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Abstract
This paper describes and compares application of wavelet basis
and Block-Pulse functions (BPFs) for solving fractional integro-
differential equation (FIDE) with a weakly singular kernel. First,
a collocation method based on Haar wavelets (HW), Legen-
dre wavelet (LW), Chebyshev wavelets (CHW), second kind
Chebyshev wavelets (SKCHW), Cos and Sin wavelets (CASW)
and BPFs are presented for driving approximate solution FIDEs
with a weakly singular kernel. Error estimates of all proposed
numerical methods are given to test the convergence and ac-
curacy of the method. A comparative study of accuracy and
computational time for the presented techniques is given.
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1. Introduction

Fractional calculus has been recently applied for modeling many physical phenomena in fields
of nonlinear oscillation of earthquake, fluid-dynamic traffic, continuum and statistical mechan-
ics, signal processing, control theory, and dynamics of interfaces between nanoparticles and sub-
tracts [22, 2, 21, 20]. Consequently, considerable attentions has been given for deriving numerical
solution of fractional functional equations. For example, Fourier transforms method, Laplace
transforms method, fractional differential transform method, finite difference method, orthogonal
functions, wavelets method, Adomian decomposition method, variational iteration method, and
homotopy analysis method have been used for producing approximate solution of fractional func-
tional equations[34, 32, 33, 31, 11, 9, 16].

Recently, different basis functions such as piecewise constant orthogonal functions, wavelets
basis, orthogonal polynomials and Sine-Cosin functions have been used to estimate the solution of
integral equations [26, 25? , 27, 4, 3, 5, 18, 19, 10, 15, 14]. FIDEs with a weakly singular kernel
are used in modelling different physical processes. For example, these kind of integro-differential
equations are used in the heat conduction problem, radiative equilibrium, elasticity and fracture
mechanics [26, 25, 27, 13]. In this paper, we describe application of BPFs and wavelets basis in
solving the FIDEs with a weakly singular kernel. Consider the FIDE with weakly singular kernel

Dα
∗u(t) = f (t) +

∫ t

0

u(s)ds
(t − s)β

+

∫ 1

0
k(s, t)u(s)ds, (1.1)

with initial condition

u(0) = 0, (1.2)

where 0 < α, β < 1, a and b are constants, f (t) and k(s, t) are known functions, u(t) is an unknown
function and Dα

∗ denotes the fractional derivative defined by Caputo [22]. Operational matrices of
fractional integration for BPFs and wavelets basis along with typical collocation method are used
to obtain approximate solution of this FIDE with a weakly singular kernel. A comparison of the
numerical results for different wavelets basis is presented.

The rest of this paper is organized as follows: In section 2 some preliminary definitions of
fractional calculus are reviewed. Section 3 is devoted to the basic definitions of the BPFs and their
properties. In section 4 we review definitions and properties of some commonly used wavelet
basis in numerical solution of functional equations. A collocation method based on the wavelet
and their operational matrix is proposed for solving fractional integro-differential equation with a
weakly singular kernel is presented in Section 5. In Section 6 we introduce a process for estimating
the error of approximate solution. A comparison of the numerical results is included in section 7.
Finally, a conclusion is given in section 8.

2. Fractional calculus

Fractional order calculus is a branch of calculus which deal with integration and differentiation
operators of non-integer order. Among the several formulations of the generalized derivative, the
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Riemann-Liouville and Caputo definition are the most commonly used. In this section we give
some necessary definitions and mathematical preliminaries of the fractional calculus which are
required for establishing our results.

Definition 2.1. A real function f (t), t > 0, is said to be in the space Cµ, µ ∈ R if there exists a real
number p > µ and a function f1(t) ∈ C[0,∞) such that f (t) = tp f1(t), and it is said to be in the
space Cn

µ, n ∈ N if f (n) ∈ Cµ.

Definition 2.2. The Riemann-Liouville fractional integration of order α ≥ 0 of a function f ∈
Cµ, µ ≥ −1, is defined as

(Jα f ) (t) =


1
Γ(α)

∫ t

0
(t − τ)α−1 f (τ)dτ, α > 0,

f (t), α = 0.
(2.1)

The Riemann-Liouville fractional operator Jα has the following properties:

(a) Jα
(
Jβ f (t)

)
= Jβ (Jα f (t)),

(b) Jα
(
Jβ f (t)

)
= Jα+β f (t),

(c) Jαtν = Γ(ν+1)
Γ(α+ν+1) t

ν+α, α, β ≥ 0, ν > −1.

Definition 2.3. Riemann-Liouville fractional derivative of order α > 0 is defined as

Dα f (t) =
dn

dtn Jn−α f (t), n ∈ N, n − 1 < α ≤ n. (2.2)

The Riemann-Liouville derivatives have certain disadvantages when trying to model real-world
phenomena with fractional differential equations. Therefore, a modified fractional differential
operator Dα

∗ was proposed by Caputo [22].

Definition 2.4. The fractional derivative of order α > 0 in the Caputo sense is defined as

Dα
∗ f (t) =


dn f (t)

dtn , α = n ∈ N,
1

Γ(n−α)

∫ t

0
f (n)(τ)

(t−τ)α−n+1 dτ, t > 0, 0 ≤ n − 1 < α < n.
(2.3)

where n is an integer, t > 0, and f ∈ Cn
1.

Some useful relation between the Riemann-Liouvill and Caputo fractional operators is given by
the following expression:

(a)JαDα
∗ f (t) = f (t) −∑n−1

k=0 f (k)(0+) tk
k! , n − 1 < α ≤ n, t > 0.

