

}
be arbitrary. By using the part

(iii) of Theorem 2.6, we have

l(x, y, α) f (αy) ≤ α f (x), ∀x ∈ X.
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Since l(y,α),c ∈
{
l(y,α),c ∈ HL : c ≤ 0, f (αy) ≥ α + c

}
, hence

(α + c)l(x, y, α) ≤ l(x, y, α) f (αy) ≤ α f (x). (3.2)

So, the definition of l and (3.2) imply that

αl(x, y, α) + cα ≤ α f (x).

Thus, l(y,α),c(x) ≤ f (x). Hence l(y,α),c ∈ supp( f ,HL).

Now, it is easy to characterize the support set of fa in terms of HL by using supp( f ,HL).

Corollary 3.3. The support set of the positive valued affine ICR function fa is the set

supp( fa,HL) =
{
l(y,α),c ∈ HL : c ≤ a, fa(αy) ≥ α + c

}
.

Proof. By Proposition 3.2 and since supp( fa,HL) = supp( f ,HL) + a, the result follows.

Theorem 3.4. Let fa = f + a be a positive valued affine ICR function. Then there exists a set
4 ⊆ HL such that

fa(x) = sup
l(y,α),c∈4

l(y,α),c(x), ∀ x ∈ X,

where 4 =
{
l(y,α),c ∈ HL : c ≤ a, f (αy) ≥ α + a

}
.

Proof. By using Proposition 3.2, one can take 4 := supp( fa,HL). So

sup
l(y,α),c∈4

l(y,α),c(x) ≤ fa(x). (3.3)

Also, by Theorem 2.7,

f (x) = supl(y,α)∈A l(y,α)(x),

where A = supp( f , L). Therefore

fa(x) = sup
l(y,α)∈A

l(y,α)(x) + a = sup
l(y,α),a∈Aa

l(y,α),a(x),

where Aa = A + a. Since Aa ⊆ 4, then

fa(x) ≤ sup
l(y,α),c∈4

l(y,α),c(x). (3.4)

So, the equations (3.3) and (3.4) imply that

fa(x) = sup
l(y,α),c∈4

l(y,α),c(x), ∀ x ∈ X.

Corollary 3.5. Any positive valued affine ICR function is HL-convex.
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In the following, the HL-subdifferential of the class of positive valued affine ICR function is
characterized.

Proposition 3.6. Let x0 ∈ dom f and fa = f + a, where a ∈ R and f is a positive valued ICR
function on X. Then

∂HL fa(x0) = ∂L f (x0) + R.

Proof. For any c ∈ R, one has

l(y,α),c ∈ ∂HL fa(x0)
⇐⇒ l(y,α),c(x) − l(y,α),c(x0) ≤ fa(x) − fa(x0), ∀ x ∈ X
⇐⇒ l(y,α)(x) − l(y,α)(x0) ≤ f (x) − f (x0), ∀ x ∈ X
⇐⇒ l(y,α) ∈ ∂L f (x0),

which completes the proof.

4. Maximal Elements of the Support Set of Strictly Positive Valued Affine ICR Functions

This section is devoted to finding the maximal elements of the support set of strictly positive
valued affine ICR functions. In the following, by concentrating on the support set of strictly
positive valued affine ICR functions some results are obtained. Note that S ⊆ X is a closed convex
pointed cone.

Lemma 4.1. Let f : X −→ [0,+∞] be a strictly ICR function and S , {0}. Then, f (x) > 0 for all
x ∈ X \ (−S ).

Proof. Suppose that there exists x′ ∈ X \ (−S ) in a way f (x′) = 0. Consider x0 ∈ (−S ) \ {0} and,
for each γ > 0, put xγ := x′ + γx0. If xγ ∈ −S for all γ > 0, therefore, since −S is a closed cone
and limγ−→0+ xγ = x′, then one can conclude that x′ ∈ −S , which is a contradiction. So, there exists
γ > 0 such that xγ ∈ X \ (−S ). Because of γx0 ≤ 0, then we obtain xγ ≤ x′. Since x′, xγ ∈ X \ (−S )
and f is strictly increasing on X \ (−S ), it follows that 0 = f (x′) > f (xγ). This is a contradiction.
Thus f (x) > 0 for all x ∈ X \ (−S ).

