Jensen's inequality and m-convex functions

Hasan Barsam ${ }^{\text {a,*, }}$, Yamin Sayyari ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Faculty of Science, University of Jiroft, P.O. BOX 78671-61167, Jiroft, Iran.
${ }^{b}$ Department of Mathematics, Sirjan University of Technology, Sirjan, Iran.

Article Info

Article history:
Received 31 August 2021
Accepted 13 January 2022
Available online 14 March 2022
Communicated by Farshid Abdollahi

Keywords:

Jensen's inequality, m-convex function, Convex function, Inequality.

2000 MSC:
26A51, 26B25, 26D20, 26D07

Abstract

In this paper, we generalize the Jensen's inequality for m-convex functions and we present a correction of Jensen's inequality which is a better than the generalization of this inequality for m-convex functions. Finally we have found new lower and upper bounds for Jensen's discrete inequality. (C) (2022) Wavelets and Linear Algebra

1. Introduction

The theory of inequalities began its development from the time when C. F. Gacss, A. L. Cathy and P. L. Cebysey, to mention only the most important, laid the theoretical foundation for approximative methods (see[7]). In ([1],[2],[8],[9],[10]) the authors provided a brief survey of general

[^0]properties of m-convex functions, uniformly functions and etc. In [5], the authors extended the Jensen inequality and apply it to derive some useful lower bounds for various entropy measures of discrete random variables. In [3], the authors obtained two converses of Jensen integral inequality for convex function. In this paper, we generalize the Jensen's inequality for m-convex functions and we have found new lower and upper bounds for Jensen's discrete inequality.

Definition 1.1. Let $I \subseteq \mathbb{R}$ be an interval. A function $f: I \longrightarrow \mathbb{R}$ is said to be convex if the inequality

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

holds for any $x, y \in I$ and $\lambda \in[0,1]$.
Definition 1.2. ([6], [4])Let $[0, c] \subset \mathbb{R}$ be a bounded closed interval with $c>0$, and let $m \in[0,1]$. A function $f:[0, c] \longrightarrow \mathbb{R}$ is said to be m-convex if the inequality

$$
f(t x+m(1-t) y) \leq t f(x)+m(1-t) f(y),
$$

holds for any $x, y \in[0, c]$ and $t \in[0,1]$.
Definition 1.3. Let $x_{1}, \ldots, x_{n} \in I$ and $p_{1}, \ldots, p_{n} \in[0,1]$ be such that $\sum_{i=1}^{n} p_{i}=1$. The sum

$$
\sum_{i=1}^{n} p_{i} x_{i}
$$

is called the convex combination of points x_{i}.
Theorem 1.4. (Jensen's Inequality) Let $f: I \longrightarrow \mathbb{R}$ be a convex function. Then the inequality

$$
f\left(\sum_{i=1}^{n} p_{i} x_{i}\right) \leq \sum_{i=1}^{n} p_{i} f\left(x_{i}\right)
$$

holds for every convex combination $\sum_{i=1}^{n} p_{i} x_{i}$ of points $x_{i} \in I$.
Theorem 1.5. [11] If f is a convex function on I, then

$$
\begin{aligned}
0 & \leq \max _{0 \leq \mu \leq \nu \leq n}\left\{p_{\mu} f\left(x_{\mu}\right)+p_{\nu} f\left(x_{\nu}\right)-\left(p_{\mu}+p_{v}\right) f\left(\frac{p_{\mu} x_{\mu}+p_{\nu} x_{v}}{p_{\mu}+p_{\nu}}\right)\right\} \\
& \leq \sum_{i=1}^{n} p_{i} f\left(x_{i}\right)-f\left(\sum_{i=1}^{n} p_{i} x_{i}\right) .
\end{aligned}
$$

2. main results

In this section, we use numbers $c>0, m \in(0,1]$ and $n \in \mathbb{N}$.
Lemma 2.1. [6] Let $f:[0, c] \longrightarrow \mathbb{R}$ be a m-convex function and $f(0) \leq 0$. Then $f(t x) \leq t f(x)$, for all $x \in[0, c]$ and $t \in[0,1]$.

