Wavelets and Linear Algebra

http://wala.vru.ac.ir

On zero product determined Banach algebras

Abbas Zivari-Kazempour ${ }^{\text {a,* }}$
${ }^{a}$ Department of Mathematics, Ayatollah Borujerdi University, Borujerd, Iran.

Article Info

Article history:
Received 2 October 2021
Accepted 23 February 2022
Available online 14 March 2022
Communicated by Ali Akbar Arefijamaal

Keywords:

Banach algebra, Zero product determined, Idempotent, Approximate identity.

2000 MSC:
47B47

Abstract

Let \mathcal{A} be a Banach algebra with a left approximate identity. In this paper, under each of the following conditions, we prove that \mathcal{A} is zero product determined. (i) For every continuous bilinear mapping ϕ from $\mathcal{A} \times \mathcal{A}$ into \mathcal{X}, where \mathcal{X} is a Banach space, there exists $k>0$ such that $\|\phi(a, b)\| \leq k\|a b\|$, for all $a, b \in \mathcal{A}$. (ii) \mathcal{A} is generated by idempotents. (C) (2022) Wavelets and Linear Algebra

1. Introduction

Let \mathcal{A} be a Banach algebra and \mathcal{X} be a arbitrary Banach space. Then the continuous bilinear mapping $\phi: \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{X}$ preserves zero products if

$$
\begin{equation*}
a b=0 \quad \Longrightarrow \quad \phi(a, b)=0, \quad a, b \in \mathcal{A} . \tag{1.1}
\end{equation*}
$$

[^0]Moreover, \mathcal{A} is said to be zero product determined if every continuous zero product preserving bilinear mapping $\phi: \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{X}$ is implemented by a linear map $T: \mathcal{A} \longrightarrow \mathcal{X}$, i.e., $\phi(a, b)=$ $T(a b)$ for all $a, b \in \mathcal{A}$.

Characterizing homomorphisms, derivations and multipliers on Banach algebras, matrix algebras and C^{*}-algebras through the action on zero products have been studied by many authors, see for example $[1,2,3,4,6,7,8]$ and the references therein.

In [2], Bresar proved that if \mathcal{A} is a unital Banach algebra and $\mathcal{A}=\mathcal{J}(\mathcal{A})$, where $\mathcal{J}(\mathcal{A})$ is the subalgebra of \mathcal{A} generated by all idempotents, then \mathcal{A} is zero product determined. Bresar et.al. proved in [4] that the matrix algebra $M_{n}(\mathcal{A})$ of $n \times n$ matrices over a unital algebra \mathcal{A} is zero product determined. In [6], Ghahramani studied the (centeralizers) multipliers on Banach algebras through identity products by consideration of bilinear mapping satisfying a related condition.

Motivated by (1.1) the following concept was introduced in [1].
Definition 1.1. [1] A Banach algebra \mathcal{A} has the property (\mathbb{B}) if for every continuous bilinear mapping $\phi: \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{X}$, where \mathcal{X} is an arbitrary Banach space, the condition (1.1) implies that $\phi(a b, c)=\phi(a, b c)$, for all $a, b, c \in \mathcal{A}$.

Under mild assumptions, the condition $\phi(a b, c)=\phi(a, b c)$ for every $a, b, c \in \mathcal{A}$, implies that \mathcal{A} is zero product determined. For example, if \mathcal{A} is unital, then just take $c=e_{\mathcal{A}}$ and note that T can be defined according to $T(a)=\phi\left(a, e_{\mathcal{A}}\right)$.

However, throughout the paper we focus for nonunital Banach algebras, but we will assume the existence of a left approximate identity.

Recall that a left (right) approximate identity for \mathcal{A} is a net $\left\{e_{\lambda}\right\}_{\lambda \in I}$ in \mathcal{A} such that $e_{\lambda} a \longrightarrow a$ $\left(a e_{\lambda} \longrightarrow a\right)$ for all $a \in \mathcal{A}$. For example, it is known that the C^{*}-algebras have an approximate identity bounded by one [5].

