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1. Introduction

There has been growing interest in the variational analysis of spectral functions. This growing
trend is due to spectral functions that have important applications to some fundamental problems
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in applied mathematics such as semi-definite programming and engineering problems (see [5, 7],
and references therein).
A function F defined on S, is called spectral if

F(UTAU)=F),VA€eS,, YUEeO,,

where S, is the vector space of all n X n real symmetric matrices and O, is the group of all real
orthogonal matrices.

One can easily see [7] that every spectral function is the composition of a symmetric function f
defined on R" and the eigenvalue function 4 : §,, — R", i.e.,

FA)=(foA), VAEeS,.

Hence there exists a one-to-one correspondence between the spectral functions F defined on S,
and the symmetric functions f defined on R". In recent years a lot of research shows that the
properties of F are inherited from the properties of f, and vice versa [5, 6, 7, 8, 9, 10, 11, 12].
For example, lower semi-continuity and differentiability of F at a point A € S, are inherited from
lower semi-continuity and differentiability of f at the point A(A) € R”, and vice versa. Moreover,
in [7] the conjugate and the subdifferential of F' has been characterized in terms of the conjugate
and the subdifferential of f.

This paper is devoted to a fundamental convexity preserving for spectral functions. Indeed, we
show that the following properties of spectral functions hold:

(1) The infimal convolution of spectral functions f o A and g o A is spectrally defined in terms
of fand g.

(2) The Moreau envelope of spectral functions is equal to spectral functions of Moreau envelope.
(3) The proximal average of f o A and g o A is spectrally defined in terms of proximal average

of f and g.

2. Preliminaries

We denote by & the E_uclidean space R" with the inner product (., .) and the induced norm ||.||. For
a function f : & — R := [—00, +00], define the domain of f by

dom(f) :={x € & f(x) < +oo}.

We say that f is proper if dom(f) # 0@ and f(x) > —oo for all x € E. The set of all proper lower
semi-continuous and convex functions defined on & with values in R is denoted by I'0(&E). The
epigraph of f : & — R is defined by

epi(f) = {(x.0) e EXR: f(x) < a.
The Fenchel-Moreau conjugate [4, 13] of a function f : & — R is defined by f* : & — R

= sup{ey) - f0)} - Vxe&,
ye
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and the second conjugate (or bi-conjugate) [4, 13] of f is defined by
fre) = sup ey - ), Vred,
ye&
In the following, we state some properties of the conjugate.
Lemma 2.1. [1, Chapter 13]
(i) Let f : & — R be a proper function. Then, f* € Ty(E).
(ii) Let f,g : & — R be proper functions such that f < g. Then, g* < f*.
(iii) f € I'o(&) if and only if f(x) = f*(x) for all x € &.

Definition 2.1. [1] Let f,g : & — R be proper functions. The infimal convolution of f and g is
definedby f®g: & — R

(fog)( :=inf{f0)+gx-y} Vxeé&
ye&

Proposition 2.1. [1]
(i) Let f,g : & — R be proper functions. Then, (f @ g)* = f* + g*.

(ii) Let f, g € I')(E). Assume that epi(f*)+epi(g*) is a closed subset of ExXR. Then, f@g € I'((E)
and (f+g)" =f"®¢g".

Definition 2.2. [1] Let f : & — R be a proper function, and let y > 0. The Moreau envelope of f
with the parameter y > 0 is defined by

P = infuee (f0) + Ll —ylP), Vxe&. 2.1)

Definition 2.3. [1, 2] Let f and g be in I'y(E). The proximal average of f and g is defined by
pav(f,g) : & — R U {+oo}

1 1
pav(f.)) =5 inf [f0)+s@+ -} Vre&. 22)

E (,2)€E

y+z=2x

In the following proposition, we state some properties of proximal average of f and g. For more
details and its proof, see [1, Chapter 14].