In the sequel, we shall prove some properties of m-convex functions.
Lemma 2.2. Let $f:[0, c] \longrightarrow \mathbb{R}$ be a m-convex function. If $r, s, n \in \mathbb{N}$ and $r<s<n$ and $y \in\left[0, m^{n} c\right]$ then

$$
m^{r} f\left(\frac{y}{m^{r}}\right) \leq m^{s} f\left(\frac{y}{m^{s}}\right) \leq m^{n} f\left(\frac{y}{m^{n}}\right) .
$$

Proof. By the use of Lemma 2.1 we have

$$
f(m y) \leq m f(y) \leq m^{2} f\left(\frac{y}{m}\right) \leq m^{3} f\left(\frac{y}{m^{2}}\right) \leq \ldots \leq m^{n+1} f\left(\frac{y}{m^{n}}\right),
$$

thus $m^{r+1} f\left(\frac{y}{m^{r}}\right) \leq m^{s+1} f\left(\frac{y}{m^{s}}\right)$, and $m^{r} f\left(\frac{y}{m^{r}}\right) \leq m^{s} f\left(\frac{y}{m^{s}}\right) \leq m^{n} f\left(\frac{y}{m^{n}}\right)$.
Lemma 2.3. Let f be a m-convex function and $x \in[0, c] 0 \leq p, q$ and $p+q=1$, then for every $x \in[0, c]$

1. $f(p x) \leq p f(x)+q m f(0)$ and $f(q x) \leq q f(x)+p m f(0)$,
2. $f(p x)+f(q x) \leq f(x)+m f(0)$.

Proof. 1. $f(p x)=f(p x+q \times 0) \leq p f(x)+m q f\left(\frac{0}{m}\right)=p f(x)+m q f(0)$, and similarly $f(q x) \leq$ $q f(x)+p m f(0)$.
2. Suppose that $p+q=1$. By using (1), we have

$$
f(p x)+f(q x) \leq p f(x)+q m f(0)+q f(x)+p m f(0)=f(x)+m f(0) .
$$

Lemma 2.4. If f is a m-convex function such that $f(0) \leq 0$ and n is a natural number then f is a m^{n}-convex function.

Proof. Suppose that $x, y \in[0, c]$

$$
f\left(t x+m^{n}(1-t) y\right) \leq t f(x)+m(1-t) f\left(m^{n-1} y\right) \leq t f(x)+m^{n}(1-t) f(y) .
$$

Therefore, f is a m^{n}-convex function.
In the following we give the Jensen inequality for m-convex function.
Theorem 2.5. Let $f:[0, c] \longrightarrow \mathbb{R}$ be a m-convex function. Then the inequality

$$
\begin{equation*}
f\left(\sum_{i=0}^{n} p_{i} x_{i}\right) \leq \sum_{i=0}^{n} m^{i} p_{i} f\left(\frac{x_{i}}{m^{i}}\right) \tag{2.1}
\end{equation*}
$$

holds for any convex combination $\sum_{i=0}^{n} p_{i} x_{i}$ of points $x_{i} \in\left[0, m^{n} c\right]$.

Proof. Note that points $\frac{x_{i}}{m^{i}}$ belong to $[0, c]$. Namely, since $x_{i} \leq m^{n} c$, it follows that

$$
\frac{x_{i}}{m^{i}} \leq m^{n-i} c \leq c .
$$

The proof can be done by applying mathematical induction. For $n=1$ is obvious. To prove for $n \geq 2$, we assume that the inequality in (2.1) applies to all convex combinations having less than or equal to n members. So,

