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1. Introduction and Preliminaries

Let H be a Hilbert space. The collection ( fi)i∈I ⊂ H is called a frame for H if there exist
A, B > 0 such that A‖ f ‖2 ≤

∑
i∈I |〈 f , fi〉|

2 ≤ B‖ f ‖2 for all f ∈ H. The constants A, B are called
lower and upper bounds, respectively. We refer to [4, 8, 9, 10, 11, 12] for an introduction to the
frame theory and its applications.

Whereas several generalizations of frames exist in the literature [1, 2, 6, 7, 14], in [3] we
defined a new g-frame, a singleton g-frame, with the aid of which we have shown that other ex-
tensions of frames are equivalent to continuous frames defined by Ali et al. in [1]. In this note we
introduce singleton g-orthonormal and g-Riesz bases and compare them with the corresponding
notions in [14] and [1]. Also, we continue our research on frame operator of a singleton g-frame
and obtain a relation between Sun [14] and Ali et al. [1] frame operators. Then we study duality in
singleton g-frames and establish relations between dual of singleton g-frames and dual of contin-
uous frames. Finally, we illustrate an example which provides a suitable translation from discrete
frames to Sun’s g-frames. Our results generalize some of the results appearing in the literature
on frames. Such a unified approach seems to be useful, since it describes the basic features and
includes most of the special cases. Also, it helps us compare several generalizations of frames
with each other.

Here we recall some definitions and preliminaries that are required in the sequel.
Let (K j) j∈J (J is at most countable) and H be Hilbert spaces and Λ j : H → K j, j ∈ J be

bounded linear operators. The set {Λ j : j ∈ J} is called a Sun g-frame if there exist A, B > 0 such
that A‖x‖2 ≤

∑
j∈J ‖Λ jx‖2 ≤ B‖x‖2 for all x ∈ H [14].

Let (Ω, µ) be a measure space and H be a Hilbert space. The mapping F : (Ω, µ)→ H is called
a continuous frame with bounds A, B, if ω → 〈 f , F(ω)〉 is a measurable function on Ω for every
f ∈ H and

A‖ f ‖2 ≤
∫

Ω

|〈 f , F(ω)〉|2dµ(ω) ≤ B‖ f ‖2, f ∈ H.

The operator TF : H → L2(Ω, µ) given by TF( f )(ω) = 〈 f , F(ω)〉, f ∈ H, ω ∈ Ω is a bounded
(above) linear operator. This operator is called the frame transform. It is 1-1 and bounded below
if and only if F is a continuous frame.

Let F : (Ω, µ) → H be a continuous frame. A continuous frame G : (Ω, µ) → H is called a
dual of F if f =

∫
Ω
〈 f ,G(ω)〉F(ω)dµ(ω) for all f ∈ H. Consider the frame operator S of F defined

by S f =
∫

Ω
〈 f , F(ω)〉F(ω)dµ(ω) = T ∗FTF f for f ∈ H. Then the continuous frame S −1F is a dual

of F called the standard dual of F.
Now we recall our new generalization of frames [3].

Definition 1.1. Let H and K be two Hilbert spaces. A linear operator Λ : H −→ K is called a
singleton g-frame for H, with respect to K if there exist constants A, B > 0 such that

A‖ f ‖2 ≤ ‖Λ f ‖2 ≤ B‖ f ‖2,

for all f ∈ H. The constants A, B are called lower and upper bounds of Λ, respectively.
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Remark 1.2. Let Λ : H → K be a singleton g-frame with bounds A, B. Put J = {1},Λ1 = Λ and
K1 = K in the definition of Sun g-frame. It is easy to verify that {Λi} j is a Sun g-frame. We call it
the Sun g-frame corresponding to Λ. Let {Λ j : H −→ K j; j ∈ J} (J is at most countable) be a Sun
g-frame. We put K = ⊕ j∈JK j and define Λ : H −→ K by f −→ (Λ j f ) j∈J. We call Λ the singleton
g-frame corresponding to the Sun g-frame {Λ j : j ∈ J}. Also, let (ei)i∈I be an orthonormal basis
for K and µ be the counting measure on I. We define F : (I, µ) −→ H by i −→ Λ∗ei and call it the
continuous frame corresponding to Λ. Now, let F : (Ω, µ) −→ H be a continuous frame. We call
TF : H −→ L2(Ω, µ) the singleton g-frame corresponding to F (see [3]).