Theorem 4.2. Let f : X −→ [0,+∞] be a strictly positive valued ICR function, and let l(y,α),c ∈ HL

be a maximal element of supp( f ,HL). Then f (αy) = α and c = 0.

Proof. Let y′ =
αy

f (αy)
(by Lemma 4.1 f (αy) > 0) and α′ = f (αy). Since f (α′y′) = α′, then

l(y′,α′),0 ∈ supp( f ,HL). Therefore, by relations (2.2) and (2.3), the following equations are valid,

l(y′,α′),0(αy) = l(αy,
αy

f (αy)
, f (αy)) =

f (αy)
α

l(αy, y, α) = f (αy). (4.1)

Since l(y,α),c ∈ supp( f ,HL), so f (αy) ≥ α + c. Using (4.1) implies that l(y′,α′),0(αy) ≥ α + c. Also,
Proposition 3.2 and c ≤ 0 imply that l(y,α),c ∈ supp(l(y′,α′),0,HL), that is, l(y,α),c ≤ l(y′,α′),0 on X.
On the other hand, l(y,α),c is a maximal element of supp( f ,HL). Thus l(y,α),c = l(y′,α′),0. Hence, by
putting x = 0, one has c = 0. So, the equality l(y,α),0 = l(y,α) and the facts that f (αy) ≥ α and
supp( f , L) ⊆ supp( f ,HL) imply that l(y,α) is a maximal element of supp( f , L). Hence, Theorem
2.10 implies that f (αy) = α.
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The next lemma states relation between maximal elements of supp( f ,HL) and supp( fa,HL).

Lemma 4.3. Let fa = f + a be a strictly positive valued affine ICR function. Then l(y,α),c ∈ HL is a
maximal element of supp( fa,HL) if and only if l(y,α),c−a is a maximal element of supp( f ,HL).

Proof. It is easy to observe that l(y,α),c is a maximal element of supp( f ,HL) if and only if l(y,α),c + a
is a maximal element of supp( f ,HL) + a. Also, clearly, supp( fa,HL) = supp( f ,HL) + a and
l(y,α),c+a = l(y,α),c + a. Therefore the proof is complete.

Proposition 4.4. Let fa = f + a be a strictly positive valued affine ICR function, and l(y,α),c ∈ HL

be a maximal element of supp( fa,HL). Then f (αy) = α and c = a.

Proof. By Lemma 4.3, a maximal element of supp( f ,HL) is of the form l(y,α),c−a. Now, Theorem
4.2 implies that f (αy) = α and c = a.

Now, necessary and sufficient conditions for characterizing the maximal elements of supp( fa,HL)
are presented.

Theorem 4.5. Let fa = f + a be a strictly positive valued affine ICR function, and let l(y,ε),c ∈ HL,
y ∈ X \ (−S ), and ε := max {α > 0 : f (αy) ≥ α} < +∞. Then l(y,ε),c is a maximal element of
supp( fa,HL) if and only if f (εy) = ε and c = a.

Proof. By Proposition 4.4, if l(y,ε),c is a maximal element of supp( fa,HL), then f (εy) = ε and
c = a. Conversely, let ε = max {α > 0 : f (αy) ≥ α} , f (εy) = ε and c = a. So, Theorem 2.10
implies that l(y,ε) is a maximal element of supp( f , L). Now, assume that l(y′,α′),c′ ∈ supp( fa,HL) is
such that

l(y,ε),c(x) ≤ l(y′,α′),c′(x), ∀ x ∈ X. (4.2)

Set x = 0 in (4.2), then c ≤ c′. Because of l(y′,α′),c′ ∈ supp( fa,HL), therefore we achieve c′ ≤ a.
Now, by the assumption c = a, one can conclude that c = c′ and c′ = a. Hence, the relation
(4.2) implies that l(y,ε) ≤ l(y′,α′) on X and l(y′,α′) ∈ supp( f , L). On the other hand, l(y,ε) is a maximal
element of supp( f , L), and then l(y,ε) = l(y′,α′) on X. Therefore l(y,ε),c is a maximal element of
supp( fa,HL).