(b) Dα
∗ Jα f (t) = f (t).

(c) Jαtβ = Γ(β+1)
Γ(β−α+1) t

β−α.

(d) Dα
∗ t
β =


Γ(β+1)
Γ(β−α+1) t

β−α β ≥ α,

0 β < α.

For more details about fractional calculus please see [22].
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3. Block pulse functions (BPFs)

BPFs have been studied by many authors and also have been applied for solving different
problems. Here, we present a brief review of BPFs and its properties [9, 11].

The m-set of BPFs are defined as

bi(t) =

 1 (i − 1)h ≤ t < ih

0 otherwise
(3.1)

in which t ∈ [0,T ), i = 1, 2, ...,m and h = T
m . The BPFs set are disjoint with each other in the

interval [0,T ) and

bi(t)b j(t) = δi jbi(t), i, j = 1, 2, ...,m, (3.2)

where δi j is the Kronecker delta. The set of BPFs defined in the interval [0,T ) are orthogonal with
each other, that is ∫ T

0
bi(t)b j(t)dt = hδi j, i, j = 1, 2, ...,m. (3.3)

As m tends to infinity, the m-set BPFs becomes a complete basis for L2[0,T ), so that an arbitrary
real bounded function f (t), which is square integrable in the interval [0, T ), can be expanded into
a BPFs series as ∫ T

0
f 2(t)dt =

∞∑
i=1

f 2
i ∥bi(t)∥2, (3.4)

where

fi =
1
h

∫ T

0
bi(t) f (t)dt. (3.5)

Any absolutely integrable function f (t) defined over [0, T ) can be approximated by using BPFs as

f (t) ≃ fm(t) =
m∑

i=1

fibi(t) = FT B(t), (3.6)

in which fi is obtained in (3.5), B(t) and F are m-vectors given by

B(t) = [b1(t), ...., bm(t)]T , (3.7)

F =
[
f1, f2, ...., fm

]T . (3.8)

Also the BPFs coefficients fi are obtained as (3.5), such that the mean square error between f (t)
and its BPFs expansion (3.6) in the interval of t ∈ [0,T ) is minimal. Morever, any two dimensional
function k(s, t) ∈ L2 ([0,T ] × [0,T ]) can be expanded with respect to BPFs such as

k(s, t) ≃ B(t)TΠB(t),
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where B(t) is the m-dimensional BPFs vectors respectively, and Π is the m × m BPFs coefficient
matrix with (i, j)-th element

Πi j =
1
h2

∫ T

0

∫ T

0
k(s, t)bi(t)b j(s)dtds, i, j = 1, 2, ...,m,

and h = T
m .

3.1. BPFs operational matrices
Kilicman and Al Zhour [12] investigated the generalized integral operational matrix and showed

that the integral of the matrix B(t) defined in (3.7), can be approximated by∫ t

0
B(τ)dτ ≃ PB(t), (3.9)

where P is the m × m operational matrix of one-time integral of B(t). Moreover, we can compute
the generalized operational matrices Pn of n-times integration of B(t) as:∫ t

0
· · ·

∫ t

0︸      ︷︷      ︸
n−times

B(τ)(dτ)n ≃ PnB(t). (3.10)

In [12] it is shown that Pn has the following form:

Pn =
hn

(n + 1)!


1 ξ1 ξ2 . . . ξm−1

0 1 ξ1 . . . ξm−2

0 0 1 . . . ξm−3

0 0 0 . . .
...

0 0 0 0 1


, (3.11)

where ξi = (i+ 1)n+1 − 2in+1 + (i− 1)n+1. As a generalization of the operational matrix P, the BPFs
operational matrix of fractional integration is defined as

JαB(t) = PαB(t), (3.12)

where Pα is the m × m operational matrix of fractional integration and

Pα =
hα

Γ(α + 2)


1 ξ1 ξ2 . . . ξm−1

0 1 ξ1 . . . ξm−2

0 0 1 . . . ξm−3

0 0 0 . . .
...

0 0 0 0 1


, (3.13)

and ξi = (i + 1)α+1 − 2iα+1 + (i − 1)α+1. A detailed procedure for computing the operational matrix
Pα can be found in [12].
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4. Multiresolution analysis and wavelets

A multiresolution analysis (MRA) of L2 (R) is defined as a sequence of closed subspaces V j of
L2 (R), j ∈ Z, with the following properties [7, 8]:
(1) V j ⊂ V j+1,
(2) v (x) ∈ V j ⇐⇒ v (2x) ∈ V j+1,
(3) v (x) ∈ V0 ⇐⇒ v (x + 1) ∈ V0,

(4)
∞∪

j=−∞
V j is dense in L2 (R) and

∞∩
j=−∞

V j = 0,

(5) There exists a scaling function φ(x) ∈ V0, such that the set {φ(x − k), k ∈ Z} forms a Riesz basis
of V0.
The function φ(x) whose existence is asserted in (5) is called a scaling function of the given
MRA. Moreover, a Riesz basis for a separable Hilbert space H is a basis {gn} that is close to
being orthogonal. That is, there exists a bounded invertible operator which maps {gn} onto an
orthonormal basis. Any function f ∈ L2 (R) can be projected onto the space Vn by means of a
projection operator Pn f (t), as follows:

Pn f (t) =
∑

k

a j,kφ
(
2 jt − k

)
. (4.1)

A set of orthonormal wavelets can be constructed by using an MRA. Let W0 be the orthogonal
complement of V0 in V1; that is, V1 = V0 ⊕ W0. Then, if we dilate the elements of W0 by 2 j we
obtain a closed subspace V j in V j+1 such that