Here we recall the definitions of Sun g-Riesz basis, Sun g-orthonormal basis, continuous Riesz
basis and continuous orthonormal basis (see [14, 1]).

Let Λ j : H → K j, j ∈ J (J is at most countable) be bounded linear operators.

• If { f : Λ j f = 0, j ∈ J} = {0}, then {Λ j : j ∈ J} is called Sun g-complete.

• If {Λ j : j ∈ J} is Sun g-complete and there are A and B such that for any finite subset J1 ⊂ J
and g j ∈ K j, j ∈ J1,

A
∑
j∈J1

‖g j‖
2 ≤ ‖

∑
j∈J1

Λ∗jg j‖
2 ≤ B

∑
j∈J1

‖g j‖
2, (1.1)

then {Λ j : j ∈ J} is said to be a Sun g-Riesz basis for H with respect to {K j : j ∈ J}.

• The set {Λ j : j ∈ J} is called a Sun g-orthonormal basis for H with respect to {K j : j ∈ J} if
it satisfies the following:

〈Λ∗jg j,Λ
∗
i gi〉 = δ j,i〈g j, gi〉, j, i ∈ J, g j ∈ K j, gi ∈ Ki, (1.2)∑

j∈J

‖Λ j f ‖2 = ‖ f ‖2, f ∈ H. (1.3)

Let F : (Ω, µ)→ H be a continuous frame. Then F is called a continuous orthonormal basis if∫
Ω

|〈x, F(ω)〉|2dµ(ω) = ‖x‖2,

for all x ∈ H and ∥∥∥∥ ∫
Ω

ϕ(ω)F(ω)dµ(ω)
∥∥∥∥2

=
∥∥∥∥ϕ∥∥∥∥2

,

for all ϕ ∈ L2(Ω, µ). Also, F is called a continuous Riesz basis if there exist A, B > 0 such that

A
∫

E
|ϕ(ω)|2dµ(ω) ≤

∥∥∥∥ ∫
E
ϕ(ω)F(ω)dµ(ω)

∥∥∥∥2
≤ B

∫
E
|ϕ(ω)|2dµ(ω), (1.4)

for all measurable sets E ⊂ Ω with µ(E) < ∞ and ϕ ∈ L2(Ω, µ).
If G is a continuous Riesz basis then TG is an invertible operator. As a result, if G is a contin-

uous orthonormal basis then TG is a unitary operator. In fact we have the following proposition.
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Proposition 1.3. Let G be a continuous Riesz basis with bounds A, B. Then TG is onto. If G is a
continuous orthonormal basis then TG is unitary.

Proof. Put X = {ϕ ∈ L2(Ω, µ), µ(ϕ , 0) < ∞}. It is easy to check that T ∗Gϕ =
∫

Ω
ϕ(ω)G(ω)dµ(ω).

So A‖ϕ‖2 ≤ ‖T ∗Gϕ‖
2 ≤ B‖ϕ‖2 for all ϕ ∈ X. Since T ∗G is continuous, X is dense in L2(Ω, µ) ( [13,

Ch.3]) and T ∗G is bounded below on X, we have KerT ∗G = {0}. Since imTG = (KerT ∗G)⊥, TG is onto.
The other implication is obvious.

