

Wavelets and Linear Algebra

http://wala.vru.ac.ir

On zero product determined Banach algebras

Abbas Zivari-Kazempour^{a,*}

^aDepartment of Mathematics, Ayatollah Borujerdi University, Borujerd, Iran.

ARTICLE INFO

Article history:
Received 2 October 2021
Accepted 23 February 2022
Available online 14 March 2022
Communicated by Ali Akbar
Arefijamaal

Keywords:

Banach algebra, Zero product determined, Idempotent, Approximate identity.

2000 MSC:

47B47

ABSTRACT

Let \mathcal{A} be a Banach algebra with a left approximate identity. In this paper, under each of the following conditions, we prove that \mathcal{A} is zero product determined.

- (i) For every continuous bilinear mapping ϕ from $\mathcal{A} \times \mathcal{A}$ into X, where X is a Banach space, there exists k > 0 such that $\|\phi(a,b)\| \le k\|ab\|$, for all $a,b \in \mathcal{A}$.
 - (ii) \mathcal{A} is generated by idempotents.

© (2022) Wavelets and Linear Algebra

1. Introduction

Let \mathcal{A} be a Banach algebra and X be a arbitrary Banach space. Then the continuous bilinear mapping $\phi : \mathcal{A} \times \mathcal{A} \longrightarrow X$ preserves zero products if

$$ab = 0 \implies \phi(a, b) = 0, \quad a, b \in \mathcal{A}.$$
 (1.1)

Email address: zivari@abru.ac.ir, zivari6526@gmail.com (Abbas Zivari-Kazempour)

^{*}Corresponding author

Moreover, \mathcal{A} is said to be *zero product determined* if every continuous zero product preserving bilinear mapping $\phi : \mathcal{A} \times \mathcal{A} \longrightarrow X$ is implemented by a linear map $T : \mathcal{A} \longrightarrow X$, i.e., $\phi(a,b) = T(ab)$ for all $a,b \in \mathcal{A}$.

Characterizing homomorphisms, derivations and multipliers on Banach algebras, matrix algebras and C^* -algebras through the action on zero products have been studied by many authors, see for example [1, 2, 3, 4, 6, 7, 8] and the references therein.

In [2], Bresar proved that if \mathcal{A} is a unital Banach algebra and $\mathcal{A} = \mathcal{J}(\mathcal{A})$, where $\mathcal{J}(\mathcal{A})$ is the subalgebra of \mathcal{A} generated by all idempotents, then \mathcal{A} is zero product determined. Bresar *et.al.* proved in [4] that the matrix algebra $M_n(\mathcal{A})$ of $n \times n$ matrices over a unital algebra \mathcal{A} is zero product determined. In [6], Ghahramani studied the (centeralizers) multipliers on Banach algebras through identity products by consideration of bilinear mapping satisfying a related condition.

Motivated by (1.1) the following concept was introduced in [1].

Definition 1.1. [1] A Banach algebra \mathcal{A} has the property (\mathbb{B}) if for every continuous bilinear mapping $\phi : \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{X}$, where \mathcal{X} is an arbitrary Banach space, the condition (1.1) implies that $\phi(ab,c) = \phi(a,bc)$, for all $a,b,c \in \mathcal{A}$.

Under mild assumptions, the condition $\phi(ab,c) = \phi(a,bc)$ for every $a,b,c \in \mathcal{A}$, implies that \mathcal{A} is zero product determined. For example, if \mathcal{A} is unital, then just take $c = e_{\mathcal{A}}$ and note that T can be defined according to $T(a) = \phi(a,e_{\mathcal{A}})$.

However, throughout the paper we focus for nonunital Banach algebras, but we will assume the existence of a left approximate identity.

Recall that a left (right) approximate identity for \mathcal{A} is a net $\{e_{\lambda}\}_{{\lambda}\in I}$ in \mathcal{A} such that $e_{\lambda}a\longrightarrow a$ ($ae_{\lambda}\longrightarrow a$) for all $a\in\mathcal{A}$. For example, it is known that the C^* -algebras have an approximate identity bounded by one [5].