V j+1 = V j ⊕W j. (4.2)

Since V j → 0 as j→ −∞ and V j → L2 (R) as j→ ∞, we have

V j+1 = V j ⊕W j =

j⊕
r=−∞

Wr, (4.3)

and

L2 (R) =
∞⊕

j=−∞
W j. (4.4)

Therefore, to find an orthonormal wavelets basis, we need to find a function ψ in W0 such that
{ψ(t − k), k ∈ Z} is an orthonormal basis for W0. In this case, the set

{
2

j
2ψ(2 jt − k), k ∈ Z

}
is an

orthonormal basis for W j. Consequently, the set
{
ψ j,k(t) = 2

j
2ψ(2 jt − k), j, k ∈ Z

}
is an orthonormal

wavelet basis for L2 (R). The function ψ is called wavelet or mother wavelet function. More details
about the concept MRA can be find in references [7, 8].

Wavelets basis constitute a family of functions constructed from dilation and translation of the
mother wavelet ψ. When the dilation parameter j and the translation parameter k vary, we have
the following family of wavelets

ψ j,k(t) = 2
1
2ψ

(
2 jt − k

)
, j, k ∈ Z. (4.5)
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As a powerful tool, wavelets have been extensively used in signal processing, numerical analysis,
and many other areas. Wavelets permit accurate representation of a variety of functions and opera-
tors. Moreover, wavelet basis have been succesfully used to solve different kind of differential and
integral equations [6, 17, 23, 1, 28, 30, 24]. In this section we review basic definitions and prop-
erties of some commonly used wavelets basis in the field of numerical analysis and computational
mathematics.

4.1. Haar wavelets
The orthogonal set of Haar wavelets hn(t) constitute a set of square waves defined as follows

[25]

hn(t) = 2
j
2ψ

(
2 jt − k

)
, j ≥ 0, 0 ≤ k < 2 j, n = 2 j + k, n, j, k ∈ N, (4.6)

where

h0(t) = 1, 0 ≤ t < 1, ψ(t) =

 1, 0 ≤ t < 1
2 ,

−1, 1
2 ≤ t < 1.

(4.7)

Each Haar wavelet hn(t) has the support
[

k
2 j ,

k+1
2 j

)
, so that it is zero elsewhere in the interval [0, 1).

Haar wavelets hn(t) are pairwise orthonormal in the interval [0, 1) and∫ 1

0
hi(t)h j(t)dt = δi j, (4.8)

where δi j is the Kronecker delta. Any square integrable function f (t) in the interval [0, 1) can be
expanded in terms of Haar wavelets as

f (t) = c0h0(t) +
∞∑

i=1

cihi(t), (4.9)

where ci is given by

ci =

∫ 1

0
f (t)hi(t)dt, (4.10)

The infinite series in Eq. (4.9) can be truncated after m̂ terms, that is

f (t) ≃ c0h0(t) +
m̂−1∑
i=1

cihi(t), i = 2 j + k, 0 ≤ k < 2 j, (4.11)

rewriting this equation in the vector form we have,

f (t) ≃ CTΨ(t) = Ψ(t)TC, (4.12)

in which C and H(t) are Haar coefficients and wavelets vectors as

C = [c0, c1, ..., cm̂−1]T , (4.13)
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Ψ(t) = [h0(t), h1(t), ..., hm̂−1(t)]T . (4.14)

Any two dimensional function k(s, t) ∈ L2[0, 1) × L2[0, 1) can be expanded with respect to Haar
wavelets as

k(s, t) = ΨT (t)KΨ(t), (4.15)

where H(t) is the Haar wavelets vector and K is the m̂ × m̂ Haar wavelets coefficients matrix with
(i, l)-th element can be obtained as

ki j =

∫ 1

0

∫ 1

0
k(s, t)Ψi(t)Ψ j(s)dtds, i, j = 1, 2, ..., m̂. (4.16)

4.2. Legendre wavelets
Legendre wavelets ψmn(t) are defined on the interval [0, 1) as [18, 19, 10]

ψmn(t) =


√

m + 1
22

k+1
2 Pm

(
2k+1t − (2n + 1)

)
n
2k ≤ t < n+1

2k

0 otherwise,
(4.17)

where n = 0, 1, ..., 2k − 1 and m = 0, 1, · · · ,M − 1 is the degree of the Legendre polynomials for a
fixed positive integer M. Here Pm(t) are the well-known Legendre polynomials of degree m. The
Legendre wavelets {ψnm(x)|n = 0, 1, . . . , 2k − 1,m = 0, 1, 2, ..., M − 1} forms an orthonormal basis
for L2 [0, 1] with respect to the weight function w(t) = 1.

Any square integrable function f (x) defined over [0, 1) can be expanded in terms of the ex-
tended Legendre wavelets as

f (t) ≃
∞∑

n=0

∞∑
m=0

cnmψnm(x), (4.18)

where cmn = ( f (t), ψmn(t)) and (., .) denotes the inner product on L2[0, 1]. If the infinite series in
(4.18) is truncated, then it can be written as

f (t) ≃
2k−1∑
n=0

M−1∑
m=0

cmnψmn(x) = CTΨ(t), (4.19)

where C and Ψ(t) are m̂ = 2kM column vectors given by

C =
[
c00, . . . , c0(M−1)|c10, . . . , c1(M−1)|, . . . , |c(2k−1)0, . . . , c(2k−1)(M−1)

]T
, (4.20)

Ψ(t) =
[
ψ00(t), . . . , ψ0(M−1)(t)|ψ10(t), . . . , ψ1(M−1)(t)|, . . . , |ψ(2k−1)0(t), . . . , ψ(2k−1)(M−1)(t)

]T
.

