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1. Introduction and Preliminaries

Two-wavelet localization operators in the setting of homogeneous spaces with respect to a left
invariant measure are studied in [11, 2]. We have studied the localization operators in the setting
of homogeneous spaces with an admissible wavelet in [5]. In this manuscript we continue our
investigation on localization operators with two admissible wavelets in a completely different and
more general approach, by considering a relatively invariant measure on the homogeneous space
G/H. A reason for the extension of the results from the one wavelet case to the two wavelet case
comes from an extra degree of flexibility in signal analysis and imaging when the localization
operators are used as time-varying filters (see [2, 3]).
To make the point clear, let us first review some basic concepts of strongly quasi invariant measures
on homogeneous spaces (for more details see [8, 9, 7]).

Let G be a locally compact group and H be a closed subgroup of G. Consider G/H as a
homogeneous space on which G acts from the left. Let µ be a Radon measure acting in G/H. A
strongly quasi invariant Borel measure µ on G/H is translation-continuous if there exists a positive
real valued continuous function λ on G ×G/H such that

dµg(kH) = λ(g, kH)dµ(kH),

for all g, k ∈ G. If the functions λ(g, .) reduce to constants, then µ is called a relatively invariant
measure under G and if λ(g, .) = 1, for all g ∈ G, the measure µ is said to be G-invariant. A
rho-function for the pair (G,H) is defined to be a continuous function ρ : G → (0,∞) which
satisfies

ρ(gh) =
∆H(h)
∆G(h)

ρ(g) (g ∈ G, h ∈ H),

where ∆G,∆H are the modular functions on G and H, respectively. It is well known that (see [8]),
any pair (G,H) admits a rho-function and for each rho-function ρ there is a strongly quasi invariant
measure µ on G/H such that

dµg

dµ
(kH) =

ρ(gk)
ρ(k)

(g, k ∈ G).

As has been shown in [8], every strongly quasi invariant measure on G/H, arises from a rho-
function and all such measures are strongly equivalent. That is, µ and µ′ are strongly quasi invariant
measures on G/H, then dµ′

dµ is a positive continuous function.

The paper is organized as follows. In section 2, we introduce a two-wavelet localization op-
erator on a homogeneous space with a relatively invariant measure. We show that it is a bounded
linear operator. Section 3 investigates the compactness and the Schatten p-class properties of the
two-wavelet localization operators. The section is concluded by examples supporting our argu-
ments.

2. Boundedness of Two- Wavelet Localization Operators on G/H

In this section we define the localization operators for pairs of admissible wavelets in the
setting of homogeneous spaces with relatively invariant measures and show that they are bounded
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operators. For this, we need to review some basic concepts from [4, 6] concerning the square
integrable representations in the case of homogeneous spaces with relatively invariant measures.

A continuous unitary representation of a homogeneous space G/H is a map σ from G/H into
the group U(H) of all unitary operators on some nonzero Hilbert spaceH , for which the function
gH 7→ ⟨σ(gH)x, y⟩ is continuous , for each x, y ∈ H and

σ(gkH) = σ(gH)σ(kH), σ(g−1H) = σ(gH)∗,

for each g, k ∈ G. Moreover, a closed subspace M ofH is said to be invariant with respect to σ if
σ(gH)M ⊆ M, for all g ∈ G. A continuous unitary representation σ is said to be irreducible if the
only invariant subspaces of H are {0} and H (in the sequel we always mean by a representation,
a continuous unitary representation). An irreducible representation σ of G/H on H is said to be
square integrable if there exists a nonzero element ζ ∈ H such that∫

G/H

ρ(e)
ρ(g)

∣∣∣∣⟨ζ, σ(gH)ζ⟩
∣∣∣∣2dµ(gH) < ∞, (2.1)

where µ is a relatively invariant measure on G/H which arises from a rho function ρ : G → (0,∞).
If ζ satisfies (2.1), it is called an admissible vector. An admissible vector ζ ∈ H is said to be
admissible wavelet if ∥ζ∥ = 1. In this case, we define the wavelet constant cζ as

cζ :=
∫

G/H

ρ(e)
ρ(g)