In this paper, we introduce the property (\mathbb{P}) , which closely related to the property (\mathbb{B}) , and prove that the property (\mathbb{B}) follows from the property (\mathbb{P}) . We show that every Banach algebra \mathcal{A} with a left approximate identity is zero product determined if either \mathcal{A} has the property (\mathbb{P}) or it is generated by idempotents.

2. The property (\mathbb{P})

We commence with the next concept which is closely related to the property (\mathbb{B}) .

Definition 2.1. A Banach algebra \mathcal{A} *has the property* (\mathbb{P}) if for every continuous bilinear mapping ϕ from $\mathcal{A} \times \mathcal{A}$ into X, where X is an arbitrary Banach space, there exists k > 0 such that

$$\|\phi(a,b)\| \le k\|ab\|,\tag{2.1}$$

for all $a, b \in \mathcal{A}$.

A crucial result of this section is the following theorem which states that the property (\mathbb{P}) implies the property (\mathbb{B}) .

Theorem 2.2. Let \mathcal{A} be a Banach algebra with a left approximate identity $\{e_{\lambda}\}$. If \mathcal{A} has the property (\mathbb{P}) , then \mathcal{A} has the property (\mathbb{B}) .

Proof. Let $\phi : \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{X}$ be a continuous bilinear mapping. Since \mathcal{A} has the property (\mathbb{P}) , ϕ preserves zero products. Let \mathcal{A}_1 denote the algebra \mathcal{A} with an identity adjoined. Define

$$\phi_1: \mathcal{A}_1 \times \mathcal{A} \longrightarrow \mathcal{X}$$
 by $\phi_1(e_{\mathcal{A}}, a) = \lim_{\lambda} \phi(e_{\lambda}, a)$.

Then the limit exists, since \mathcal{A} has the property (\mathbb{P}). Now for every $f \in \mathcal{X}^*$ and $a, b \in \mathcal{A}$, let $F : \mathbb{C} \longrightarrow \mathbb{C}$ via

$$F(z) = f \circ \phi_1(e^{-za}, e^{za}b).$$

Then F is an entire function and for $z \in \mathbb{C}$,

$$|F(z)| \le ||f|| ||\phi_1(e^{-za}, e^{za}b)|| \le k||f|| ||b||.$$

Thus, by Liouville's Theorem F is constant, and hence the coefficient of z in the power series

$$\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(-z)^n}{n!} \frac{z^m}{m!} f \circ \phi_1(a^n, a^m b) = f \circ \phi_1(e^{-za}, e^{za}b)$$

is zero, i.e.,

$$f(\phi_1(e_{\mathcal{A}},ab) - \phi_1(a,b)) = 0.$$

Since f was arbitrary, $\phi_1(e_{\mathcal{A}}, ab) = \phi_1(a, b)$ and hence

$$\lim_{\lambda} \phi(e_{\lambda}, ab) = \phi_1(e_{\mathcal{A}}, ab) = \phi_1(a, b) = \phi(a, b). \tag{2.2}$$

Therefore

$$\phi(ab,c) = \lim_{\lambda} \phi(e_{\lambda},abc) = \phi(a,bc),$$

for all $a, b, c \in \mathcal{A}$. Consequently, \mathcal{A} has the property (\mathbb{B}) .

Corollary 2.3. Let \mathcal{A} be a Banach algebra with a left approximate identity $\{e_{\lambda}\}$. If \mathcal{A} has the property (\mathbb{P}) , then \mathcal{A} is zero product determined.

Proof. Let $\{e_{\lambda}\}$ be a left approximate identity in \mathcal{A} . Define the continuous linear mapping $T: \mathcal{A} \longrightarrow \mathcal{X}$ via $T(a) = \lim \phi(e_{\lambda}, a)$. Then by using Theorem 2.2, we obtain

$$T(ab) = \phi(a, b),$$

for all $a, b \in \mathcal{A}$.

