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Abstract
In this paper, we give a fundamental convexity preserving for
spectral functions. Indeed, we investigate infimal convolution,
Moreau envelope and proximal average for convex spectral func-
tions, and show that this properties are inherited from the prop-
erties of its corresponding convex function. This results have
many applications in Applied Mathematics such as semi-definite
programmings and engineering problems.
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1. Introduction

There has been growing interest in the variational analysis of spectral functions. This growing
trend is due to spectral functions that have important applications to some fundamental problems
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in applied mathematics such as semi-definite programming and engineering problems (see [5, 7],
and references therein).
A function F defined on Sn is called spectral if

F(UT AU) = F(A), ∀ A ∈ Sn, ∀ U ∈ On,

where Sn is the vector space of all n × n real symmetric matrices and On is the group of all real
orthogonal matrices.
One can easily see [7] that every spectral function is the composition of a symmetric function f
defined on Rn and the eigenvalue function λ : Sn −→ Rn, i.e.,

F(A) = ( f ◦ λ)(A), ∀ A ∈ Sn.

Hence there exists a one-to-one correspondence between the spectral functions F defined on Sn

and the symmetric functions f defined on Rn. In recent years a lot of research shows that the
properties of F are inherited from the properties of f , and vice versa [5, 6, 7, 8, 9, 10, 11, 12].
For example, lower semi-continuity and differentiability of F at a point A ∈ Sn are inherited from
lower semi-continuity and differentiability of f at the point λ(A) ∈ Rn, and vice versa. Moreover,
in [7] the conjugate and the subdifferential of F has been characterized in terms of the conjugate
and the subdifferential of f .
This paper is devoted to a fundamental convexity preserving for spectral functions. Indeed, we
show that the following properties of spectral functions hold:

(1) The infimal convolution of spectral functions f ◦ λ and g ◦ λ is spectrally defined in terms
of f and g.

(2) The Moreau envelope of spectral functions is equal to spectral functions of Moreau envelope.

(3) The proximal average of f ◦ λ and g ◦ λ is spectrally defined in terms of proximal average
of f and g.

2. Preliminaries

We denote by E the Euclidean space Rn with the inner product 〈., .〉 and the induced norm ‖.‖. For
a function f : E −→ R̄ := [−∞,+∞], define the domain of f by

dom( f ) :=
{
x ∈ E : f (x) < +∞

}
.

We say that f is proper if dom( f ) , ∅ and f (x) > −∞ for all x ∈ E. The set of all proper lower
semi-continuous and convex functions defined on E with values in R̄ is denoted by Γ0(E). The
epigraph of f : E −→ R̄ is defined by

epi( f ) :=
{
(x, α) ∈ E × R : f (x) ≤ α

}
.

The Fenchel-Moreau conjugate [4, 13] of a function f : E −→ R̄ is defined by f ∗ : E −→ R̄

f ∗(x) := sup
y∈E

{
〈x, y〉 − f (y)

}
, ∀ x ∈ E,
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and the second conjugate (or bi-conjugate) [4, 13] of f is defined by

f ∗∗(x) := sup
y∈E

{
〈x, y〉 − f ∗(y)

}
, ∀ x ∈ E.

In the following, we state some properties of the conjugate.

Lemma 2.1. [1, Chapter 13]

(i) Let f : E −→ R̄ be a proper function. Then, f ∗ ∈ Γ0(E).

(ii) Let f , g : E −→ R̄ be proper functions such that f ≤ g. Then, g∗ ≤ f ∗.

(iii) f ∈ Γ0(E) if and only if f (x) = f ∗∗(x) for all x ∈ E.

Definition 2.1. [1] Let f , g : E −→ R̄ be proper functions. The infimal convolution of f and g is
defined by f ⊕ g : E −→ R̄

( f ⊕ g)(x) := inf
y∈E

{
f (y) + g(x − y)

}
, ∀ x ∈ E.