$$
\begin{aligned}
f\left(\sum_{i=0}^{n+1} p_{i} x_{i}\right) & =f\left(p_{0} x_{0}+\left(1-p_{0}\right) \sum_{i=1}^{n+1} \frac{p_{i} x_{i}}{1-p_{0}}\right) \\
& \leq p_{0} f\left(x_{0}\right)+m\left(1-p_{0}\right) f\left(\sum_{i=1}^{n+1} \frac{p_{i} x_{i}}{m\left(1-p_{0}\right)}\right) \\
& =p_{0} f\left(x_{0}\right)+m\left(1-p_{0}\right) f\left(\sum_{i=0}^{n} \frac{p_{i+1} x_{i+1}}{m\left(1-p_{0}\right)}\right) \\
& \leq p_{0} f\left(x_{0}\right)+\sum_{i=0}^{n} m^{i} \frac{p_{i+1}}{1-p_{0}} f\left(\frac{x_{i+1}}{m \times m^{i}}\right) \\
& =p_{0} f\left(x_{0}\right)+\sum_{i=0}^{n} m^{i} \frac{p_{i+1}}{1-p_{0}} f\left(\frac{x_{i+1}}{m^{i+1}}\right) \\
& =\sum_{i=0}^{n+1} m^{i} p_{i} f\left(\frac{x_{i}}{m^{i}}\right) .
\end{aligned}
$$

Theorem 2.6. Let f be a m-convex function and r, s, n be natural numbers such that $0 \leq r<s \leq n$, then

$$
\begin{aligned}
0 & \leq \max _{0 \leq r<s \leq n}\left\{m^{r} p_{r} f\left(\frac{x_{r}}{m^{r}}\right)+m^{s} p_{s} f\left(\frac{x_{s}}{m^{s}}\right)-m^{r}\left(p_{r}+p_{s}\right) f\left(\frac{p_{r} x_{r}+p_{s} x_{s}}{m^{r}\left(p_{r}+p_{s}\right)}\right)\right\} \\
& \leq \sum_{i=0}^{n} m^{i} p_{i} f\left(\frac{x_{i}}{m^{i}}\right)-f\left(\sum_{i=0}^{n} p_{i} x_{i}\right) .
\end{aligned}
$$

Proof. Suppose that,

$$
\left\{\begin{array}{l}
q_{i}=p_{i}, \quad i \neq r, s \\
q_{r}=p_{r}+p_{s} \\
q_{s}=0
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
y_{i}=x_{i}, \quad i \neq r \\
y_{r}=\frac{p_{r} x_{r}+p_{s} x_{s}}{p_{r}+p_{s}}
\end{array}\right.
$$

then $\sum_{i=0}^{n} q_{i}=1$ and Theorem 2.5 follows that

$$
\begin{aligned}
f\left(\sum_{i=0}^{n} p_{i} x_{i}\right) & =f\left(\sum_{i=0}^{n} q_{i} y_{i}\right) \\
& \leq \sum_{i=0}^{n} m^{i} q_{i} f\left(\frac{y_{i}}{m^{i}}\right) \\
& =\sum_{i \neq r, s}^{n} m^{i} q_{i} f\left(\frac{y_{i}}{m^{i}}\right)+m^{r} q_{r} f\left(\frac{y_{r}}{m^{r}}\right)+m^{s} q_{s} f\left(\frac{y_{s}}{m^{s}}\right) \\
& =\sum_{i \neq r, s}^{n} m^{i} p_{i} f\left(\frac{x_{i}}{m^{i}}\right)+m^{r}\left(p_{r}+p_{s}\right) f\left(\frac{p_{r} x_{r}+p_{s} x_{s}}{m^{r}\left(p_{r}+x_{r}\right)}\right) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
m^{r} p_{r} f\left(\frac{x_{r}}{m^{r}}\right)+m^{s} p_{s} f\left(\frac{x_{s}}{m^{s}}\right) & -m^{r}\left(p_{r}+p_{s}\right) f\left(\frac{p_{r} x_{r}+p_{s} x_{s}}{m^{r}\left(p_{r}+p_{s}\right)}\right) \\
& \leq \sum_{i=0}^{n} m^{i} p_{i} f\left(\frac{x_{i}}{m^{i}}\right)-f\left(\sum_{i=0}^{n} p_{i} x_{i}\right) .
\end{aligned}
$$