Corollary 2.4. *Let* \mathcal{A} *be a Banach algebra with an approximate identity* $\{e_{\lambda}\}$ *. If* \mathcal{A} *has the property* (\mathbb{P}) *, then* \mathcal{A} *is commutative.*

Proof. Consider the continuous bilinear mapping $\phi: \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$ defined by $\phi(a,b) = ba$. It follows from Theorem 2.2 that $cba = \phi(ab,c) = \phi(a,bc) = bca$, for all $a,b,c \in \mathcal{A}$. Taking $a = e_{\lambda}$, we get bc = cb for all $b,c \in \mathcal{A}$. So \mathcal{A} is commutative.

Corollary 2.5. Let \mathcal{A} be a Banach algebra with a left approximate identity $\{e_{\lambda}\}$. If \mathcal{A} has the property (\mathbb{P}) , then every bilinear mapping $\phi: \mathcal{A} \times \mathcal{A} \longrightarrow X$ is symmetric, that is, $\phi(a,b) = \phi(b,a)$ for all $a,b \in \mathcal{A}$.

Corollary 2.6. Suppose that \mathcal{A} is a Banach algebra with a left approximate identity, and let $f: \mathcal{A} \longrightarrow \mathcal{A}$ be a continuous linear mapping. If \mathcal{A} has the property (\mathbb{P}) , then f is a left multiplier.

Proof. Let us define a continuous bilinear mapping $\phi : \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$ by $\phi(a, b) = af(b)$. Then by using Theorem 2.2, we obtain

$$ab f(c) = \phi(ab, c) = \phi(a, bc) = af(bc),$$

for all $a, b, c \in \mathcal{A}$. Replacing a by e_{λ} , we get bf(c) = f(bc), for all $b, c \in \mathcal{A}$.

Corollary 2.7. Let \mathcal{A} be a Banach algebra with a left approximate identity $\{e_{\lambda}\}$, and let $f \in \mathcal{A}^*$. If for all $a \in \mathcal{A}$,

$$|f(a)| \le kr(a),$$

where r(a) is the spectral radius of a, then the bilinear mapping $\phi : \mathcal{A} \times \mathcal{A} \longrightarrow \mathbb{C}$ defined by $\phi(a,b) = f(ba)$ is symmetric.

Proof. For all $a, b \in \mathcal{A}$, we have

$$|\phi(a,b)| = |f(ba)| \le kr(ba) = kr(ab) \le k||ab||.$$

Therefore

$$\phi(b,a) = f(ab) = \lim_{\lambda} \phi(e_{\lambda}, ab) = \phi(a,b),$$

as claimed.

3. Subalgebras generated by idempotents

By the subalgebra of an algebra \mathcal{A} generated by a subset E of \mathcal{A} we mean the linear subspace of \mathcal{A} spanned by the set of all finite products of elements in E.

Theorem 3.1. *If the Banach algebra* \mathcal{A} *is generated by idempotents, then* \mathcal{A} *has the property* (\mathbb{B}) .

Proof. Let $\phi : \mathcal{A} \times \mathcal{A} \longrightarrow X$ be a continuous bilinear mapping such that ab = 0 implies that $\phi(a,b) = 0$. Suppose that p is an idempotent in \mathcal{A} . Then for all $a,c \in \mathcal{A}$,

$$ap(1-p)c = a(1-p)pc = 0.$$

Hence

$$\phi(ap, (1-p)c) = \phi(a(1-p), pc) = 0.$$

Therefore

$$\phi(ap, c) = \phi(ap, pc) = \phi(a, pc),$$

for every idempotent $p \in \mathcal{A}$ and for all $a, c \in \mathcal{A}$. Take

$$S = \{t \in \mathcal{A} : \phi(at, c) = \phi(a, tc), a, c \in \mathcal{A}\}.$$

Now let $b \in \mathcal{A}$ be an arbitrary element. Then $b = \sum_{i=1}^k p_{i_1} p_{i_2} ... p_{i_k}$, for some idempotents $p_{i_1}, ..., p_{i_k} \in \mathcal{A}$. Since S is a subalgebra of \mathcal{A} and contains all idempotents,

$$\phi(ab,c) = \phi(a,bc),\tag{3.1}$$

for all $a, b, c \in \mathcal{A}$. This finishes the proof.