In this paper, we introduce the property (\mathbb{P}), which closely related to the property (\mathbb{B}), and prove that the property (\mathbb{B}) follows from the property (\mathbb{P}). We show that every Banach algebra \mathcal{A} with a left approximate identity is zero product determined if either \mathcal{A} has the property (\mathbb{P}) or it is generated by idempotents.

2. The property (\mathbb{P})

We commence with the next concept which is closely related to the property (\mathbb{B}).
Definition 2.1. A Banach algebra \mathcal{A} has the property (\mathbb{P}) if for every continuous bilinear mapping ϕ from $\mathcal{A} \times \mathcal{A}$ into \mathcal{X}, where \mathcal{X} is an arbitrary Banach space, there exists $k>0$ such that

$$
\begin{equation*}
\|\phi(a, b)\| \leq k\|a b\|, \tag{2.1}
\end{equation*}
$$

for all $a, b \in \mathcal{A}$.
A crucial result of this section is the following theorem which states that the property (\mathbb{P}) implies the property (\mathbb{B}).

Theorem 2.2. Let \mathcal{A} be a Banach algebra with a left approximate identity $\left\{e_{\lambda}\right\}$. If \mathcal{A} has the property (\mathbb{P}), then \mathcal{A} has the property (\mathbb{B}).

Proof. Let $\phi: \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{X}$ be a continuous bilinear mapping. Since \mathcal{A} has the property $(\mathbb{P}), \phi$ preserves zero products. Let \mathcal{A}_{1} denote the algebra \mathcal{A} with an identity adjoined. Define

$$
\phi_{1}: \mathcal{A}_{1} \times \mathcal{A} \longrightarrow \mathcal{X} \quad \text { by } \quad \phi_{1}\left(e_{\mathcal{A}}, a\right)=\lim _{\lambda} \phi\left(e_{\lambda}, a\right) .
$$

Then the limit exists, since \mathcal{A} has the property (\mathbb{P}). Now for every $f \in \mathcal{X}^{*}$ and $a, b \in \mathcal{A}$, let $F: \mathbb{C} \longrightarrow \mathbb{C}$ via

$$
F(z)=f \circ \phi_{1}\left(e^{-z a}, e^{z a} b\right) .
$$

Then F is an entire function and for $z \in \mathbb{C}$,

$$
|F(z)| \leq\|f\|\left\|\mid \phi_{1}\left(e^{-z a}, e^{z a} b\right)\right\| \leq k\|f\|\|b\| .
$$

Thus, by Liouville's Theorem F is constant, and hence the coefficient of z in the power series

$$
\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(-z)^{n}}{n!} \frac{z^{m}}{m!} f \circ \phi_{1}\left(a^{n}, a^{m} b\right)=f \circ \phi_{1}\left(e^{-z a}, e^{z a} b\right)
$$

is zero, i.e.,

$$
f\left(\phi_{1}\left(e_{\mathcal{A}}, a b\right)-\phi_{1}(a, b)\right)=0 .
$$

Since f was arbitrary, $\phi_{1}\left(e_{\mathcal{A}}, a b\right)=\phi_{1}(a, b)$ and hence

$$
\begin{equation*}
\lim _{\lambda} \phi\left(e_{\lambda}, a b\right)=\phi_{1}\left(e_{\mathcal{A}}, a b\right)=\phi_{1}(a, b)=\phi(a, b) . \tag{2.2}
\end{equation*}
$$

Therefore

$$
\phi(a b, c)=\lim _{\lambda} \phi\left(e_{\lambda}, a b c\right)=\phi(a, b c),
$$

for all $a, b, c \in \mathcal{A}$. Consequently, \mathcal{A} has the property (\mathbb{B}).
Corollary 2.3. Let \mathcal{A} be a Banach algebra with a left approximate identity $\left\{e_{\lambda}\right\}$. If \mathcal{A} has the property (\mathbb{P}), then \mathcal{A} is zero product determined.

Proof. Let $\left\{e_{\lambda}\right\}$ be a left approximate identity in \mathcal{A}. Define the continuous linear mapping T : $\mathcal{A} \longrightarrow X \operatorname{via} T(a)=\lim _{\lambda} \phi\left(e_{\lambda}, a\right)$. Then by using Theorem 2.2, we obtain

$$
T(a b)=\phi(a, b),
$$

for all $a, b \in \mathcal{A}$.
Corollary 2.4. Let \mathcal{A} be a Banach algebra with an approximate identity $\left\{e_{\lambda}\right\}$. If \mathcal{A} has the property (\mathbb{P}), then \mathcal{A} is commutative.