Thus the theorem is proved.
Corollary 2.7. Let f be a m-convex function and $0 \leq r<s \leq n$ are arbitrary, then

$$
\begin{aligned}
& f\left(\sum_{i=0}^{n} p_{i} x_{i}\right) \leq \sum_{i \neq r, s} m^{i} p_{i} f\left(\frac{x_{i}}{m^{i}}\right)+m^{r}\left(p_{r}+p_{s}\right) f\left(\frac{p_{r} x_{r}+p_{s} x_{s}}{m^{r}\left(p_{r}+p_{s}\right)}\right) \\
& \leq \sum_{i \neq r, s} m^{i} p_{i} f\left(\frac{x_{i}}{m^{i}}\right)+m^{s}\left(p_{r}+p_{s}\right) f\left(\frac{p_{r} x_{r}+p_{s} x_{s}}{m^{s}\left(p_{r}+p_{s}\right)}\right) \\
& \leq \sum_{i \neq r, s} m^{i} p_{i} f\left(\frac{x_{i}}{m^{i}}\right)+m^{n}\left(p_{r}+p_{s}\right) f\left(\frac{p_{r} x_{r}+p_{s} x_{s}}{m^{n}\left(p_{r}+p_{s}\right)}\right) \\
& \leq m^{n}\left\{\sum_{i \neq r, s} p_{i} f\left(\frac{x_{i}}{m^{n}}\right)+\left(p_{r}+p_{s}\right) f\left(\frac{p_{r} x_{r}+p_{s} x_{s}}{m^{n}\left(p_{r}+p_{s}\right)}\right)\right\} .
\end{aligned}
$$

Corollary 2.8. Let f be a m-convex function and $0 \leq r<s \leq n$ are arbitrary, then

$$
\begin{aligned}
& \max _{0 \leq r<s \leq n}\left\{m^{r} p_{r} f\left(\frac{x_{r}}{m^{r}}\right)+m^{s} p_{s} f\left(\frac{x_{s}}{m^{s}}\right)-m^{n}\left(p_{r}+p_{s}\right) f\left(\frac{p_{r} x_{r}+p_{s} x_{s}}{m^{n}\left(p_{r}+p_{s}\right)}\right)\right\} \\
& \leq \max _{0 \leq r<s \leq n}\left\{m^{r} p_{r} f\left(\frac{x_{r}}{m^{r}}\right)+m^{s} p_{s} f\left(\frac{x_{s}}{m^{s}}\right)-m^{s}\left(p_{r}+p_{s}\right) f\left(\frac{p_{r} x_{r}+p_{s} x_{s}}{m^{s}\left(p_{r}+p_{s}\right)}\right)\right\} \\
& \leq \max _{0 \leq r<s \leq n}\left\{m^{r} p_{r} f\left(\frac{x_{r}}{m^{r}}\right)+m^{s} p_{s} f\left(\frac{x_{s}}{m^{s}}\right)-m^{r}\left(p_{r}+p_{s}\right) f\left(\frac{p_{r} x_{r}+p_{s} x_{s}}{m^{r}\left(p_{r}+p_{s}\right)}\right)\right\} \\
& \leq \sum_{i=0}^{n} m^{i} p_{i} f\left(\frac{x_{i}}{m^{i}}\right)-f\left(\sum_{i=0}^{n} p_{i} x_{i}\right) .
\end{aligned}
$$

Another results with respect to m-convex function as follows:
Theorem 2.9. Let $f:[0, c] \longrightarrow[0,+\infty)$ be a m-convex function and $0 \leq x_{i} \leq m^{n} c$ for every $0 \leq i \leq n$. If f is continuous on $[0, c]$ and $f^{\prime}(x)$ exists on $(0, c)$ and $f(0)=f^{\prime}\left(0^{+}\right)=0$, then

$$
0 \leq \sum_{i=0}^{n} m^{i} p_{i} f\left(\frac{x_{i}}{m^{i}}\right)-f\left(\sum_{i=0}^{n} p_{i} x_{i}\right) \leq f(c)
$$