The rest of this paper is organized as follows. In Section 2 we introduce singleton g-orthonormal
and g-Riesz bases and compare them with the corresponding notions in [14] and [1]. In Section
3 we study the frame operator of a singleton g-frame which helps us compare Sun and Ali et al.
[14, 1] frame operators. Then, we introduce dual of a singleton g-frame and investigate corre-
sponding notions in continuous frames. Finally, we bring an example through which, we illustrate
a suitable translation of [5, Theorem 3.1.13] to the Sun g-frame setting.

2. G-Riesz Bases and G-Orthonormal Bases

In this section we define a singleton g-Riesz basis (singleton g-orthonormal basis) and compare
it with a Sun g-Riesz basis (Sun g-orthonormal basis) and a continuous Riesz basis (continuous
orthonormal basis).

Definition 2.1. A singleton g-frame Λ : H → K is called a singleton g-Riesz basis if it is invertible.
Also Λ is called a singleton g-orthonormal basis if it is unitary.

The following theorem establishes a relation between singleton g-Riesz bases (singleton g-
orthonormal bases) and continuous Riesz bases (continuous orthonormal bases).

Theorem 2.2. Let Λ be a singleton g-frame and F be the continuous frame corresponding to Λ

as in Remark 1.2. If Λ is a singleton g-Riesz basis (singleton g-orthonormal basis), then F is a
continuous Riesz basis (continuous orthonormal basis). Conversely, let F be a continuous frame
and Λ be the singleton g-frame corresponding to F as in Remark 1.2. If F is a continuous Riesz
basis (continuous orthonormal basis), then Λ is a singleton g-Riesz basis (singleton g-orthonormal
basis).

Proof. Assume that Λ : H → K is a singleton g-Riesz basis with the corresponding continuous
frame F as in Remark 1.2. Since Λ is invertible, Λ∗ is also invertible. So there exist α, β such that

α‖ f ‖2 ≤ ‖Λ∗ f ‖2 ≤ β‖ f ‖2, f ∈ K. (2.1)

Let E be a subset of I with finite measure (so finite) and ϕ ∈ L2(I, µ). We show that

α

∫
E
|ϕ(i)|2dµ(i) ≤

∥∥∥∥ ∫
E
ϕ(i)F(i)dµ(i)

∥∥∥∥2
≤ β

∫
E
|ϕ(i)|2dµ(i),
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which is equivalent to

α
∥∥∥∥∑

i∈E

ϕ(i)ei

∥∥∥∥2
≤

∥∥∥∥Λ∗∑
i∈E

ϕ(i)ei

∥∥∥∥2
≤ β

∥∥∥∥∑
i∈E

ϕ(i)ei

∥∥∥∥2
. (2.2)

Substituting y =
∑

i∈E ϕ(i)ei into (2.1) gives (2.2). Thus, F is a continuous Riesz basis.
Now, let Λ : H → K be a singleton g-orthonormal basis with the corresponding continuous

frame F as in Remark 1.2. For f ∈ H,∫
I
|〈 f , F(i)〉|2dµ(i) =

∑
i∈I

|〈 f , F(i)〉|2 =
∑
i∈I

|〈 f ,Λ∗ei〉|
2

=
∑
i∈I

|〈Λ f , ei〉|
2 = ‖Λ f ‖2 = ‖ f ‖2.

Moreover, ∥∥∥∥ ∫
I
ϕ(i)F(i)dµ(i)

∥∥∥∥2
=

∥∥∥∥∑
i∈I

ϕ(i)Λ∗(ei)
∥∥∥∥2

=
∥∥∥∥Λ∗∑

i∈I

ϕ(i)ei

∥∥∥∥2

=
∥∥∥∥∑

i∈I

ϕ(i)ei

∥∥∥∥2
=

∥∥∥∥ϕ∥∥∥∥2
.

Therefore F is a continuous orthonormal basis.
Conversely, let F be a continuous Riesz basis with the corresponding singleton g-frame TF as

in Remark 1.2. By Proposition 1.3 TF is onto. Also TF is trivially 1-1. Thus by the open mapping
theorem it is invertible i.e. singleton a g-Riesz basis.