Proposition 2.1. [1]

(i) Let f , g : E −→ R̄ be proper functions. Then, ( f ⊕ g)∗ = f ∗ + g∗.

(ii) Let f , g ∈ Γ0(E). Assume that epi( f ∗)+epi(g∗) is a closed subset of E×R. Then, f⊕g ∈ Γ0(E)
and ( f + g)∗ = f ∗ ⊕ g∗.

Definition 2.2. [1] Let f : E −→ R̄ be a proper function, and let γ > 0. The Moreau envelope of f
with the parameter γ > 0 is defined by

f γ(x) := infy∈E

{
f (y) + 1

2γ‖x − y‖2
}
, ∀ x ∈ E. (2.1)

Definition 2.3. [1, 2] Let f and g be in Γ0(E). The proximal average of f and g is defined by
pav( f , g) : E −→ R ∪ {+∞}

pav( f , g)(x) :=
1
2

inf
(y,z)∈E×E

y+z=2x

{
f (y) + g(z) +

1
4
‖y − z‖2

}
, ∀ x ∈ E. (2.2)

In the following proposition, we state some properties of proximal average of f and g. For more
details and its proof, see [1, Chapter 14].

Proposition 2.2. [1] Let f and g be in Γ0(E). Then, the following assertions are true.

(i) pav( f , g) = pav(g, f ).

(ii) dom(pav( f , g)) =
1
2

dom( f ) +
1
2

dom(g).

(iii) pav( f , g) ∈ Γ0(E).
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(iv)
(
pav( f , g)

)∗
= pav( f ∗, g∗).

Let Sn be the vector space of all n × n real symmetric matrices. We denote by On the group of all
real orthogonal matrices. We endow Sn with the trace inner product [3]:

〈A, B〉 := tr(AB), ∀ A, B ∈ Sn.

This inner product induces the Frobenius norm [3], i.e., ‖A‖F =
√

tr(A2). For any x ∈ Rn, we
denote by the symbol Diag(x) the n× n matrix with components of x on its diagonal and with zero
off the diagonal.
Define the eigenvalue function λ : Sn −→ Rn by λ(A) := (λ1(A), λ2(A), . . . , λn(A)) for each A ∈ Sn,
where λ1(A), λ2(A), . . . , λn(A) are the eigenvalues of A and ordered in a non-increasing order, i.e.,
λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A). The following theorem due to von Neumann plays a central role in
the spectral variation analysis.

Theorem 2.1. [5, 7] For any A, B ∈ Sn, we have∥∥∥∥λ(A) − λ(B)
∥∥∥∥ ≤ ∥∥∥∥A − B

∥∥∥∥
F
, (2.3)

and
〈A, B〉 ≤

〈
λ(A), λ(B)

〉
. (2.4)

Any A ∈ Sn admits a spectral decomposition of the form A = UDiag(λ(A))UT for some U ∈ On.
For each A ∈ Sn, define the set of all orthogonal matrices giving the ordered spectral decomposi-
tion of A by

OA :=
{
U ∈ On : UT AU = Diag(λ(A))

}
.

It is clear that OA is non-empty for each A ∈ Sn.
A function F : Sn −→ R̄ is called spectral if F is On-invariant, i.e.,

F(UT AU) = F(A), ∀ A ∈ dom(F), ∀ U ∈ On.

It is not difficult to see [7] that any spectral function F defined on Sn can be written as a com-
position f ◦ λ for some symmetric function f defined on Rn (a function f : Rn −→ R̄ is called
symmetric if f (x) = f (Px) for all permutation matrices P and for all x ∈ Rn). For instance, it is
well-known that for each A ∈ Sn,∥∥∥∥A

∥∥∥∥2

F
=

n∑
i=1

[λi(A)]2 =
∥∥∥∥λ(A)

∥∥∥∥2
,

i.e., ∥∥∥∥A
∥∥∥∥

F
= (‖.‖ ◦ λ)(A).