5. Characterizing Global Minimizers of the Difference of Two Strictly Positive Valued Affine
ICR Functions

In this section, necessary and sufficient conditions for the global minimum of the difference
of two strictly positive valued affine ICR functions are presented. To this end, the support set is
described by using maximal elements.

Lemma 5.1. Let f : X −→ [0,+∞) be a strictly positive valued ICR function and S ⊆ X be a
closed convex pointed cone. Then, for any l(y,α),c ∈ supp( fa,HL) with y ∈ X \ (−S ), there exists a
maximal element l(y′,α′),c′ of supp( fa,HL) such that

l(y,α),c ≤ l(y′,α′),c′ on X,

where α′ = f (εyy), c′ = a, y′ =
εyy

f (εyy) and εy := max {α > 0 : f (αy) ≥ α} for all y ∈ X \ (−S ).
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Proof. It is clear that the equation f (α′y′) = α′ and [3, Corollary 4.1] leads to

α′ = max {α > 0 : f (αy′) ≥ α} .

So, Theorem 4.5 concludes that l(y′,α′),c′ is a maximal element of supp( fa,HL). Since f (x) < +∞

for all x ∈ X, then
fa(x) = max

l(y,α),c∈supp( fa,HL)
l(y,α),c(x), ∀ x ∈ X.

So, every maximal element of supp( fa,HL) is a maximum element, and so l(y′,α′),c′ ≥ l(y,α),c on
X.

Proposition 5.2. Let f , f ′ : X −→ [0,+∞) be strictly positive valued ICR functions so that fa :=
f + a and f ′b := f ′ + b. Let ηy := max {α > 0 : f (αy) ≥ α}, εy := max {β > 0 : f ′(βy) ≥ β},
f (ηyy) ≥ ηy and f ′(εyy) = εy for all y ∈ X \ (−S ). Then the following assertions are equivalent:

(i) supp( fa,HL) ⊆ supp( f ′b ,HL).
(ii) For any maximal element l(y1,α1),c1 ∈ supp( fa,HL), there exists a maximal element l(y2,α2),c2 ∈

supp( f ′b ,HL) such that
l(y1,α1),c1(x) ≤ l(y2,α2),c2(x), ∀ x ∈ X.

(iii) a ≤ b and f ′b(ηyy) ≥ ηy + a for each y ∈ X \ (−S ) with ηy ≥ 0.

Proof. (i) =⇒ (ii). Assume that l(y1,α1),c1 is a maximal element of supp( fa,HL). So, l(y1,α1),c1 ∈

supp( f ′b ,HL). By using Lemma 5.1 there exists a maximal element l(y2,α2),c2 ∈ supp( f ′b ,HL) such
that

l(y1,α1),c1(x) ≤ l(y2,α2),c2(x), ∀ x ∈ X.

(ii) =⇒ (i). Consider l(y1,α1),c1 ∈ supp( fa,HL). By using Lemma 5.1 there exists a maximal
element l(y2,α2),c2 ∈ supp( fa,HL) such that l(y1,α1),c1(x) ≤ l(y2,α2),c2(x), ∀ x ∈ X. Also, there exists a
maximal element l(y3,α3),c3 ∈ supp( f ′b ,HL) such that

l(y2,α2),c2(x) ≤ l(y3,α3),c3(x), ∀ x ∈ X.

Hence
l(y1,α1),c1(x) ≤ l(y2,α2),c2(x) ≤ l(y3,α3),c3(x) ≤ f ′b(x), ∀ x ∈ X.