∣∣∣∣⟨ζ, σ(gH)ζ⟩
∣∣∣∣2dµ(gH). (2.2)

We call cζ the wavelet constant associated to the admissible wavelet ζ. For a given representation
σ, two vector ζ, x ∈ H and g ∈ G define the linear operator Wζ : H → C(G/H) by

(Wζx)(gH) =
1
√cζ

(ρ(e)
ρ(g)

)1/2
⟨x, σ(gH)ζ⟩.

The linear operator Wζ is called the continuous wavelet transform and it is a bounded linear oper-
ator fromH into L2(G/H) when σ is a square integrable representation of G/H onH and ζ is an
admissible wavelet for σ. Note that we assume H is a compact subgroup of G.
The reconstruction formula and orthogonality relations for square integrable representation σ of
homogeneous spaces G/H with relatively invariant measure have been studied in [4, 6]. For the
reader’s convenience we state them here which are used in our results.

Theorem 2.1. (reconstruction formula) Let σ be a square integrable representation of G/H on
H . If ζ is an admissible wavelet for σ, then

⟨x, y⟩ = 1
cζ

∫
G/H

ρ(e)
ρ(g)
⟨x, σ(gH)ζ⟩ ⟨σ(gH)ζ, y⟩ dµ(gH), (2.3)

where cζ is as in (2.2) and µ is a relatively invariant measure that arises from a rho-function ρ.
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Theorem 2.2. (Orthogonality Relations) Let σ be a square integrable representation of G/H on
H and ζ, ξ be two admissible wavelets for σ. Then

for all x ,y inH ,
1

cζ,ξ

∫
G/H

ρ(e)
ρ(g)
⟨x, σ(gH)ζ⟩ ⟨σ(gH)ξ, y⟩ dµ(gH) = ⟨x, y⟩, (2.4)

where
cζ,ξ =

∫
G/H

ρ(e)
ρ(g)
⟨ζ, σ(gH)ζ⟩ ⟨σ(gH)ξ, ζ⟩ dµ(gH), (2.5)

in which cζ,ξ is called two-wavelet constant.

Now, we are ready to define two-wavelet localization operators in the setting of homogeneous
spaces with a relatively invariant measure and we establish their boundedness property.

Definition 2.3. Let σ be a square integrable representation of G/H and ζ, ξ be two admissible
wavelets for σ with respect to a relatively invariant measure µ on G/H. The operator Lζ,ξ,ψ : H →
H defined as follows:

⟨Lζ,ξ,ψx, y⟩ = 1
cζ,ξ

∫
G/H

ρ(e)
ρ(g)

ψ(gH)⟨x, σ(gH)ζ⟩ ⟨σ(gH)ξ, y⟩ dµ(gH), (2.6)

for all ψ ∈ Lp(G/H), x, y ∈ H and cζ,ξ is two-wavelet constant defined as in (2.5). The linear
operator Lζ,ξ,ψ is called two-wavelet localization operator.

We intend to show that Lζ,ξ,ψ is a bounded linear operator for ψ ∈ Lp(G/H), 1 ≤ p ≤ ∞ . But
first, we show that the localization operator Lζ,ξ,ψ is bounded, for ψ ∈ L∞(G/H).

Proposition 2.4. Let ψ ∈ L∞(G/H). Then Lζ,ξ,ψ is a bounded linear operator and

∥Lζ,ξ,ψ∥ ≤
(cζcξ)1/2

|cζ,ξ |
∥ψ∥∞,

in which ζ, ξ are two admissible wavelets.