Proof. Consider the continuous bilinear mapping $\phi: \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$ defined by $\phi(a, b)=b a$. It follows from Theorem 2.2 that $c b a=\phi(a b, c)=\phi(a, b c)=b c a$, for all $a, b, c \in \mathcal{A}$. Taking $a=e_{\lambda}$, we get $b c=c b$ for all $b, c \in \mathcal{A}$. So \mathcal{A} is commutative.

Corollary 2.5. Let \mathcal{A} be a Banach algebra with a left approximate identity $\left\{e_{\lambda}\right\}$. If \mathcal{A} has the property (\mathbb{P}), then every bilinear mapping $\phi: \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{X}$ is symmetric, that is, $\phi(a, b)=\phi(b, a)$ for all $a, b \in \mathcal{A}$.

Corollary 2.6. Suppose that \mathcal{A} is a Banach algebra with a left approximate identity, and let $f: \mathcal{A} \longrightarrow \mathcal{A}$ be a continuous linear mapping. If \mathcal{A} has the property (\mathbb{P}), then f is a left multiplier.

Proof. Let us define a continuous bilinear mapping $\phi: \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$ by $\phi(a, b)=a f(b)$. Then by using Theorem 2.2, we obtain

$$
a b f(c)=\phi(a b, c)=\phi(a, b c)=a f(b c),
$$

for all $a, b, c \in \mathcal{A}$. Replacing a by e_{λ}, we get $b f(c)=f(b c)$, for all $b, c \in \mathcal{A}$.
Corollary 2.7. Let \mathcal{A} be a Banach algebra with a left approximate identity $\left\{e_{\lambda}\right\}$, and let $f \in \mathcal{A}^{*}$. Iffor all $a \in \mathcal{A}$,

$$
|f(a)| \leq k r(a),
$$

where $r(a)$ is the spectral radius of a, then the bilinear mapping $\phi: \mathcal{A} \times \mathcal{A} \longrightarrow \mathbb{C}$ defined by $\phi(a, b)=f(b a)$ is symmetric.

Proof. For all $a, b \in \mathcal{A}$, we have

$$
|\phi(a, b)|=|f(b a)| \leq k r(b a)=k r(a b) \leq k\|a b\| .
$$

Therefore

$$
\phi(b, a)=f(a b)=\lim _{\lambda} \phi\left(e_{\lambda}, a b\right)=\phi(a, b),
$$

as claimed.

3. Subalgebras generated by idempotents

By the subalgebra of an algebra \mathcal{A} generated by a subset E of \mathcal{A} we mean the linear subspace of \mathcal{A} spanned by the set of all finite products of elements in E.

Theorem 3.1. If the Banach algebra \mathcal{A} is generated by idempotents, then \mathcal{A} has the property (\mathbb{B}).
Proof. Let $\phi: \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{X}$ be a continuous bilinear mapping such that $a b=0$ implies that $\phi(a, b)=0$. Suppose that p is an idempotent in \mathcal{A}. Then for all $a, c \in \mathcal{A}$,

$$
a p(1-p) c=a(1-p) p c=0
$$

Hence

$$
\phi(a p,(1-p) c)=\phi(a(1-p), p c)=0 .
$$

Therefore

$$
\phi(a p, c)=\phi(a p, p c)=\phi(a, p c),
$$

for every idempotent $p \in \mathcal{A}$ and for all $a, c \in \mathcal{A}$. Take

$$
S=\{t \in \mathcal{A}: \phi(a t, c)=\phi(a, t c), \quad a, c \in \mathcal{A}\} .
$$

Now let $b \in \mathcal{A}$ be an arbitrary element. Then $b=\sum_{i=1}^{k} p_{i_{1}} p_{i_{2}} \ldots p_{i_{k}}$, for some idempotents $p_{i_{1}}, \ldots, p_{i_{k}} \in$ \mathcal{A}. Since S is a subalgebra of \mathcal{A} and contains all idempotents,

$$
\begin{equation*}
\phi(a b, c)=\phi(a, b c), \tag{3.1}
\end{equation*}
$$

for all $a, b, c \in \mathcal{A}$. This finishes the proof.
Corollary 3.2. Let \mathcal{A} be a Banach algebra with a bounded left approximate identity. If \mathcal{A} is generated by idempotents, then it is zero product determined.