Therefore l(y1,α1),c1 ∈ supp( f ′b ,HL).
(i) =⇒ (iii). It is clear that ηy ≥ 0. Since f (ηyy) ≥ ηy, so l(y,ηy),a ∈ supp( fa,HL). Also, l(y,ηy),a ∈

supp( f ′b ,HL), thus by Lemma 5.1 there exists a maximal element l(y′,α′),c′ ∈ supp( f ′b ,HL) such that

l(y,ηy),a(x) ≤ l(y′,α′),c′(x), ∀ x ∈ X, (5.1)

where y′ =
εyy

f ′(εyy) , α
′ = f ′(εyy) and c′ = b. Set x = 0 in (5.1), then a ≤ b, and set x = ηyy in (5.1),

then

ηy + a ≤ l(y′,α′)(ηyy) + b,
ηy + a ≤ l(

εyy
f ′(εyy) , f

′(εyy))(ηyy) + b,

ηy + a ≤ l(ηyy, y, εy) + b.
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Since l(y,εy) ∈ supp( f ′, L), therefore we get

ηy + a ≤ l(ηyy, y, εy) + b ≤ f ′(ηyy) + b.

Hence ηy + a ≤ f ′b(ηyy).
(iii) =⇒ (i). Let a ≤ b and ηy + a ≤ f ′(ηyy) + b for all y ∈ X \ (−S ) with ηy ≥ 0. Consider

l(y,α),c ∈ supp( fa,HL), then c ≤ a. By the assumption a ≤ b, therefore c ≤ b, and by Lemma
5.1 there exists a maximal element l(y′,α′),c′ ∈ supp( fa,HL) such that l(y,α),c ≤ l(y′,α′),c′ on X, where
y′ =

ηyy
f (ηyy) , α

′ = f (ηyy) and c′ = a. Now, set y′′ =
ηy′y′

f ′(ηy′y′)
and α′′ = f ′(ηy′y′). Thus

l(y′′,α′′)(ηy′y′) = f ′(ηy′y′) = α′′ = f ′(α′′y′′). (5.2)

The inequality ηy+a ≤ f ′(ηyy)+b for all y ∈ X\(−S ) and (5.2) imply that l(y′′,α′′),b(ηy′y′) ≥ ηy′+a.
So, it follows from Corollary 3.3 that

l(y′,ηy′ ),a ≤ l(y′′,α′′),b on X.

It is clear that l(y′′,α′′),b ∈ supp( f ′b ,HL). Moreover, by [3, Corollary 4.1],

ηy′ = max {α > 0 : f (αy′) ≥ α}
= α′

= f (ηyy).

So
l(y,α),c ≤ l(y′,α′),a ≤ l(y′′,α′′),b ≤ f ′b on X.

Hence l(y,α),c ∈ supp( f ′b ,HL).

In the sequel, necessary and sufficient conditions for the global minimum of the difference of
two strictly positive valued affine ICR functions are given.

Let f , f ′ : X −→ [0,+∞) be strictly ICR functions and h := f ′ − f be such that

h (x) = f ′ (x) − f (x) , ∀ x ∈ X. (5.3)

Theorem 5.3. Let ηy := max {α > 0 : f (αy) ≥ α} for all y ∈ X \(−S ), where f : X −→ [0,+∞] is a
strictly positive valued ICR function such that f (ηyy) = ηy. Also, let εy := max {α > 0 : f ′(αy) ≥ α}
for all y ∈ X \ (−S ), where f ′ : X −→ [0,+∞] is a strictly positive valued ICR function such that
f ′(εyy) = εy. Then an element x0 ∈ X is a global minimizer of the function h (defined by (5.3)) if
and only if h(x0) ≤ 0 and f ′(ηyy) ≥ ηy + h(x0) for all y ∈ C, where C =

{
y ∈ X \ (−S ) : ηy ≥ 0

}
.