Proof. Using the reconstruction formula (2.3) and the Schwarz inequality we get,∣∣∣∣⟨Lζ,ξ,ψx, y⟩
∣∣∣∣

≤ 1
|cζ,ξ |

∫
G/H

ρ(e)
ρ(g)

∣∣∣∣ψ(gH)
∣∣∣∣ ∣∣∣∣⟨x, σ(gH)ζ⟩

∣∣∣∣ ∣∣∣∣⟨σ(gH)ξ, y⟩
∣∣∣∣ dµ(gH)

≤ 1
|cζ,ξ |
∥ψ∥∞

( ∫
G/H

ρ(e)
ρ(g)

∣∣∣∣⟨x, σ(gH)ζ⟩
∣∣∣∣2dµ(gH)

)1/2
( ∫

G/H

ρ(e)
ρ(g)

∣∣∣∣⟨σ(gH)ξ, y⟩
∣∣∣∣2dµ(gH)

)1/2
≤ 1
|cζ,ξ |

c1/2
ζ c1/2

ξ ∥x∥ ∥y∥ ∥ψ∥∞,

for all x, y ∈ H . Then ∥Lζ,ξ,ψ∥ ≤
(cζcξ)1/2

|cζ,ξ |
∥ψ∥∞.
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Now, let ψ ∈ L1(G/H) in which G/H is equipped with a G-invariant measure µ′. Note that,
since H is compact, G/H admits such a G-invariant measure.

Proposition 2.5. Let ψ ∈ L1(G/H). Then Lζ,ξ,ψ is a bounded linear operator and

∥Lζ,ξ,ψ∥ ≤
ρ(e)
|cζ,ξ |
∥ψ∥1.

Proof. Consider G/H with a G-invariant measure µ′ which arises from the rho-function ρ′ ≡ 1.
Since µ, µ′ are strongly equivalent, there exists a positive function τ on G/H such that

dµ
dµ′
= τ, ρ(g) = τ(gH),

where µ is a relatively invariant measure which arises from ρ. Thus∣∣∣∣⟨Lζ,ξ,ψx, y⟩
∣∣∣∣

≤ 1
|cζ,ξ |

∫
G/H

ρ(e)
ρ(g)

∣∣∣∣ψ(gH)
∣∣∣∣ ∣∣∣∣⟨x, σ(gH)ζ⟩

∣∣∣∣ ∣∣∣∣⟨σ(gH)ξ, y⟩
∣∣∣∣ dµ(gH)

≤ 1
|cζ,ξ |

∫
G/H

ρ(e)
τ(gH)

∣∣∣∣ψ(gH)
∣∣∣∣ ∣∣∣∣⟨x, σ(gH)ζ⟩

∣∣∣∣ ∣∣∣∣⟨σ(gH)ξ, y⟩
∣∣∣∣τ(gH)dµ′(gH)

≤ 1
|cζ,ξ |

∫
G/H

ρ(e)
∥∥∥∥x∥∥∥∥ ∥∥∥∥y∥∥∥∥ ∣∣∣∣ψ(gH)

∣∣∣∣dµ′(gH)

≤ ρ(e)
|cζ,ξ |
∥∥∥∥ψ∥∥∥∥

1

∥∥∥∥x∥∥∥∥ ∥∥∥∥y∥∥∥∥.
where ∥ψ∥1 =

∫
G/H
|ψ(gH)|dµ′(gH). Then ∥Lζ,ξ,ψ∥ ≤

ρ(e)
|cζ,ξ |
∥ψ∥1.

Finally, we show that if ψ ∈ Lp(G/H), 1 < p < ∞, then Lζ,ξ,ψ is a bounded linear operator.