By changing indices in the vectors Ψ(x) and C the series (4.20) can be rewritten as

f (t) ≃
m̂∑

i=1

ciψi(t) = CTΨ(t), (4.21)
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where
C = [c1, c2, ..., cm̂] , Ψ(t) =

[
ψ1(t), ψ2(t), ..., ψm̂(t)

]
, (4.22)

and
ci = cnm, ψi(x) = ψnm(x), i = nM + m + 1. (4.23)

Similarly, any two dimensional function k(s, t) ∈ L2 ([0, 1] × [0, 1]) can be expanded into Legendre
wavelets basis as

k(s, t) ≈
m̂∑

i=1

m̂∑
j=1

ki jψi(s)ψ j(t) = ΨT (s)KΨ(t), (4.24)

where K = [ki j] and ki j =
(
ψi(s),

(
u(s, t), ψ j(t)

))
.

4.3. Chebyshev wavelets
Chebyshev wavelets ψnm(x) are defined on the interval [0, 1) by [9, 15, 14]

ψnm(t) =

 2
k+1

2 T̃m(2kt − (2n + 1)), n
2k ≤ x ≤ n+1

2k

0, otherwise
, (4.25)

where

T̃m(t) =


1√
π
, m = 0√
2
π
Tm(t), m > 0

,

and Tm(t) are the well-known Chebyshev polynomials of degree m. Chebyshev wavelets {ψnm(x)|n =
0, 1, . . . , 2k − 1,m = 0, 1, 2, ..., M − 1} form an orthonormal basis for L2

wn
[0, 1] with respect to the

weight function wn(t) = w(2k+1t − (2n + 1)), in which w(t) = 1√
1−t2

.
By using the orthonormality of the Chebyshev wavelets, any function f (t) over [0, 1); square-

integrable with respect to the measure w(t)dt; with w(t) = wnk(t); for n
2k ≤ t ≤ n+1

2k ; and wnk(t) =
w(2k+1t − 2n + 1); being w(t) = 1√

1−t2
can be expanded in terms of the Chebyshev wavelets as

f (t) ≃
∞∑

n=0

∞∑
m=0

cnmψnm(t), (4.26)

where cmn = ( f (t), ψmn(t))wnk
and (., .)wnk denotes the inner product on L2

wnk
[0, 1]. If the infinite

series in (4.26) is truncated, then it can be written as

f (t) ≃
2k−1∑
n=0

M−1∑
m=0

cmnψmn(x) = CTΨ(t), (4.27)

where C and Ψ(t) are m̂ = 2kM column vectors given by

C =
[
c00, . . . , c0(M−1)|c10, . . . , c1(M−1)|, . . . , |c(2k−1)0, . . . , c(2k−1)(M−1)

]T
,
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Ψ(x) =
[
ψ00(t), . . . , ψ0(M−1)(t)|ψ10(t), . . . , ψ1(M−1)(t)|, . . . , |ψ(2k−1)0(t), . . . , ψ(2k−1)(M−1)(t)

]T
. (4.28)

By changing indices in the vectors Ψ(t) and C the series (4.28) can be rewritten as

f (t) ≃
m̂∑

i=1

ciψi(t) = CTΨ(t), (4.29)

where

C = [c1, c2, ..., cm̂] , Ψ(x) =
[
ψ1(x), ψ2(x), ..., ψm̂(x)

]
, (4.30)

and

ci = cnm, ψi(t) = ψnm(t), i = nM + m + 1.

Similarly, any two dimensional function k(s, t) ∈ L2
w

⊗
w ([0, 1] × [0, 1]) can be expanded into

Chebyshev wavelets basis as

k(s, t) ≈
m̂∑

i=1

m̂∑
j=1

ki jψi(s)ψ j(t) = ΨT (s)KΨ(t), (4.31)

where K = [ki j] is an m̂ × m̂ matrix and ki j =

(
ψi(s),

(
k(s, t), ψ j(t)

)
wnk

)
wnk

.

4.4. Second kind Chebyshev wavelets
Second kind Chebyshev wavelets ψnm(t) are defined on the interval [0, 1) by [29]

ψnm(t) =


√

2
π

2
k+1

2 Um

(
2k+1t − 2n − 1

)
, n

2k ≤ x ≤ n+1
2k

0, otherwise,
, (4.32)

where Um(t) is the second kind Chebyshev polynomials of degree m, given by

Um(t) =
sin ((m + 1)θ)

sin(θ)
, t = cos(θ). (4.33)

The second kind Chebyshev wavelets {ψnm(t)|n = 0, 1, . . . , 2k − 1,m = 0, 1, 2, ..., M − 1} forms an
orthonormal basis for L2

wnk
[0, 1] with respect to the weight function wnk(t) = w

(
2k+1t − 2n − 1

)
, in

which w(t) =
√

1 − t2. By using the orthonormality of the second kind Chebyshev wavelets, any
square integrable function f (t) defined over [0, 1) can be expanded in terms of the second kind
Chebyshev wavelets as

f (t) ≃
∞∑

n=0

∞∑
m=0

cnmψnm(t), (4.34)
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where cmn = ( f (t), ψmn(t))wnk
and (., .)wnk denotes the inner product on L2

wnk
[0, 1] . If the infinite

series in (4.42) is truncated, then it can be written as

f (t) ≃
2k−1∑
n=0

M−1∑
m=0

cmnψmn(x) = CTΨ(t), (4.35)

where C and Ψ(t) are m̂ = 2kM column vectors given by

C =
[
c00, . . . , c0(M−1)|c10, . . . , c1(M−1)|, . . . , |c(2k−1)0, . . . , c(2k−1)(M−1)