If F is a continuous orthonormal basis, then TF is unitary by Proposition 1.3, i.e. it is a
singleton g-orthonormal basis.

In the following theorem we obtain relations between Sun g-Riesz bases (Sun g-orthonormal
bases) and singleton g-Riesz bases (singleton g-orthonormal bases).

Theorem 2.3. Let {Λ j : H → K j, j ∈ J} (J is at most countable) be a Sun g-frame and Λ

be the singleton g-frame corresponding to it. If {Λ j : H → K j, j ∈ J} is a Sun g-Riesz basis
(Sun g-orthonormal basis), then Λ is a singleton g-Riesz basis (singleton g-orthonormal basis).
Conversely, if Λ is a singleton g-Riesz singleton (singleton g-orthonormal basis) basis, then the
Sun g-frame corresponding to it is a Sun g-Riesz basis (Sun g-orthonormal basis) .

Proof. Let {Λ j : H → K j, j ∈ J} be a Sun g-Riesz basis with the corresponding singleton g-frame
Λ : H →

⊕
j∈J K j as in Remark 1.2. Let X = {( f j) j∈J ∈

⊕
j∈J K j, f j , 0, for finitely many j}. It is

trivial that X is dense in
⊕

j∈J K j, and (1.1) can be rewritten as follows

A‖ f ‖2 ≤ ‖Λ∗ f ‖2 ≤ B‖ f ‖2, f ∈ X.
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Since Λ∗ is continuous and bounded below and X is dense in
⊕

j∈J K j, Λ∗ is 1-1 on
⊕

j∈J K j. So
Λ is onto. Also, Λ is trivially 1-1, so is invertible, i.e. Λ is a singleton g-Riesz basis.

Now, Let {Λ j : H → K j, j ∈ J} be a Sun g-orthonormal basis with the corresponding singleton
g-frame Λ : H →

⊕
j∈J K j as in Remark 1.2. Then

‖Λ f ‖2 = ‖(Λ j f ) j∈J‖
2 =

∑
j∈J

‖Λ j f ‖2 = ‖ f ‖2,

i.e. Λ is an isometry. It is enough to show that Λ is onto. Since ImΛ is closed, and ImΛ =

(KerΛ∗)⊥, then it enough to show that KerΛ∗ = {0}. Let ( f j) j∈J ∈
⊕

j∈J K j and Λ∗( f j) j∈J = 0 .
Since Λ∗( f j) j∈J =

∑
j∈J Λ∗j x j, we have

0 =
∥∥∥∥∑

j∈J

Λ∗j f j

∥∥∥∥2
=

〈∑
i∈J

Λ∗i fi,
∑
j∈J

Λ∗j f j

〉
=

∑
i∈J

∑
j∈J

〈Λ∗i fi,Λ
∗
j x j〉

=
∑
j∈J

〈Λ∗j f j,Λ
∗
j f j〉

=
∑
j∈J

∥∥∥∥ f j

∥∥∥∥2
.

Hence, f j = 0, j ∈ J.
For the converse, let Λ be a singleton g-Riesz basis i.e. invertible. So Λ∗ is also invertible, and

(1.1) is obviously satisfied. Then Λ is a Sun g-Riesz basis.
Finally, let Λ : H → K be a singleton g-orthonormal basis, then obviously (1.2) and (1.3) hold.

Hence Λ as a Sun g-frame is a Sun g-orthonormal basis.

3. Frame Operators and Duality

In this section we introduce duality of singleton g-frames and compare it with the duality in
continuous frames. Then we define the frame operator of a singleton g-frame and determine its
relation with the corresponding notions in Sun [14] and Ali et al. [1].

Definition 3.1. Let Λ : H → K be a singleton g-frame with bounds A, B. We define S = Λ∗Λ as
the frame operator of Λ.