Corollary 3.2. Let \mathcal{A} be a Banach algebra with a bounded left approximate identity. If \mathcal{A} is generated by idempotents, then it is zero product determined.

Combining Theorem 3.1 and [9, Theorem 1] we deduce the next result.

Corollary 3.3. Let \mathcal{A} be a Banach algebra which is generated by k of its elements and by the identity element. Then, for all $n \geq k + 2$, the algebra $M_n(\mathcal{A})$ of all $n \times n$ matrices with entries in \mathcal{A} , has the property (B).

Let $f: \mathcal{A} \longrightarrow \mathcal{B}$ be a linear mapping between Banach algebras. Then we say that f preserves zero products if

$$ab = 0 \implies f(a)f(b) = 0, (a, b \in \mathcal{A}).$$

It is obvious that homomorphisms from \mathcal{A} into \mathcal{B} preserve zero products.

Corollary 3.4. Let \mathcal{A} and \mathcal{B} be Banach algebras, and let $f: \mathcal{A} \longrightarrow \mathcal{B}$ be a continuous linear mapping preserving zero products. If \mathcal{A} is generated by idempotents, then

$$f(ab)f(c) = f(a)f(bc).$$

Moreover, if \mathcal{A} and \mathcal{B} are unital and $f(e_{\mathcal{A}}) = e_{\mathcal{B}}$, then f is a homomorphism.

Proof. Define a continuous bilinear mapping $\phi : \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{B}$ by $\phi(a,b) = f(a)f(b)$. If ab = 0, then $\phi(a,b) = f(a)f(b) = 0$ and so the equality (3.1) holds. Thus,

$$f(ab)f(c) = \phi(ab,c) = \phi(a,bc) = f(a)f(bc),$$

for all $a, b, c \in \mathcal{A}$. If \mathcal{A} and \mathcal{B} are unital and $f(e_{\mathcal{A}}) = e_{\mathcal{B}}$, then setting $c = e_{\mathcal{A}}$, we conclude that f is a homomorphism.

Corollary 3.5. Suppose that \mathcal{A} is a topologically simple Banach algebra containing a nontrivial idempotent. Then \mathcal{A} has the property (\mathbb{B}) .

Proof. Let p be a nontrivial idempotent ($p \neq 0$ and $p \neq 1$) in \mathcal{A} . Then p cannot be contained in the centre of \mathcal{A} . This implies that the subalgebra M of \mathcal{A} generated by idempotents contains a nonzero ideal of \mathcal{A} by [2, Lemma 2.1], from which it follows that M is dense in \mathcal{A} . Thus, \mathcal{A} has the property (\mathbb{B}) by Theorem 3.1.

A topological space X is called *totally disconnected* if for every distinct $x, y \in X$, there exist disjoint open sets U and V such that $x \in U$, $y \in V$ and $X = U \cup V$.

Next we prove that the Banach algebra $C_0(X)$ is generated by idempotents if and only if X is totally disconnected.

Theorem 3.6. The Banach algebra $C_0(X)$, for a locally compact Hausdorff space X, is generated by idempotents if and only if X is totally disconnected.

Proof. Suppose that $C_0(X)$ is generated by idempotents and let $x, y \in X$. Then by Urysohn's Lemma there exists $f \in C_0(X)$ such that f(x) = 1 and f(y) = 0. Since every element of the self-adjoint subalgebra generated by idempotents is the form

$$F = \sum_{i=1}^{k} \alpha_i f_i, \tag{3.2}$$

for some $f_i \in C_0(X)$ and $\alpha_i \in \mathbb{C}$, there is a sequence (F_n) of elements of the form (3.2) such that $F_n \longrightarrow f$ uniformly on X. Hence,

$$\lim_{n} F_n(x) = 1, \quad and \quad \lim_{n} F_n(y) = 0.$$

So there exists a number N such that $|F_N(x)| > 1/2$ and $|F_N(y)| < 1/2$. Take

$$U=F_N^{-1}(\{z\in\mathbb{C}:\ |z|>1/2\})\ \ and\ \ V=F_N^{-1}(\{z\in\mathbb{C}:\ |z|<1/2\}).$$

Then $U \cap V = \emptyset$, $x \in U$, $y \in V$ and $X = U \cup V$. Therefore, X is totally disconnected.