]T
,

Ψ(x) =
[
ψ00(t), . . . , ψ0(M−1)(t)|ψ10(t), . . . , ψ1(M−1)(t)|, . . . , |ψ(2k−1)0(t), . . . , ψ(2k−1)(M−1)(t)

]T
. (4.36)

By changing indices in the vectors Ψ(t) and C the series (4.36) can be rewritten as

f (t) ≃
m̂∑

i=1

ciψi(t) = CTΨ(t), (4.37)

where
C = [c1, c2, ..., cm̂] , Ψ(x) =

[
ψ1(x), ψ2(x), ..., ψm̂(x)

]
, (4.38)

and
ci = cnm, ψi(t) = ψnm(t), i = nM + m + 1. (4.39)

Similarly, any two dimensional function k(s, t) ∈ L2 ([0, 1] × [0, 1]) can be expanded into second
kind Chebyshev wavelets basis as

k(s, t) ≈
m̂∑

i=1

m̂∑
j=1

ki jψi(s)ψ j(t) = ΨT (s)KΨ(t), (4.40)

where K = [ki j] and ki j =

(
ψi(s),

(
u(s, t), ψ j(t)

)
wnk

)
wnk

.

4.5. CAS Wavelet
CAS wavelets ψnm(t) are defined on the interval [0, 1) as follows [26]

ψmn(t) =

 2
k
2 CAS m

(
2kt − n + 1

)
, n−1

2k ≤ t < n−1
2k ,

0, otherwise
(4.41)

where CAS m(t) = cos (2mπt)+sin (2mπt). The set of CAS wavelets {ψnm(t)|n = 0, 1, . . . , 2k−1,m =
−M, ...0, 1, 2, ..., M − 1} forms an orthonormal basis for L2([0, 1)). This implies that any square
inegrable function f (t) defined over [0, 1) can be expanded in terms of the CAS wavelets as

f (t) ≃
∞∑

n=0

∞∑
m∈Z

cnmψnm(t), (4.42)
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where cmn = ( f (t), ψmn(t)) and (., .) is the inner product on L2 [0, 1] . If the infinite series in (4.42)
is truncated, then it can be written as

f (t) ≃
2k−1∑
n=0

M∑
m=−M

cmnψmn(x) = CTΨ(t), (4.43)

where C and Ψ(t) are m̂ = 2k(2M + 1) column vectors given by

C =
[
c0,−M, . . . , c0,M, . . . , c1,−M, . . . , c1,M, . . . , c(2k−1),−M, . . . , c(2k−1),M

]T
,

Ψ(t) =
[
ψ0,−M, . . . , ψ0,M, . . . , ψ1,−M, . . . , ψ1,M, . . . , ψ(2k−1),−M, . . . , ψ(2k−1),M

]T
, (4.44)

By changing indices in the vectors Ψ(t) and C the series (4.44) can be rewritten as

f (t) ≃
m̂∑

i=1

ciψi(t) = CTΨ(t), (4.45)

where

C = [c1, c2, ..., cm̂] , Ψ(x) =
[
ψ1(x), ψ2(x), ..., ψm̂(x)

]
, (4.46)

and

ci = cnm, ψi(t) = ψnm(t), i = (n − 1)(2M + 1) + M + m + 1. (4.47)

Moreover, any two dimensional function k(s, t) ∈ L2 ([0, 1] × [0, 1]) can be expanded into second
kind Chebyshev wavelets basis as

k(s, t) ≈
m̂∑

i=1

m̂∑
j=1

ki jψi(s)ψ j(t) = ΨT (s)KΨ(t), (4.48)

where K = [ki j] and ki j =

(
ψi(s),

(
u(s, t), ψ j(t)

)
wnk

)
wnk

.

5. Operational matrix of the fractional integration

The wavelets basis Ψ(t) can be expressed in the m̂-dimensional BPFs. Next theorem describe
the relation between the wavelet basis Ψ(t) and BPFs B(t).

Theorem 5.1. Let Ψ(t) and B(t) be the m̂-dimensional wavelets and BPFs vector respectively, the
vector Ψ(t) can be expanded by BPFs vector B(t) as

Ψ(t) ≃ QB(t), (5.1)

where Q is an m̂ × m̂ block matrix and

Qi j = ψi

(
2 j − 1

2m̂

)
, i, j = 1, 2, ..., m̂. (5.2)
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Proof. Let ψi(t), i = 1, 2, ..., m̂ be the i-th element of the wavelets vector ψ(t). Expanding ψi(t) into
an m̂-term vector of BPFs, we have

ψi(t) ≃
m̂∑

k=1

Qikbk(t), i = 1, 2, ..., m̂, (5.3)

taking the collocation points η j =
2 j−1
2m̂ and evaluating relation (5.3) we get

ψi(η j) ≃
m̂∑

k=1

Qikbk(η j) = Qi j, i, j = 1, 2, ..., m̂, (5.4)

and this prove the desired result.

Now we derive the operational matrices of integration for the wavelets vector Ψ(t). A general
procedures for forming these matrix will be described in next theorem. First, we remind some
useful results for BPFs.

Lemma 5.2. [12] Let B(t) be the m̂-dimensional BPFs vector defined in (3.7), then integration of
this vector can be derived as ∫ t

0
B(s)ds ≃ PB(t), (5.5)

where P is called the operational matrix of integration for BPFs and is given by

P =
h
2



1 2 2 . . . 2
0 1 2 . . . 2

0 0 1
...

...
...

...
...