Proof. It is clear that x0 is a global minimizer of the function h if and only if h(x0) ≤ h(x) for all
x ∈ X. By the definition of the function h and Proposition 5.2, it follows that

h(x0) ≤ h(x), ∀ x ∈ X,
⇐⇒ fh(x0)(x) ≤ f ′(x), ∀ x ∈ X,
⇐⇒ supp( fh(x0),HL) ⊆ supp( f ′,HL),
⇐⇒ h(x0) ≤ 0, f ′(ηyy) ≥ ηy + h(x0), ∀ y ∈ C.
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Corollary 5.4. Suppose that h(x0) < 0 with x0 ∈ X. Then, under the assumptions of Theorem 5.3,
x0 is a global minimizer of the function h if and only if

h(x0) = inf
y∈C

{
f ′(ηyy) − ηy

}
,

where C :=
{
y ∈ X \ (−S ) : ηy ≥ 0

}
.

Proof. Let h(x0) = infy∈C

{
f ′(ηyy) − ηy

}
. Then f ′(ηyy) ≥ ηy + h(x0) for all y ∈ C. So, by Theorem

5.3, x0 is a global minimizer of the function h. Conversely, let x0 ∈ X be a global minimizer of
the function h. Also, assume that ν := infy∈C

{
f ′(ηyy) − ηy

}
and h(x0) < ν (note that it follows from

Theorem 5.3 that h(x0) ≤ ν). Consider ν′ < 0 such that h(x0) < ν′ ≤ ν. Therefore, Proposition 5.2
implies that supp( fν′ ,HL) ⊆ supp( f ′,HL), i.e., fν′ ≤ f ′ on X, which yields a contradiction with
the fact that h(x0) < ν′.

Corollary 5.1. Let f , f ′ : X −→ [0,+∞] be strictly ICR functions and fa = f +a and f ′b = f ′+b be
strictly positive valued affine ICR functions. Then, x0 is a global minimizer of the function f ′b − fa

if and only if x0 is a global minimizer of the function f ′ − f .

Example 5.5. Consider two strictly ICR functions f , f ′ : R→ [0,+∞) are defined by

f (x) :=
{

0, x < 0
x

1
2 , x ≥ 0

and f ′ (x) :=
{

0, x < 0
x

2
3 , x ≥ 0

.

It is easy to observe that

ηy := max {α > 0 : f (αy) ≥ α} = y,

and

εy := max {β > 0 : f ′(βy) ≥ β} = y2,

for all y > 0. Also, f (ηyy) ≥ ηy and f ′(εyy) = εy. By Corollary 5.4, x0 is a global minimizer of the
function h = f ′ − f if and only if h(x0) = infy>0

{
y

4
3 − y

}
= −27

256 if and only if x0 = ( 3
4 )6.

Example 5.6. Let X := { f : [0, 1] −→ R : f is a continuous function } and

S := { f ∈ X : f (x) ≥ 0, ∀ x ∈ [0, 1]} .

It is clear that S is a closed convex pointed cone in X. Consider two functions

ϕ, ψ : X −→ [0,+∞),

are defined by
ϕ( f ) :=

√
f +(y0) and ψ( f ) = sup

0≤x≤1

√
f +(x),
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for all f ∈ X (y0 ∈ [0, 1] is fixed), where f +(x) := max { f (x), 0} for all x ∈ [0, 1]. It is clear that ϕ
and ψ are strictly positive valued ICR functions, and it is easy to see that

η f := max {α > 0 : ϕ(α f ) ≥ α} = f +(y0),

and

ε f := max {α > 0 : ψ(α f ) ≥ α} =

(
sup

0≤x≤1

√
f +(x)

)2

,

for all f ∈ X \ (−S ). Also, ϕ(η f f ) ≥ η f and ψ(ε f f ) = ε f for all f ∈ X \ (−S ). It is not difficult to
check that

inf
f∈X\(−S )

{
ψ(η f f ) − η f

}
= 0.

By Corollary 5.4, f0 is a global minimizer of the function h = ψ − ϕ if and only if h( f0) = 0 if and
only if

sup
0≤x≤1

√
f +
0 (x) =

√
f +
0 (y0)

if and only if y0 is a maximizer of the function
√

f +
0 (x).
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