Proposition 2.2. [1] Let f and g be in ['((&). Then, the following assertions are true.
(D) pav(f,g) = pav(g, f).
. 1 1
(i) dom(pav(f.g)) = sdom(f) + sdom(g)

(iii) pav(f,g) € I'o(E).
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(i) (pav(f, g))* = pav(f*. g").

Let S, be the vector space of all n X n real symmetric matrices. We denote by O, the group of all
real orthogonal matrices. We endow §,, with the trace inner product [3]:

(A,B) :=tr(AB), VY A,BeS,.

This inner product induces the Frobenius norm [3], i.e., ||Al|[r = +/tr(A?). For any x € R", we
denote by the symbol Diag(x) the n X n matrix with components of x on its diagonal and with zero

off the diagonal.
Define the eigenvalue function 4 : S, — R" by A(A) := (14(A), 12(A), ..., 4,(A)) foreach A € S,
where 11(A), A,(A), ..., 4,(A) are the eigenvalues of A and ordered in a non-increasing order, i.e.,

A1(A) = A,(A) = --- = A,(A). The following theorem due to von Neumann plays a central role in
the spectral variation analysis.

Theorem 2.1. [5, 7] For any A, B € S,,, we have

H/I(A) - /l(B)H < HA _B

(2.3)

-
and
(A, B) < (A(A), A(B)). (2.4)

Any A € S, admits a spectral decomposition of the form A = UDiag(A(A))U” for some U € O,.
For each A € §,, define the set of all orthogonal matrices giving the ordered spectral decomposi-
tion of A by

O :={U €0, : UTAU = Diag(A(4))}.

It is clear that O, is non-empty for each A € S,
A function F : S, — R is called spectral if F is O,-invariant, i.e.,

F(UTAU) = F(A), Y A € dom(F), ¥ U € O,.

It is not difficult to see [7] that any spectral function F defined on S, can be written as a com-
position f o A for some symmetric function f defined on R” (a function f : R" — R is called
symmetric if f(x) = f(Px) for all permutation matrices P and for all x € R"). For instance, it is
well-known that for each A € S,,,

Jal, = S = faca
i=1
1.e.,
4] = auro v,
The above relation shows that the Frobenius norm is a spectral function defined on §,, associated

with the standard Euclidean norm on R".
The following results present convexity and conjugacy of the spectral function.
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Theorem 2.2. [7, Corollary 2.4] Let f : R* — R be a proper symmetric function. Then, f €
[o(R") if and only if f o A € T'y(S,).

Theorem 2.3. [7, Theorem 2.3] Let f : R" — R be a proper symmetric function. Then,

(fo)'(A)=f"0dA), VAES,. (2.5)

3. Main Results

In this section we prove the properties (1), (2) and (3) of spectral functions, which given in Page
2. Let f, g : R" — R be symmetric functions, and let y > 0. It is easy to see that f” and f & g are
symmetric functions.

Theorem 3.1. Let f, g € I'\(R") be symmetric functions and let 1 : S, — R” be the eigenvalue
function. Assume that epi(f*) + epi(g”) is a closed subset of R” X R and epi(f* o A1) + epi(g* o 1)
is a closed subset of S, X R. Then,

(f@g) o AA) = (fo/lEBgo/l)(A), VAeS,.
Proof: Let A € S, be arbitrary. In view of Theorem 2.3 and Proposition 2.1(7), one has
(fog) ol =(fog cdd)=(f +g)odA)=(fod+g 0a)A). (.1
Therefore, it follows from (3.1), Lemma 2.1(iii), Proposition 2.1(i7) and Theorem 2.3 that
(fog)oMA) =(fo@g)od) (A)=(f oa+g 01)(A)
= ((f"o " @ (g 0 A))(A) = (fo A® g 0 A)(A),

which completes the proof. |

Theorem 3.2. Let f : R” — R be a proper symmetric function, A : S, — R” be the eigenvalue
function, and let y > 0. Then,