. . . 2
0 0 0 . . . 1


m̂×m̂

. (5.6)

Lemma 5.3. [12] Let B(t) be the m̂-dimensional BPFs vector defined in (3.7), then integration of
this vector can be derived as

JαB(t) = PαB(t), (5.7)

where Pα is called the operational matrix of integration for BPFs and is given by

Pα =
hα

Γ(α + 2)


1 ξ1 ξ2 . . . ξm−1

0 1 ξ1 . . . ξm−2

0 0 1 . . . ξm−3

0 0 0 . . .
...

0 0 0 0 1


. (5.8)
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Theorem 5.4. Suppose Ψ(t) be an m̂-dimensional wavelets vector, the integral of this vector can
be derived as ∫ t

0
Ψ(s)ds ≃ QPQ−1Ψ(t) = ΛΨ(t), (5.9)

where Q is introduced in (5.1) and P is the operational matrix of integration for BPFs derived in
(5.6).

Proof. Let Ψ(t) be the wavelets vector, by using Theorem 5.1 and Lemma 5.3 we have∫ t

0
Ψ(s)ds ≃

∫ t

0
QB(s)ds =Q

∫ t

0
B(s)ds = QPB(t), (5.10)

now theorem 5.1 results∫ t

0
Ψ(s)ds ≃QPB(t) = QPQ−1Ψ(t) = ΛΨ(t), (5.11)

by using this identity we obtain the desired result.

Theorem 5.5. Let Ψ(t) be the an m̂-dimensional wavelets vector, the operational matrix of the
fractional order integration for Ψ(t) can be derived as

JαΨ(t) = QPαQ−1Ψ(t) = ΛαΨ(t), (5.12)

where Λα is called the operational matrix of second kind Chebyshev wavelets, Q is the matrix
introduced in (5.1) and Pα is the operational matrix of fractional integration for BPFs derived in
(5.8).

Proof. By using Theorem 5.1 we have

JαΨ(t) = JαQΦ(t) = QFαΦ(t) = QFαQ−1Ψ(t) = PαΨ(t), (5.13)

so, the second kind Chebyshev wavelet operational matrix of the fractional order integration Pα is
given by

Pα = QFαQ−1. (5.14)

and this completes the proof.

6. Method of solution

In this section, a collocation method based on BPFs and wavelet basis is presented for approx-
imating solution of FIDE with a weakly singular kernel defined in (1.1). The presented technique
can be applied by using BPFs and all wavelets basis introduced in the previous section. From now
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on by Φ(t) we mean BPFs or any introduced wavelet basis vector. Consider FIDE with a weakly
singular kernel (1.1), we first approximate functions Dα

∗u(t) and k(t, s) as

Dα
∗u(t) = CTΦ(t), k(t, s) = Φ(t)T KΦ(t), (6.1)

where Φ(t) can be BPFs or wavelet vector, C is an unknown vector and K is a known coefficient
matrix of k(t, s) corresponding to the basis vectorΦ(t). By using the properties of Caputo fractional
operators Dα

∗ and operational matrix of fractional oreder on the basis vector Φ(t) we get

u(t) = Jα
(
Dα
∗u(t)

)
= CT JαΦ(t) = CT PαΦ(t), (6.2)

substituting Eqs. (6.1) and (6.2) into Eq. (1.1), we have

CTΦ(t) = FTΦ(t) +
∫ t

0

CT PαΦ(s)ds
(t − s)β

+

∫ 1

0
Φ(t)T KΦ(s)CT PαΦ(s)ds

= FTΦ(t) +CT Pα

∫ t

0

Φ(s)ds
(t − s)β

+ Φ(t)T K
(∫ 1

0
Φ(s)Φ(s)T ds

)
(Pα)T C

= FTΦ(t) +CT Pα

∫ t

0

Φ(s)ds
(t − s)β

+ hΦ(t)T KQ (PαQ)T C,

(6.3)

and for the case that Φ(t) is the BPFs vector, the matrix Q = Im̂ will be the identity matrix. Now
we consider the weakly singular integral

∫ t

0
Φ(s)ds
(t−s)β . For (i − 1)h ≤ t ≤ ih, this singular integral can

be approximated as∫ t

0

Φ(s)ds
(t − s)β

= Q
∫ t

0

B(s)ds
(t − s)β

= Q
[∫ h

0

ds
(t − s)β

,

∫ 2h

h

ds
(t − s)β

...,

∫ t

(i−1)h

ds
(t − s)β

, 0, ..., 0
]T

= Q
[
t−β+1 − (t − h)−β+1

β − 1
,

(t − h)−β+1 − (t − 2h)−β+1

β − 1
, ...,

(t − (i − 1)h)−β+1

β − 1
, 0, ..., 0

]T

= V(t). (6.4)

Substituting the vector V(t) in Eq. (6.3), we get

CTΦ(t) = FTΦ(t) +CT PαV(t) + hΦ(t)T KQ (PαQ)T C, (6.5)

by taking the appropriate collocation points ti, i = 1, ..., m̂ and evaluating Eq. (6.5) we obtain the
following linear system of algebraic equations for the unknown vector C

CTΦ(ti) − FTΦ(ti) −CT PαV(ti) − hΦ(ti)T KQ (PαQ)T C = 0, i = 0, 1, ...,m. (6.6)

By solving this linear system and determining vector C, we can approximate solution of fractional
integro-differential equation with a weakly singular kernel (1.1) by substituting the obtained vector
C in Eq. (6.2).
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7. Estimation of the error function