Theorem 2.6. Let ψ ∈ Lp(G/H), 1 < p < ∞. Then there exists a unique bounded linear operator
Lζ,ξ,ψ : H → H such that

∥Lζ,ξ,ψ∥ ≤
ρ(e)1/p

|cζ,ξ |
(
cζcξ
)1/2(1−1/p)

∥ψ∥p, (2.7)

where Lζ,ξ,ψ is given for a simple function ψ on G/H for which

µ
({

gH ∈ G/H; ψ(gH) , 0
})
< ∞. (2.8)

Proof. Let Γ : H → L2(Rn) be a unitary operator and ψ ∈ L1(G/H). Then the linear operator
L̃ψ,ζ,ξ : L2(Rn)→ L2(Rn) defined by

L̃ψ,ζ,ξ = ΓLψ,ζ,ξΓ−1, (2.9)
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is bounded and ∥L̃ψ,ζ,ξ∥ ≤ ρ(e)
|cζ,ξ |∥ψ∥1. If ψ ∈ L∞(G/H), then the linear operator L̃ψ,ζ,ξ on L2(Rn)

defined as (2.9) is bounded and ∥L̃ψ,ζ,ξ∥ ≤ (cζcξ)1/2

|cζ,ξ | ∥ψ∥∞.
Denote by A the set of all simple functions ψ on G/H which satisfy (2.8). Let g ∈ L2(Rn) and Φg

be a linear transformation from A into the set of all Lebesgue measurable function on Rn defined
as Φg(ψ) = L̃ψ,ζ,ξ(g). Then for all ψ ∈ L1(G/H)∥∥∥∥Φg(ψ)

∥∥∥∥
2
=
∥∥∥∥L̃ψ,ζ,ξ(g)

∥∥∥∥
2
≤
∥∥∥∥L̃ψ,ζ,ξ∥∥∥∥ ∥∥∥∥g∥∥∥∥

2
≤ ρ(e)
|cζ,ξ |
∥∥∥∥ψ∥∥∥∥

1

∥∥∥∥g∥∥∥∥
2
.

Similarly for all ψ ∈ L∞(G/H),

∥∥∥∥Φg(ψ)
∥∥∥∥

2
≤

(
cζcξ
)1/2

|cζ,ξ |
∥∥∥∥ψ∥∥∥∥∞ ∥∥∥∥g∥∥∥∥2.

By the Riesz Thorin Interpolation Theorem we get,∥∥∥∥L̃ψ,ζ,ξ(g)
∥∥∥∥

2
=
∥∥∥∥Φg(ψ)

∥∥∥∥
2
≤ ρ(e)1/p

|cζ,ξ |
(
cζcξ
)1/2(1−1/p)∥∥∥∥ψ∥∥∥∥

p

∥∥∥∥g∥∥∥∥
2
.

So, ∥∥∥∥L̃ψ,ζ,ξ∥∥∥∥ ≤ ρ(e)1/p

|cζ,ξ |
(
cζcξ
)1/2(1−1/p)∥∥∥∥ψ∥∥∥∥

p
.

for each ψ ∈ A.
Now, let ψ ∈ Lp(G/H), for all 1 < p < ∞. Then there exists a sequence {ψk}∞k=1 of functions in
A such that ψk is convergent to ψ in Lp(G/H) as k → ∞. Also, {L̃ψk,ζ,ξ} is a Cauchy sequence in
B(L2(G/H)). Indeed,∥∥∥∥L̃ψk,ζ,ξ − L̃ψm,ζ,ξ

∥∥∥∥ ≤ ρ(e)1/p

|cζ,ξ |
(
cζcξ
)1/2(1−1/p)∥∥∥∥ψk − ψm

∥∥∥∥
p
→ 0.

By the completeness of B(L2(Rn)), there exists a bounded linear operator L̃ψ,ζ,ξ on L2(Rn) such that
L̃ψk,ζ,ξ converges to L̃ψ,ζ,ξ in B(L2(Rn)), in which∥∥∥∥L̃ψ,ζ,ξ∥∥∥∥ ≤ ρ(e)1/p

|cζ,ξ |
(
cζcξ
)1/2(1−1/p)∥∥∥∥ψ∥∥∥∥

p
.