Conversely, suppose that X is totally disconnected. Let $x \neq y$, $x \in U$, $y \in V$, where U and V are disjoint open sets and $X = U \cup V$. Then the continuous function

$$f(x) = \begin{cases} 1 & x \in U, \\ 0 & x \in V, \end{cases}$$

separates x and y. Consequently, by the Stone-Weierstrass theorem the closed self-adjoint subalgebra generated by the idempotents is $C_0(X)$.

It follows from [1, Theorem 2.11] that every C^* -algebra \mathcal{A} is zero product determined. Now as an upcoming consequence of Theorem 3.6 and Corollary 3.2 we have the following result.

Corollary 3.7. The Banach algebra C([0,1]) is zero product determined.

Example 3.8. Let $\mathcal{A} = C([0,1])$. Then by Corollary 3.7, \mathcal{A} is zero product determined. Thus, for every continuous bilinear mapping $\phi : \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{X}$ satisfying (1.1), there exist a linear mapping $T : \mathcal{A} \longrightarrow \mathcal{X}$ such that $\phi(a,b) = T(ab)$ for every $a,b \in \mathcal{A}$. Since T is continuous, there exist k > 0 such that

$$||\phi(a,b)|| = ||T(ab)|| \le k||ab||, \quad a,b \in \mathcal{A}.$$

Hence \mathcal{A} has the property (\mathbb{P}), for each continuous bilinear mapping ϕ satisfying (1.1).

The following example shows that the converse of Theorem 2.2 is false, in general.

Example 3.9. Let K denote the cross $[-1,1] \cup i[-1,1]$ and let $C^{2\times 2}(K)$ denote the algebra of all continuous 2×2 matrix functions on a compact set K. Then by [9, Theorem 4], the Banach algebra $\mathcal{A} = C^{2\times 2}(K)$ is generated by two idempotents and by the identity function. Therefore it has the property (\mathbb{B}) by Theorem 3.1. Since \mathcal{A} is not commutative, it fails to satisfy the property (\mathbb{P}) by Corollary 2.4.

Acknowledgments

The author gratefully acknowledges the helpful comments of the anonymous referees.

References

- [1] J. Alaminos, M. Bresar, J. Extremera and A.R. Villena, Maps preserving zero products, *Stud. Math.*, **193**, (2009), 131–159.
- [2] M. Bresar, Characterizing homomorphisms, multipliers and derivations in rings with idempotents, *Proc. R. Soc. Edinb., Sect. A, Math.*, **137**, (2007), 9–21.
- [3] M. Bresar, Multiplication algebra and maps determined by zero products, *Linear Multilinear Algebra*, **60**(7), (2012), 763–768.
- [4] M. Bresar, M. Grasic and J.S. Ortega, Zero product determined matrix algebras, *Linear Algebra Appl.*, **430**, (2009), 1486–1498.
- [5] H.G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc., 24, Clarendon Press, Oxford, 2000.
- [6] H. Ghahramani, On centeralizers of Banach algebras, Bull. Malays. Math. Sci. Soc., 38(1), (2015), 155–164.
- [7] H. Ghahramani, On derivations and Jordan derivations through zero products, *Oper. Matrices*, **8**, (2014), 759–771.
- [8] H. Ghahramani, On rings determined by zero products, J. Algebra Appl., 12(8), (2013), 1–15.
- [9] N. Krupnik, S. Roch and B. Silbermann, On C*-algebras generated by idempotents, *J. Funct. Anal.*, **137**, (1996), 303–319.