Suppose u(t) is the exact solution of (1.1) and um̂(t) is the approximate solution for u(t). Here,
we introduce a process for estimating the error of approximate solution, i. e. em̂(t) = u(t) − um̂(t).
First, by using definition of fractional integration operator Jα, the solution of FIDE with a weakly
singular kernel (1.1) can be written as

u(s) =
1
Γ (α)

∫ t

0

f (τ)dτ
(t − τ)1−α +

1
Γ (α)

∫ t

0

1
(t − τ)1−α

∫ τ

0

u(s)dsdτ
(τ − s)β

+
1
Γ (α)

∫ t

0

∫ 1

0

k(s, τ)u(s)
(t − τ)1−α dsdτ,(7.1)

now consider the perturbation function rm̂(t) that depends only on um̂(t) as

rm̂(t) =
1
Γ (α)

∫ t

0

f (τ)dτ
(t − τ)1−α +

1
Γ (α)

∫ t

0

1
(t − τ)1−α

∫ τ

0

um̂(s)dsdτ
(τ − s)β

+
1
Γ (α)

∫ t

0

1
(t − τ)1−α

∫ 1

0
k(s, τ)um̂(s)dsdτ − um̂(t), (7.2)

subtracting (7.2) from (7.1) we obtain

em̂(t) = rm̂(t) +
1
Γ (α)

∫ t

0

1
(t − τ)1−α

∫ τ

0

em̂(s)dsdτ
(τ − s)β

+
1
Γ (α)

∫ t

0

1
(t − τ)1−α

∫ 1

0
k(s, τ)em̂(s)dsdτ,

this is a fractional integral equations in which the error function em̂(t) is unknown. Obviously, we
can apply the proposed collocation method as given in previous section for this system to find an
approximation of the error function em̂(t).

8. Numerical results and discussion

In this section, we will present numerical experiments derived by using collocation method
described in Section 6. The results of the proposed method for different kind of wavelet basis are
also compared with exact solution. All computations are performed by Maple 17 with 20 digits
precision and Intel Core 2 Duo CPU 2.50 GHz package.

Example 8.1. Let us consider the following FIDE with weakly singular kernel [13]

D0.25
∗ u(t) = f (t) +

1
2

∫ t

0

u(s)ds

(t − s)
1
2

+
1
3

∫ 1

0
(t − s)u(s),

with the initial condition u(0) = 0 and

f (t) =
Γ (3)
Γ (2.75)

t1.75 +
Γ (4)
Γ (3.75)

t2.75 −
√
πΓ (3)

2Γ (3.5)
t2.5 −

√
πΓ (4)

2Γ (4.5)
t3.5 − 7t

36
+

3
20
.

The exact solution of this equation is u(t) = t2 + t3. The presented collocation method in section 6
with wavelet and BPFs basis is used for approximating solution of this FIDE with weakly singular
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kernel. Table 1 presents the maximum absolute error of the numerical results derived by different
wavelet basis and BPFs for various values of m̂. As numerical results in Table 1 reveal, the LW,
CHW and SKCHW have same convergence behavior and they are more accurate in comparison
with other wavelets basis and BPFs. Moreover, computational time of different wavelet and BPFs
methods for m̂ = 64 are listed in Table 2. From this Table it is possible to see that the computa-
tional time of CASW is higher than other kind of used basis function and BPFs has the minimum
computational time.

Table 1: Comparison of the maximum absolute error for different wavelet basis and various values of m̂.

m̂ = 24 m̂ = 48 m̂ = 64
BPFs 1.22 × 10−1 5.14 × 10−2 4.01 × 10−2

HW 2.23 × 10−1 4.32 × 10−2 3.82 × 10−2

LW 5.21 × 10−3 1.20 × 10−3 1.13 × 10−3

CHW 4.86 × 10−3 1.18 × 10−3 1.12 × 10−3

SKCHW 5.25 × 10−3 1.42 × 10−3 1.12 × 10−3

CASW 2.53 × 10−1 5.50 × 10−2 1.52 × 10−2

Table 2: Comparison of computational time (in seconds) for different wavelet basis and m̂ = 64.
BPFs HW LW CHW SKCHW CASW

CPU time (sec) 135.695 1380.141 140.436 148.217 142.176 187.042

Example 8.2. Consider the FIDE with weakly singular kernel [13]

D0.15
∗ u(t) = f (t) +

1
4

∫ t

0

u(s)ds

(t − s)
1
2

+
1
7

∫ 1

0
et+su(s),

in which u(0) = 0 and

f (t) =
Γ (3)
Γ (2.85)

t1.85 − Γ (2)
Γ (1.85)

t0.85 −
√
πΓ (3)

4Γ (3.5)
t2.5 +

√
πΓ (2)

4Γ (2.5)
t1.5 − et+1 − 3et

7
.

In this problem the exact solution of this equation is u(t) = t2 − t. We have solved this FIDE
with weakly singular kernel by using the wavelet and BPFs collocation methods. The maximum
absolute error of the numerical results derived by wavelet basis and BPFs collocation method for
various values of m̂ are presented in Table 3. Similar to the previous example, the numerical results
obtained by LW, CHW and SKCHW basis are more accurate in compare to othe basis. Moreover,
Table 3 indicate that the LW, CHW and SKCHW have same convergence behavior as BPFs and
HW have same. Computational time for different wavelet and BPFs basis with m̂ = 64 are listed
in Table 2. From this Table it is possible to see that the computational time of CASW is higher
than other kind of basis functions and BPFs has the minimum computational time.
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Table 3: Comparison of the maximum absolute error for different wavelet basis and various values of m̂.

m̂ = 24 m̂ = 48 m̂ = 64
BPFs 2.62 × 10−2 1.24 × 10−2 8.41 × 10−3

HW 1.16 × 10−2 1.21 × 10−2 8.82 × 10−3

LW 2.35 × 10−3 1.14 × 10−3 1.14 × 10−3

CHW 3.51 × 10−3 1.16 × 10−3 2.24 × 10−3

SKCHW 3.27 × 10−3 2.64 × 10−3 2.11 × 10−3

CASW 5.43 × 10−2 3.11 × 10−2 2.54 × 10−2

Table 4: Comparison of computational time (in seconds) for different wavelet basis and m̂ = 64.