Thus the linear operator Lψ,ζ,ξ is bounded, where Lψ,ζ,ξ = Γ−1L̃ψ,ζ,ξΓ, and∥∥∥∥Lψ,ζ,ξ∥∥∥∥ ≤ ρ(e)1/p

|cζ,ξ |
(
cζcξ
)1/2(1−1/p)∥∥∥∥ψ∥∥∥∥

p
. (2.10)

For the proof of uniqueness, let ψ ∈ Lp(G/H), 1 < p < ∞, and suppose that Pψ,ζ,ξ is another
bounded linear operator satisfying (2.10). Let Θ : Lp(G/H) → B(H) be the linear operator
defined by

Θ(ψ) = Lψ,ζ,ξ − Pψ,ζ,ξ, ψ ∈ Lp(G/H).
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Then by (2.10), ∥∥∥∥Θ(ψ)
∥∥∥∥ ≤ 2

ρ(e)1/p

|cζ,ξ |
(
cζcξ
)1/2(1−1/p)∥∥∥∥ψ∥∥∥∥

p
.

Moreover Θ(ψ) is equal to the zero operator on H for all ψ ∈ A. Thus, Θ : Lp(G/H) → B(H)
is a bounded linear operator that is equal to zero on the dense subspace A of Lp(G/H). Therefore
Lψ,ζ,ξ = Pψ,ζ,ξ for all ψ ∈ Lp(G/H).

3. Compactness and Schatten p-class Properties of Lψ,ζ,ξ

In this section we show that the two-wavelet localization operators on homogeneous spaces
with relatively invariant measure defined in (2.6) are compact and they are in Schatten p-class.
For the reader’s convenience we introduce basic preliminaries on Schatten p-class and for more
details see [10, 11] .
Let T : H → H be a compact operator. Then the linear operator |T | : H → H is positive and
compact. Assume that {ξn, n = 1, 2, ...} is an orthonormal basis for H consisting of eigenvectors
of |T | and sn(T ) is the eigenvalue of |T | corresponding to the eigenvector {ξn, n = 1, 2, ...}. The
eigenvalue sn(T ), n = 1, 2, ... is called the singular value of T . A compact operator T is in Schatten
p-class S p, 1 ≤ p < ∞, if

∑∞
n=1(sn(T ))p < ∞. It can be shown that S p, 1 ≤ p < ∞ is a Banach

space in which the norm ∥, ∥S p is defined by

∥∥∥∥T∥∥∥∥
S p
=
( ∞∑

n=1

(sn(T ))p
)1/p

, T ∈ S p.

Let S∞ be the C∗-algebra B(H) of all bounded operators on H . Then the norm ∥, ∥S∞ is the same
as the operator norm in B(H). The Banach spaces S 1 and S 2 are known as the trace and the
Hilbert-Schmidt classes, respectively. Note that S 2 is a Hilbert space. It is worthwhile to note that
if the operator T on H is a compact operator such that for all orthonormal sets {ξn}∞n=1 and {ζn}∞n=1
in H ∑∞n=1 |⟨Tξn, ζn⟩| < ∞ , then T is in S 1. For any T ∈ S 1 and any orthonormal basis {ζn}∞n=1 of
H we write

tr(T ) =
∞∑

n=1

⟨Tζn, ζn⟩,

which is called the trace of T . Moreover, if T is a bounded operator such that
∑∞

n=1 ∥Tξn∥2 < ∞,
for all orthonormal bases {ξn}∞n=1 for H , then T is in Hilbert Schmidt class S 2 (see [11, Section
2]). Throughout this section Lp(G/H) denotes the Lebesgue space Lp(G/H, µ′), where µ′ is a G-
invariant measure on G/H.
The following theorem show that the two-wavelet localization operator Lψ,ζ,ξ, for two admissible
wavelets ζ, ξ and ψ ∈ Lp(G/H), 1 ≤ p < ∞ is compact.

Theorem 3.1. For ψ ∈ Lp(G/H), 1 ≤ p < ∞, the two-wavelet localization operator Lψ,ζ,ξ is
compact.