(fo)(A) = f7 o A(A), VAES,. (3.2)
Proof: Let A € S, be arbitrary. First, note that it follows from (2.1) that
1
4 - i —IIR — Al2
(f o (4) = inf {£(A(B) + 7-1IB - Allp|
and
) 1
(f7 0 D)(A) = inf {f() + 5=lly — AAIP}.
yeR" 2’)/
Now, let B € S, be arbitrary. In view of (2.3), one has

1 1
faB) + 2—||B — Al > fAB)) + —IAB) = AAII* > f7 0 AA).
Y 2y
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Taking infimum over all B € §,,, we conclude that
(fo D) (A) 2 f7 o AA).

For the converse of (3.2), let y € R” be arbitrary and let A € O,. Consider

1 z | Ly . :
0+ 3|y =2 = f(aiagon) + 5-||Diag) - Diagacay),

= f(ADi Lipi rav
= f(ADiag) + 5 || Diag - UTaU]

. . 2
= f(ADiag() + o |[Diag() - A,

> (fo)7(A).

Now, taking infimum over all y € R”, we obtain
J7 o AA) = (f o 1)'(A),

and the proof is complete. |

Remark 3.1. Let f,g € I'(\(R") be symmetric functions. It is clear that pav(f, g) is a symmetric
function. Also, if F,G € T'y(S,) are spectral functions, then, pav(F,G) is a spectral function.
Indeed, let A € S, and U € O, be given. Consider
T 1 . 1 2
pav(F.GYUAU™) == inf {F(B)+G(C)+ il Cli}

2 (B,C)ES, XS,
B+C=2UAUT

1 ‘ . 2
=3 e, {F(B)+G(C) + 7B~ CIi2)

UTBU+UTCU=24

Wpi_/ \Ai/_/

B C
1. _ o
> _inf [F(B)+G(C)+ 4IIB-CI}}
2 (E,f)gs,,x.sn 4
B+C=2A

= pav(F,G)(A)

Hence, pav(F, G) is a spectral function.

Theorem 3.3. Let f,g € I'((R") be symmetric functions and let 1 : S, — R” be the eigenvalue
function. Then,

pav(f,g) o AA) = pav(f o A,g 0 D)(A), Y A € S,.
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Proof: Let A € S, be arbitrary. We first observe from (2.2) that

1
pav(f.g) o AA) = 5 inf  {f(x)+ () + Zlx =P},

1
2 (x,y)eR"xR"
x+y=21(A)

and

1 i 1
pav(fodgoMA) =73 inf {fAX)+g¥)+ X~ YIiz}

1Y)€ )lX n
X+Y=2A

Let x,y € R" be such that x + y = 24(A), and let U € O,. Consider

0+ 80+ g = F(aviag) + s(aDiag) + 5||Diageo - Diag|

> pav(f o 4, g o A)(Diag(A(A))

= pav(f o A,g o AY(UTAU) = pav(f o 4,8 0 A)(A).

(Note that the above inequality follows from this fact that Diag(x) + Diag(y) = 2Diag(A(A))).
Now, taking infimum over all x,y € R" with x + y = 21(A). We get

pav(f,g) o A(A) = pav(f o 4,8 o D(A). (3.3)

Now, we conclude from (3.3) and Lemma 2.1(ii) that

(pav(f.g) o D)'(A) < (pav(f o A.g © 1)) (A).

Hence, in view of Proposition 2.2(iv) and Theorem 2.2, one has

pav(f*,g") o A(A) < pav(f~ o A,g" o )(A). (3.4)

Since (3.4) holds for all symmetric functions f, g € I'y(R"), we can replace f by f* and g by g* in
(3.4). Therefore, it follows from Lemma 2.1(iii) that

pav(f,g) o A(A) < pav(f o 4,8 o D(A). (3.5)

Hence, in view of (3.3) and (3.5) the proof is complete. |
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