The above relation shows that the Frobenius norm is a spectral function defined on Sn associated
with the standard Euclidean norm on Rn.
The following results present convexity and conjugacy of the spectral function.
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Theorem 2.2. [7, Corollary 2.4] Let f : Rn −→ R̄ be a proper symmetric function. Then, f ∈
Γ0(Rn) if and only if f ◦ λ ∈ Γ0(Sn).

Theorem 2.3. [7, Theorem 2.3] Let f : Rn −→ R̄ be a proper symmetric function. Then,

( f ◦ λ)∗(A) = f ∗ ◦ λ(A), ∀ A ∈ Sn. (2.5)

3. Main Results

In this section we prove the properties (1), (2) and (3) of spectral functions, which given in Page
2. Let f , g : Rn −→ R̄ be symmetric functions, and let γ > 0. It is easy to see that f γ and f ⊕ g are
symmetric functions.

Theorem 3.1. Let f , g ∈ Γ0(Rn) be symmetric functions and let λ : Sn −→ Rn be the eigenvalue
function. Assume that epi( f ∗) + epi(g∗) is a closed subset of Rn × R and epi( f ∗ ◦ λ) + epi(g∗ ◦ λ)
is a closed subset of Sn × R. Then,

( f ⊕ g) ◦ λ(A) =
(

f ◦ λ ⊕ g ◦ λ
)
(A), ∀ A ∈ Sn.

Proof: Let A ∈ Sn be arbitrary. In view of Theorem 2.3 and Proposition 2.1(i), one has(
( f ⊕ g) ◦ λ

)∗
(A) = ( f ⊕ g)∗ ◦ λ(A) = ( f ∗ + g∗) ◦ λ(A) =

(
f ∗ ◦ λ + g∗ ◦ λ

)
(A). (3.1)

Therefore, it follows from (3.1), Lemma 2.1(iii), Proposition 2.1(ii) and Theorem 2.3 that

( f ⊕ g) ◦ λ(A) =
(
( f ⊕ g) ◦ λ

)∗∗
(A) =

(
f ∗ ◦ λ + g∗ ◦ λ

)∗
(A)

=
(
( f ∗ ◦ λ)∗ ⊕ (g∗ ◦ λ)∗

)
(A) =

(
f ◦ λ ⊕ g ◦ λ

)
(A),

which completes the proof.

Theorem 3.2. Let f : Rn −→ R̄ be a proper symmetric function, λ : Sn −→ Rn be the eigenvalue
function, and let γ > 0. Then,

( f ◦ λ)γ(A) = f γ ◦ λ(A), ∀ A ∈ Sn. (3.2)

Proof: Let A ∈ Sn be arbitrary. First, note that it follows from (2.1) that

( f ◦ λ)γ(A) = inf
B∈Sn

{
f (λ(B)) +

1
2γ
‖B − A‖2F

}
,

and

( f γ ◦ λ)(A) = inf
y∈Rn

{
f (y) +

1
2γ
‖y − λ(A)‖2

}
.

Now, let B ∈ Sn be arbitrary. In view of (2.3), one has

f (λ(B)) +
1

2γ
‖B − A‖2F ≥ f (λ(B)) +

1
2γ
‖λ(B) − λ(A)‖2 ≥ f γ ◦ λ(A).
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Taking infimum over all B ∈ Sn, we conclude that

( f ◦ λ)γ(A) ≥ f γ ◦ λ(A).

For the converse of (3.2), let y ∈ Rn be arbitrary and let A ∈ OA. Consider

f (y) +
1

2γ

∥∥∥∥y − λ(A)
∥∥∥∥2

= f
(
λ(Diag(y))

)
+

1
2γ

∥∥∥∥Diag(y) − Diag(λ(A))
∥∥∥∥2

F

= f
(
λ(Diag(y))

)
+

1
2γ

∥∥∥∥Diag(y) − UT AU
∥∥∥∥2

F

= f
(
λ(Diag(y))

)
+

1
2γ

∥∥∥∥Diag(y) − A
∥∥∥∥2

F

≥ ( f ◦ λ)γ(A).