Proof. Let ψ ∈ Lp(G/H, µ′). There exists ψn ∈ Cc(G/H) such that ∥ψn − ψ∥p → 0. Let {ζk}∞k=1 be
an orthonormal basis forH . Then by Fubini’s theorem and the Schwarz inequality, we have
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∞∑
k=1

∣∣∣∣⟨Lψn,ζ,ξζk, Lψn,ζ,ξζk⟩
∣∣∣∣

≤ 1
|cζ,ξ |

∞∑
k=1

∫
G/H

ρ(e)
ρ(g)

∣∣∣∣ψn(gH)
∣∣∣∣ ∣∣∣∣⟨ζk, σ(gH)ζ⟩

∣∣∣∣ ∣∣∣∣⟨σ(gH)ξ, Lψn,ζ,ξζk⟩
∣∣∣∣ dµ(gH)

≤ ρ(e)
|cζ,ξ |

∫
G/H

∣∣∣∣ψn(gH)
∣∣∣∣( ∞∑

k=1

∣∣∣∣⟨ζk, σ(gH)ζ⟩
∣∣∣∣2)1/2( ∞∑

k=1

∣∣∣∣⟨L∗ψ,ζ,ξσ(gH)ξ, ζk⟩
∣∣∣∣2)1/2dµ′(gH)

≤ ρ(e)
|cζ,ξ |
∥∥∥∥L∗ψ,ζ,ξ∥∥∥∥ ∥∥∥∥ψn

∥∥∥∥
1
< ∞.

Thus Lψn,ζ,ξ is in S 2 and it implies that Lψn,ζ,ξ is compact. Since ∥Lψ,ζ,ξ−Lψn,ζ,ξ∥ ≤
ρ(e)1/p

|cζ,ξ | (cζcξ)1/2(1−1/p)∥ψ−
ψn∥p. Then the localization operator Lψ,ζ,ξ is compact.

Proposition 3.2. If ψ ∈ L1(G/H), then Lψ,ζ,ξ is in S 1 and

tr(Lψ,ζ,ξ) =
ρ(e)
cζ,ξ
⟨ζ, ξ⟩

∥∥∥∥ψ∥∥∥∥
1
.

Proof. Let {ζk}∞k=1 and {ξk}∞k=1 be any two orthonormal sets ofH . Then

∞∑
k=1

∣∣∣∣⟨Lψ,ζ,ξζk, ξk⟩
∣∣∣∣

≤ 1
|cζ,ξ |

∞∑
k=1

∫
G/H

ρ(e)
ρ(g)

∣∣∣∣ψ(gH)
∣∣∣∣ ∣∣∣∣⟨ζk, σ(gH)ζ⟩

∣∣∣∣ ∣∣∣∣⟨σ(gH)ξ, ξk⟩
∣∣∣∣ dµ(gH)

≤ ρ(e)
|cζ,ξ |

∫
G/H

∣∣∣∣ψ(gH)
∣∣∣∣( ∞∑

k=1

∣∣∣∣⟨ζk, σ(gH)ζ⟩
∣∣∣∣2)1/2( ∞∑

k=1

∣∣∣∣⟨σ(gH)ξ, ξk⟩
∣∣∣∣2)1/2dµ′(gH)

≤ ρ(e)
|cζ,ξ |

∫
G/H

∣∣∣∣ψ(gH)
∣∣∣∣dµ′(gH)

≤ ρ(e)
|cζ,ξ |

∥∥∥∥ψ∥∥∥∥
1
< ∞.