BPFs HW LW CHW SKCHW CASW
CPU time (sec) 140.688 142.146 141.235 147.249 148.698 194.771

Example 8.3. Let us consider the following fractional order integro-differential equation with a
weakly singular kernel [13]

Dα
∗u(t) = f (t) +

∫ t

0

u(s)ds

(t − s)
1
2

+

∫ 1

0
(t + sin(s))u(s),

where u(0) = 0 and

f (t) = 2t −
√
πΓ (3)

2Γ (3.5)
t2.5 − t

3
− cos (1) − 2 sin (1) + 2.

When α = 1, the exact solution of this fractional integro-differential equation is u(t) = t2. The
proposed collocation method are used for solving this FIDE for various values of α and different
kind wavelet basis. The maximum absolute error of numerical solutions with α = 1 are tabulated
in Table 5. From this Table, we infer that numerical solutions derived by BPFs and all wavelet
basis converge to the exact solution. Moreover, numerical solutions for α = 0.85 and α = 0.95
are listed in Tables 6 and 7. As it is obvious from Tables 6 and 7 the numerical solutions converge
to the exact solution u(t) = t2 as α is close to 1. Table 8 displays the comparison between the
computational time of BPFs and different wavelet basis for α = 1 and m̂ = 64. As can be observed
from this Table, the computational time of BPFs method is minimum and computational time of
CASW method is higher than other kind of basis functions.

9. Discussion and conclusion

This paper deals with a comparitive study of wavelet collocation methods for numerical solu-
tion of fractional order integro-differential equation with a weakly singular kernel. The numerical
results derived by different kind of wavelets basis are also compared with the BPFs collocation
method. A comparison is made between computational time of the proposed collocation meth-
ods for BPFs and different kind of wavelet basis. The comparison of the experimental results
highlighted that:
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Table 5: Comparison of the maximum absolute error for different wavelet basis and various values of m̂.

m̂ = 24 m̂ = 48 m̂ = 64
BPFs 3.34 × 10−1 3.14 × 10−2 1.84 × 10−2

HW 6.84 × 10−1 3.43 × 10−2 2.88 × 10−2

LW 5.77 × 10−3 4.87 × 10−3 2.68 × 10−3

CHW 4.05 × 10−3 1.28 × 10−3 1.32 × 10−3

SKCHW 5.69 × 10−3 4.66 × 10−3 2.34 × 10−3

CASW 2.43 × 10−1 7.50 × 10−2 2.25 × 10−2

Table 6: The numerical results derived by different wavelet basis for α = 0.85 and m̂ = 64.

t BPFs HW LW CHW SKCHW CASW
0.1 0.075912 0.075912 0.074556 0.074556 0.074556 0.082991
0.3 0.322010 0.322010 0.314696 0.314696 0.314696 0.289446
0.5 1.402528 1.402528 1.402275 1.402274 1.402274 1.527805
0.7 1.239159 1.239159 1.254223 1.254223 1.254223 1.294679
0.9 1.995424 1.995424 2.002114 2.002115 2.002114 1.966650

Table 7: The numerical results derived by different wavelet basis for α = 0.95 and m̂ = 64.

t BPFs HW LW CHW SKCHW CASW
0.1 0.020154 0.020154 0.019664 0.019664 0.019664 0.022894
0.3 0.131961 0.131961 0.128306 0.128306 0.128306 0.115236
0.5 0.659830 0.659831 0.659685 0.659685 0.659685 0.731165
0.7 0.618552 0.618552 0.626625 0.626625 0.626625 0.648190
0.9 1.019279 1.019279 1.022773 1.022773 1.022773 1.004034

Table 8: Comparison of computational time (in seconds) for α = 1 and m̂ = 64.

BPFs HW LW CHW SKCHW CASW
CPU time (sec) 155.429 152.397 162.587 164.239 170.234 210.537

1. The proposed collocation methods with BPFs and wavelet basis are simple and effective for
numerical solution of fractional order integro-differential equation with a weakly singular
kernel.

2. The numerical results obtained by LW, CHW and SKCHW basis are more accurate compar-
ing with BPFs and the other kind of wavelet basis considered in this paper. In fact, being
the BPFs linear functions, as expected they can capture only a first approximation of the
numerical solution.

3. The presented collocation methods with LW, CHW and SKCHW have same convergence
behavior as BPFs and HW have same convergence behavior.
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4. The computational time of CASW is more than BPFs and other kind of wavelet basis. More-
over, the BPFs collocation method has the minimum computational time. In fact, according
to theorems 5.4 and 5.5, the operational matrices of wavelets are obtained by a matrix prod-
uct with the operational matrix of BPFs thus implying a greater computational time.

5. In general, the LW collocation method is the best one for solving fractional order integro-
differential equation with a weakly singular kernel.

6. The examples given in section 8 show that, when the analytical solution is a polynomial,
then Legendre polynomials and other kind of polynomial based wavelets are good methods
of approximation. However in some more general case when the solution is a more general
function then it would be more expedient to use different kind of wavelets more similar to
the solution.
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