Combining Theorem 3.1 and [9, Theorem 1] we deduce the next result.
Corollary 3.3. Let \mathcal{A} be a Banach algebra which is generated by k of its elements and by the identity element. Then, for all $n \geq k+2$, the algebra $M_{n}(\mathcal{A})$ of all $n \times n$ matrices with entries in \mathcal{A}, has the property (B).

Let $f: \mathcal{A} \longrightarrow \mathcal{B}$ be a linear mapping between Banach algebras. Then we say that f preserves zero products if

$$
a b=0 \quad \Longrightarrow \quad f(a) f(b)=0, \quad(a, b \in \mathcal{A})
$$

It is obvious that homomorphisms from \mathcal{A} into \mathcal{B} preserve zero products.
Corollary 3.4. Let \mathcal{A} and \mathcal{B} be Banach algebras, and let $f: \mathcal{A} \longrightarrow \mathcal{B}$ be a continuous linear mapping preserving zero products. If \mathcal{A} is generated by idempotents, then

$$
f(a b) f(c)=f(a) f(b c)
$$

Moreover, if \mathcal{A} and \mathcal{B} are unital and $f\left(e_{\mathcal{A}}\right)=e_{\mathcal{B}}$, then f is a homomorphism.
Proof. Define a continuous bilinear mapping $\phi: \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{B}$ by $\phi(a, b)=f(a) f(b)$. If $a b=0$, then $\phi(a, b)=f(a) f(b)=0$ and so the equality (3.1) holds. Thus,

$$
f(a b) f(c)=\phi(a b, c)=\phi(a, b c)=f(a) f(b c)
$$

for all $a, b, c \in \mathcal{A}$. If \mathcal{A} and \mathcal{B} are unital and $f\left(e_{\mathcal{A}}\right)=e_{\mathcal{B}}$, then setting $c=e_{\mathcal{A}}$, we conclude that f is a homomorphism.

Corollary 3.5. Suppose that \mathcal{A} is a topologically simple Banach algebra containing a nontrivial idempotent. Then \mathcal{A} has the property (\mathbb{B}).

Proof. Let p be a nontrivial idempotent $(p \neq 0$ and $p \neq 1)$ in \mathcal{A}. Then p cannot be contained in the centre of \mathcal{A}. This implies that the subalgebra M of \mathcal{A} generated by idempotents contains a nonzero ideal of \mathcal{A} by [2, Lemma 2.1], from which it follows that M is dense in \mathcal{A}. Thus, \mathcal{A} has the property (\mathbb{B}) by Theorem 3.1.

A topological space X is called totally disconnected if for every distinct $x, y \in X$, there exist disjoint open sets U and V such that $x \in U, y \in V$ and $X=U \cup V$.

Next we prove that the Banach algebra $C_{0}(X)$ is generated by idempotents if and only if X is totally disconnected.

Theorem 3.6. The Banach algebra $C_{0}(X)$, for a locally compact Hausdorff space X, is generated by idempotents if and only if X is totally disconnected.

Proof. Suppose that $C_{0}(X)$ is generated by idempotents and let $x, y \in X$. Then by Urysohn's Lemma there exists $f \in C_{0}(X)$ such that $f(x)=1$ and $f(y)=0$. Since every element of the self-adjoint subalgebra generated by idempotents is the form

$$
\begin{equation*}
F=\sum_{i=1}^{k} \alpha_{i} f_{i} \tag{3.2}
\end{equation*}
$$

for some $f_{i} \in C_{0}(X)$ and $\alpha_{i} \in \mathbb{C}$, there is a sequence $\left(F_{n}\right)$ of elements of the form (3.2) such that $F_{n} \longrightarrow f$ uniformly on X. Hence,

$$
\lim _{n} F_{n}(x)=1, \quad \text { and } \quad \lim _{n} F_{n}(y)=0
$$

So there exists a number N such that $\left|F_{N}(x)\right|>1 / 2$ and $\left|F_{N}(y)\right|<1 / 2$. Take

$$
U=F_{N}^{-1}(\{z \in \mathbb{C}:|z|>1 / 2\}) \text { and } V=F_{N}^{-1}(\{z \in \mathbb{C}:|z|<1 / 2\}) .
$$