So Lψ,ζ,ξ ∈ S 1 and
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tr(Lψ,ζ,ξ) =
∞∑

k=1

⟨Lψ,ζ,ξζk, ζk⟩

=
1

cζ,ξ

∑∞
k=1

∫
G/H

ρ(e)
ρ(g)

ψ(gH)⟨ζk, σ(gH)ζ⟩ ⟨σ(gH)ξ, ζk⟩ dµ(gH)

=
ρ(e)
cζ,ξ

∫
G/H

ψ(gH)
∞∑

k=1

⟨ζk, σ(gH)ζ⟩ ⟨σ(gH)ξ, ζk⟩ dµ′(gH)

=
ρ(e)
cζ,ξ

∫
G/H

ψ(gH)⟨σ(gH)ζ, σ(gH)ξ⟩dµ′(gH)

=
ρ(e)
cζ,ξ
⟨ζ, ξ⟩

∫
G/H

ψ(gH)dµ′(gH),

where {ζk}∞k=1 is any orthonormal basis forH .

Proposition 3.3. If ψ ∈ L1(G/H), then ∥Lψ,ζ,ξ∥S 1 ≤
ρ(e)
|cζ,ξ |∥ψ∥1.

Proof. By Proposition 3.2 the localization operator Lψ,ζ,ξ is in S 1. Using the canonical form [11,
Theorem 2.2] for compact operator Lψ,ζ,ξ, we get

Lψ,ζ,ξx =
∞∑

k=1

sk(Lψ,ζ,ξ)⟨x, ζk⟩ξk, (3.1)

where sk(Lψ,ζ,ξ), k = 1, 2, ... are the positive singular values of Lψ,ζ,ξ, the set {ζk, k = 1, 2, ...} is
an orthonormal basis for N(Lψ,ζ,ξ)⊥ and {ξk, k = 1, 2, ...} is an orthonormal set in H . Then (3.1)
implies that

∞∑
j=1

⟨Lψ,ζ,ξζ j, ξ j⟩ =
∞∑
j=1

s j(Lψ,ζ,ξ).

So ∥Lψ,ζ,ξ∥S 1 =
∑∞

j=1⟨Lψ,ζ,ξζ j, ξ j⟩. Now Fubini’s theorem, Parseval’s identity, Bessel’s inequality
and Schawrtz’s inequality imply that
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∣∣∣∣ ∞∑
j=1

⟨Lψ,ζ,ξζ j, ξ j⟩
∣∣∣∣

≤
∞∑
j=1

ρ(e)
|cζ,ξ |

∫
G/H

1
ρ(g)

∣∣∣∣ψ(gH)
∣∣∣∣ ∣∣∣∣⟨ζ j, σ(gH)ζ⟩

∣∣∣∣ ∣∣∣∣⟨σ(gH)ξ, ξ j⟩
∣∣∣∣ dµ(gH)

≤ ρ(e)
|cζ,ξ |

∫
G/H

∣∣∣∣ψ(gH)
∣∣∣∣( ∞∑

j=1

∣∣∣∣⟨ζ j, σ(gH)ζ⟩
∣∣∣∣2)1/2( ∞∑

j=1

∣∣∣∣⟨σ(gH)ξ, ξ j⟩
∣∣∣∣2)1/2dµ′(gH)

≤ ρ(e)
|cζ,ξ |

∫
G/H

∣∣∣∣ψ(gH)
∣∣∣∣ dµ′(gH)

≤ ρ(e)
|cζ,ξ |
∥∥∥∥ψ∥∥∥∥

1
.

Note that by Proposition 2.4 the two-wavelet localization operator Lζ,ξ,ψ is a bounded linear
operator for ψ ∈ L∞(G/H) and(∥∥∥∥Lζ,ξ,ψ∥∥∥∥ = )∥∥∥∥Lζ,ξ,ψ∥∥∥∥

S∞
≤

(cζcξ)1/2

|cζ,ξ |
∥∥∥∥ψ∥∥∥∥∞.

Now Riesz Thorin Interpolation Theorem [10] implies that the localization operator Lψ,ζ,ξ for 1 ≤
p ≤ ∞ is in S p. More precisely we have the following theorem.