Note that S is positive. Since A‖ f ‖2 ≤ ‖Λ f ‖2 = 〈Λ∗Λ f , f 〉 = 〈S f , f 〉, S is 1-1. Also, A‖ f ‖2 ≤
‖Λ f ‖2 = 〈S f , f 〉 ≤ ‖S f ‖ ‖ f ‖, so A‖ f ‖ ≤ ‖S f ‖. Thus S (H) is closed. If g is orthogonal to S (H),
we have A‖g‖2 ≤ 〈S g, g〉 = 0. So g = 0 which implies that S is onto. Therefore, S is invertible.

In the following proposition we establish a relation between the frame operators of a singleton
g-frame and a continuous frame.
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Proposition 3.2. If F is a continuous frame and Λ is the singleton g-frame corresponding to F as
in Remark 1.2, then the frame operators of F and Λ are the same. Similarly, if Λ is a singleton
g-frame and F is the continuous frame corresponding to Λ, then the frame operator of Λ is equal
to the frame operator of F.

Proof. Let F : (Ω, µ) → H be a continuous frame with the corresponding singleton g-frame
Λ = TF as in Remark 1.2. Then S Λ f = T ∗FTF f = S F f in which S Λ and S F are the frame operators
of Λ and F, respectively. The proof of the other part is easy.

The Sun g-frame operator of a Sun g-frame {Λ j : H → K j, j ∈ J} is defined in [14] as

S f =
∑
j∈J

Λ∗jΛ j f , f ∈ H. (3.1)

In the following proposition we give a relation between the frame operator of a singleton g-
frame and a Sun g-frame.

Proposition 3.3. Let Λ be the singleton g-frame corresponding to the Sun g-frame {Λ j : H →
K j, j ∈ J}. Then the frame operator of Λ and {Λ j : H → K j, j ∈ J} are the same.

Proof. Let {Λ j : H → K j, j ∈ J} be a Sun g-frame and Λ be the singleton g-frame corresponding
to it as in Remark 1.2. Let S be the Sun g-frame operator of {Λ j : H → K j, j ∈ J} and S Λ be the
frame operator of Λ. Since, Λ∗( f j) j∈J =

∑
j∈J Λ∗j f j, then

S Λ f = Λ∗Λ f = Λ∗(Λ j f ) j∈J =
∑
j∈J

Λ∗jΛ j f = S f .

Therefore, S Λ = S .

Remark 3.4. If Λ is a singleton g-frame, the Sun g-frame corresponding to Λ is Λ itself. So the
frame operator of Λ as a singleton g-frame and frame operator of Λ as a Sun g-frame are equal.

Definition 3.5. Let Φ,Λ : H → K be two singleton g-frames. We call Φ a dual of Λ if Λ∗Φ = idH

(In this case obviously Φ∗Λ = idH and then Λ is also a dual of Φ). We denote the standard dual
ΛS −1 of Λ by Λ̃ where S is defined as in Definition 3.1.

The following proposition states that if Λ is a dual of P, then the corresponding continuous
frames satisfy the same duality relation.

Proposition 3.6. Let Λ be a singleton g-frame and F(Λ) be the continuous frame corresponding
to it as in Remark 1.2. If P is a dual of Λ, then F(P) is a dual of F(Λ).
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Proof. Let F(Λ) and F(P) be as in Remark 1.2. We have∫
I
〈 f , F(P)(i)〉F(Λ)(i)dµ(i) =

∑
i∈I

〈 f , P∗ei〉Λ
∗ei

=Λ∗
∑
i∈I

〈P f , ei〉

=Λ∗P f = f .

So F(P) is a dual of F(Λ).

The following proposition establishes a relation between standard dual of singleton g-frames
and standard dual of continuous frames.

Proposition 3.7. Let Λ be a singleton g-frame and Λ̃ be its standard dual. We keep the notation
in Proposition 3.6. Then F(Λ̃) is the standard dual of F(Λ). Conversely, if F,G : (Ω, µ) → H are
two continuous frames and G is the standard dual of F, then the singleton g-frame corresponding
to G is the standard dual of the singleton g-frame corresponding to F.