Then $U \cap V=\varnothing, x \in U, y \in V$ and $X=U \cup V$. Therefore, X is totally disconnected.
Conversely, suppose that X is totally disconnected. Let $x \neq y, x \in U, y \in V$, where U and V are disjoint open sets and $X=U \cup V$. Then the continuous function

$$
f(x)= \begin{cases}1 & x \in U \\ 0 & x \in V\end{cases}
$$

separates x and y. Consequently, by the Stone-Weierstrass theorem the closed self-adjoint subalgebra generated by the idempotents is $C_{0}(X)$.

It follows from [1, Theorem 2.11] that every C^{*}-algebra \mathcal{A} is zero product determined. Now as an upcoming consequence of Theorem 3.6 and Corollary 3.2 we have the following result.

Corollary 3.7. The Banach algebra $C([0,1])$ is zero product determined.
Example 3.8. Let $\mathcal{A}=C([0,1])$. Then by Corollary 3.7, \mathcal{A} is zero product determined. Thus, for every continuous bilinear mapping $\phi: \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{X}$ satisfying (1.1), there exist a linear mapping $T: \mathcal{A} \longrightarrow \mathcal{X}$ such that $\phi(a, b)=T(a b)$ for every $a, b \in \mathcal{A}$. Since T is continuous, there exist $k>0$ such that

$$
\|\phi(a, b)\|=\|T(a b)\| \leq k\|a b\|, \quad a, b \in \mathcal{A} .
$$

Hence \mathcal{A} has the property (\mathbb{P}), for each continuous bilinear mapping ϕ satisfying (1.1).

The following example shows that the converse of Theorem 2.2 is false, in general.
Example 3.9. Let K denote the cross $[-1,1] \cup i[-1,1]$ and let $C^{2 \times 2}(K)$ denote the algebra of all continuous 2×2 matrix functions on a compact set K. Then by [9, Theorem 4], the Banach algebra $\mathcal{A}=C^{2 \times 2}(K)$ is generated by two idempotents and by the identity function. Therefore it has the property (\mathbb{B}) by Theorem 3.1. Since \mathcal{A} is not commutative, it fails to satisfy the property (\mathbb{P}) by Corollary 2.4.

Acknowledgments

The author gratefully acknowledges the helpful comments of the anonymous referees.

References

[1] J. Alaminos, M. Bresar, J. Extremera and A.R. Villena, Maps preserving zero products, Stud. Math., 193, (2009), 131-159.
[2] M. Bresar, Characterizing homomorphisms, multipliers and derivations in rings with idempotents, Proc. R. Soc. Edinb., Sect. A, Math., 137, (2007), 9-21.
[3] M. Bresar, Multiplication algebra and maps determined by zero products, Linear Multilinear Algebra, 60(7), (2012), 763-768.
[4] M. Bresar, M. Grasic and J.S. Ortega, Zero product determined matrix algebras, Linear Algebra Appl., 430, (2009), 1486-1498.
[5] H.G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc., 24, Clarendon Press, Oxford, 2000.
[6] H. Ghahramani, On centeralizers of Banach algebras, Bull. Malays. Math. Sci. Soc., 38(1), (2015), 155-164.
[7] H. Ghahramani, On derivations and Jordan derivations through zero products, Oper. Matrices, 8, (2014), 759-771.
[8] H. Ghahramani, On rings determined by zero products, J. Algebra Appl., 12(8), (2013), 1-15.
[9] N. Krupnik, S. Roch and B. Silbermann, On C*-algebras generated by idempotents, J. Funct. Anal., 137, (1996), 303-319.

[^0]: *Corresponding author
 Email address: zivari@abru.ac.ir, zivari6526@gmail.com (Abbas Zivari-Kazempour)