Theorem 3.4. Let ψ ∈ Lp(G/H), 1 ≤ p ≤ ∞. Then the localization operator Lψ,ζ,ξ is in S p and∥∥∥∥Lψ,ζ,ξ∥∥∥∥
S p
≤
ρ(e)1/p(cζ .cξ)1/2(1−1/p)

|cζ,ξ |
∥∥∥∥ψ∥∥∥∥

p

We conclude with some examples concerning localization operators on some homogeneous
spaces.

Example 3.5. Let G be the Weyl-Heisenberg group (WH)n and H = {(0, 0, t), t ∈ R/2πZ}. The
Euclidean space Rn × Rn is as homogenous space of (WH)n and (WH)n

H = Rn × Rn admits the
Lebesgue measure. The representation

σ : Rn × Rn → U
(
L2(Rn)

)
,
(
σ(q, p)φ

)
(x) = ei(px−qp)φ(x − q),

where x ∈ Rn, φ ∈ L2(Rn) is square integrable (see [11]). For ψ ∈ Lp(Rn), the localization operator
Lψ,ζ,ξ with two admissible wavelets ζ, ξ is defined by

⟨Lψ,ζ,ξ f , g⟩ = 1
cζ,ξ

∫
Rn

∫
Rn
ψ(q, p)⟨ f , σ(q, p)ζ⟩ ⟨σ(q, p)ξ, g⟩ dqdp

=
1

cζ,ξ

∫
Rn

∫
Rn
ψ(q, p)⟨ f , ζq,p⟩ ⟨ξq,p, g⟩ dqdp,
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for f , g ∈ L2(Rn), where

cζ,ξ =
1
∥ζ∥2
∫
Rn

∫
Rn
⟨ζ, σ(q, p)ζ⟩ ⟨σ(q, p)ξ, ζ⟩ dqdp

=
1
∥ζ∥2
∫
Rn

∫
Rn
⟨ζ, ζq,p⟩ ⟨ξq,p, ζ⟩ dqdp,

where ζq,p(x) = eipxζ(x − q), x ∈ Rn.

Example 3.6. Consider the similitude group, S IM(n) = Rn ×τ (R+ × S O(n)), i.e. the semidirect
product of Rn and R+ × S O(n) with respect to

τ : R+ × S O(n)→ Aut(Rn), τ(a,w)b⃗ = awb⃗.

Evidently, Rn can be considered as a homogeneous space of S IM(n). Let dnb be the Lebesgue
measure on Rn which arises from rho function ρ : S IM(n)→ (0,∞), such that ρ(b⃗, a,w) = an [1].
The representation

σ : Rn → U(L2(Rn)), (σ(ζ)φ)(x) = eixζφ(x), x, ζ ∈ Rn

is square integrable. For two admissible wavelets φ, ψ ∈ L2(Rn) and φ̂, ψ̂ ∈ L4(Rn), the two-
wavelet constant cφ,ψ is as follows

cφ,ψ = 1
∥ψ∥2

∫
Rn

1
an ⟨ψ, σ(ζ)ψ⟩⟨φ, σ(ζ)ψ⟩ dnζ

=
1
∥ψ∥2

∫
Rn

1
an

( ∫
Rn
ψ(x)eixζφ(x)dnx

)( ∫
Rn
φ(x)eixζφ(x)dnx

)
dnζ

=
1
∥ψ∥2

∫
Rn

1
an φ̂φ̄(ζ).φ̂ψ̄(ζ)dnζ

=
1
an ⟨φ̂φ̄, φ̂ψ̄⟩.

Moreover, for F ∈ L∞(Rn) and two admissible wavelet φ, ψ, the localization operator LF,φ,ψ is
given by

⟨LF,φ,ψ f , g⟩ = 1
cφ,ψ

∫
Rn

1
an F(ζ)⟨ f , σ(ζ)φ⟩ ⟨σ(ζ)ψ, g⟩ dnζ

=
1

cφ,ψ

∫
Rn

1
an F(ζ) f̂ φ̄(ζ)ψ̂ḡ(ζ)dnζ
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