Proof. Let S Λ and S F(Λ) be the frame operators of Λ and F(Λ), respectively. Then

F(Λ̃)(i) =(Λ̃)∗ei = (ΛS −1
Λ )∗ei

=S −1
Λ Λ∗ei = S −1

Λ F(Λ)(i).

By Proposition 3.2, the frame operator of Λ is equal to the frame operator of F(Λ). Then

F(Λ̃) = S −1
F(Λ)F(Λ).

So F(Λ̃) is the standard dual of F(Λ).
For the converse, let F be a continuous frame with the corresponding singleton g-frame TF as

in Remark 1.2. Consider the frame operator S F = T ∗FTF of F and let G be the standard dual of
F. Then TG f (ω) = TS −1

F F f (ω) = 〈 f , S −1
F F(ω)〉 = TF(S −1

F f )(ω), i.e. TG = TFS −1
F . Note that the

equality S F = T ∗FTF means that S F is also the frame operator of singleton g-frame TF . So (by
Definition 3.5) TG is the standard dual of TF .

Example 3.8. It is well known that a frame either remains a frame or an incomplete set whenever
any one of its elements is removed [5, Theorem 3.1.13]. Sun claims that this theorem does not
hold in his g-frames [14, Example 3.6]. We claim that the correct translation of the above theorem
to Sun g-frames is the following.

Let {Λ j : H → K j; j ∈ J} (J is at most countable) be a Sun g-frame with bounds A, B. Let
{e j,i : i ∈ I j} be an orthonorml basis for K j and π j,i : K j → C defined by π j,i(

∑
r∈I j

αre j,r) = αi be
the canonical projection. Define Λ j,i = π j,iΛ j. The set {Λ j,i : j ∈ J, i ∈ I j} is a Sun g-frame with the
same bounds A, B.Now it is easily seen that the above theorem is true for this kind of Sun g-frames.
In fact, the above theorem ([5, Theorem 3.1.13]) is true for any Sun g-frame {Λ j : H → C; j ∈ J}.
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Indeed, first let {Λ j : H −→ C; j ∈ J} be a Sun g-frame (constructed as in the above argument).
We define f j = Λ∗j1. It is easy to verify that for a fixed r we have∑

j∈J, j,r

|〈 f , f j〉|
2 =

∑
j∈J, j,r

‖Λ j f ‖2.

This means that {Λ j; j ∈ J, j , r} is a Sun g-frame if and only if ( f j) j∈J, j,r is a discrete frame.
Secondly, suppose {Λ j; j ∈ J, j , r} is not a Sun g-frame. By the above argument ( f j) j∈J, j,r is not
a discrete frame. So it is incomplete and there is 0 , f ∈ H such that it is orthogonal to all f j’s.
Thus Λ j f = 0, j ∈ J. It implies that {Λ j; j ∈ J, j , r} is not Sun g-complete. In other words, in a
Sun g-frame {Λ j : j ∈ J} any Λ j is corresponding to probably more than one element of a discrete
frame ( fi)i∈I .
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mashhad, No. MP94333RRT.

References

[1] S.T. Ali, J.-P. Antoine and J.-P. Gazeau, Continuous frames in Hilbert spaces, Ann. Phys., 222(1) (1993), 1–37.
[2] A.A. Arefijamaal, R.A. Kamyabi Gol, R. Raisi Tousi and N. Tavallayi, A new approach to continuous Riesz bases,

J. Sci., Islam. Repub. Iran, 24(1) (2013), 63–69.
[3] S. H. Avazzadeh, R.A. Kamyabi-Gol and R. Raisi Tousi, Continuous frames and g-frames, Bull. Iran. Math. Soc.,

40(4) (2014), 1047–1055.
[4] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2003.
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