Now, taking infimum over all y ∈ Rn, we obtain

f γ ◦ λ(A) ≥ ( f ◦ λ)γ(A),

and the proof is complete.

Remark 3.1. Let f , g ∈ Γ0(Rn) be symmetric functions. It is clear that pav( f , g) is a symmetric
function. Also, if F,G ∈ Γ0(Sn) are spectral functions, then, pav(F,G) is a spectral function.
Indeed, let A ∈ Sn and U ∈ On be given. Consider

pav(F,G)(UAUT ) =
1
2

inf
(B,C)∈Sn×Sn
B+C=2UAUT

{
F(B) + G(C) +

1
4
‖B −C‖2F

}
=

1
2

inf
(B,C)∈Sn×Sn

UT BU︸ ︷︷ ︸
B̃

+ UTCU︸ ︷︷ ︸
C̃

=2A

{
F(B) + G(C) +

1
4
‖B −C‖2F

}

=
1
2

inf
(B̃,C̃)∈Sn×Sn

B̃+C̃=2A

{
F(B̃) + G(C̃) +

1
4
‖B̃ − C̃‖2F

}
= pav(F,G)(A)

Hence, pav(F,G) is a spectral function.

Theorem 3.3. Let f , g ∈ Γ0(Rn) be symmetric functions and let λ : Sn −→ Rn be the eigenvalue
function. Then,

pav( f , g) ◦ λ(A) = pav( f ◦ λ, g ◦ λ)(A), ∀ A ∈ Sn.
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Proof: Let A ∈ Sn be arbitrary. We first observe from (2.2) that

pav( f , g) ◦ λ(A) =
1
2

inf
(x,y)∈Rn×Rn

x+y=2λ(A)

{
f (x) + g(y) +

1
4
‖x − y‖2

}
,

and

pav( f ◦ λ, g ◦ λ)(A) =
1
2

inf
(X,Y)∈Sn×Sn

X+Y=2A

{
f (λ(X)) + g(λ(Y)) +

1
4
‖X − Y‖2F

}
Let x, y ∈ Rn be such that x + y = 2λ(A), and let U ∈ OA. Consider

f (x) + g(y) +
1
4

∥∥∥∥x − y
∥∥∥∥2

= f
(
λ(Diag(x))

)
+ g

(
λ(Diag(y))

)
+

1
2

∥∥∥∥Diag(x) − Diag(y)
∥∥∥∥2

≥ pav( f ◦ λ, g ◦ λ)
(
Diag(λ(A)

)
= pav( f ◦ λ, g ◦ λ)(UT AU) = pav( f ◦ λ, g ◦ λ)(A).

(Note that the above inequality follows from this fact that Diag(x) + Diag(y) = 2Diag(λ(A))).
Now, taking infimum over all x, y ∈ Rn with x + y = 2λ(A). We get

pav( f , g) ◦ λ(A) ≥ pav( f ◦ λ, g ◦ λ)(A). (3.3)

Now, we conclude from (3.3) and Lemma 2.1(ii) that

(pav( f , g) ◦ λ)∗(A) ≤
(
pav( f ◦ λ, g ◦ λ)

)∗
(A).

Hence, in view of Proposition 2.2(iv) and Theorem 2.2, one has

pav( f ∗, g∗) ◦ λ(A) ≤ pav( f ∗ ◦ λ, g∗ ◦ λ)(A). (3.4)

Since (3.4) holds for all symmetric functions f , g ∈ Γ0(Rn), we can replace f by f ∗ and g by g∗ in
(3.4). Therefore, it follows from Lemma 2.1(iii) that

pav( f , g) ◦ λ(A) ≤ pav( f ◦ λ, g ◦ λ)(A). (3.5)

Hence, in view of (3.3) and (3.5) the proof is complete.
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