Proof. Since $0 \leq x_{i} \leq m^{n} c\left(0 \leq \frac{x_{i}}{m^{i}} \leq \frac{x_{i}}{m^{n}} \leq c\right)$, there is a sequence $\left\{\lambda_{i}\right\}_{i}, 0 \leq \lambda_{i} \leq 1$, such that $x_{i}=\lambda_{i} m^{i} c$. Hence,

$$
\begin{aligned}
I & =\sum_{i=0}^{n} m^{i} p_{i} f\left(\frac{x_{i}}{m^{i}}\right)-f\left(\sum_{i=0}^{n} p_{i} x_{i}\right) \\
& =\sum_{i=0}^{n} m^{i} p_{i} f\left(\frac{\lambda_{i} m^{i} c}{m^{i}}\right)-f\left(\sum_{i=0}^{n} p_{i} \lambda_{i} m^{i} c\right) \\
& =\sum_{i=0}^{n} m^{i} p_{i} f\left(\lambda_{i} c\right)-f(p c), \text { where } \sum_{i=0}^{n} p_{i} \lambda_{i} m^{i}=p \\
& \leq \sum_{i=0}^{n} m^{i} p_{i}\left(\lambda_{i} f(c)+m\left(1-\lambda_{i}\right) f(0)\right)-f(p c), \text { Lemma } 2.3 \\
& =p f(c)-f(p c), \text { since } f(0)=0 .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\sum_{i=0}^{n} m^{i} p_{i} f\left(\frac{x_{i}}{m^{i}}\right)-f\left(\sum_{i=0}^{n} p_{i} x_{i}\right) \leq p f(c)-f(p c) . \tag{2.2}
\end{equation*}
$$

On the other hand for any $x \in[0, c]$ have

$$
f\left(\frac{1}{2} p x\right)=f\left(\frac{1}{2} p x+\frac{1}{2} \times 0\right) \leq \frac{1}{2} f(p x)+\frac{m}{2} f\left(\frac{0}{m}\right)=\frac{1}{2} f(p x)+\frac{m}{2} f(0) .
$$

So $-f(p x) \leq-2 f\left(\frac{1}{2} p x\right)$. Hence,

$$
-f(p x) \leq-2 f\left(\frac{1}{2} p x\right) \leq-4 f\left(\frac{1}{4} p x\right) \leq \ldots .
$$

Therefore by using (2.2),

$$
\begin{align*}
I & =\sum_{i=0}^{n} m^{i} p_{i} f\left(\frac{x_{i}}{m^{i}}\right)-f\left(\sum_{i=0}^{n} p_{i} x_{i}\right) \tag{2.3}\\
& \leq p f(c)-f(p c) \leq p f(c)-2 f\left(\frac{1}{2} p c\right) \\
& \leq p f(c)-4 f\left(\frac{1}{4} p c\right) \leq \ldots \leq p f(c)-2^{k} f\left(\frac{1}{2^{k}} p c\right)
\end{align*}
$$

for any $k \in \mathbb{N}$. But $f(0)=0$, so

$$
\begin{equation*}
\lim _{k \rightarrow \infty} 2^{k} f\left(\frac{1}{2^{k}} p c\right)=p c \lim _{x \rightarrow 0^{+}} \frac{f(x)}{x}=p c f^{\prime}\left(0^{+}\right)=0 \tag{2.4}
\end{equation*}
$$

Two relations 2.3 and 2.4 mean that

$$
I=\sum_{i=0}^{n} m^{i} p_{i} f\left(\frac{x_{i}}{m^{i}}\right)-f\left(\sum_{i=0}^{n} p_{i} x_{i}\right) \leq p f(c) \leq f(c) .
$$

By the use of Theorem 2.5 we have $0 \leq I$. So $0 \leq I \leq f(c)$.
Theorem 2.10. Let $f:[0, c] \longrightarrow \mathbb{R}$ be a m-convex function and $\left\{x_{i}\right\}_{i=0}^{n} \subseteq\left[0, m^{n} c\right]$. If f is continuous on $[0, c]$ and $f^{\prime}(x)$ exists on $(0, c)$ also $f(0)=f^{\prime}\left(0^{+}\right)=0=f(c)$, then

$$
\sum_{i=0}^{n} m^{i} p_{i} f\left(\frac{x_{i}}{m^{i}}\right)=f\left(\sum_{i=0}^{n} p_{i} x_{i}\right)
$$

Proof. Let $I=\sum_{i=0}^{n} m^{i} p_{i} f\left(\frac{x_{i}}{m^{i}}\right)-f\left(\sum_{i=0}^{n} p_{i} x_{i}\right)$. By the use of Theorem 2.9 we have $0 \leq I \leq p f(c)$. Hence, if $f(c)=0$ then $I=0$.

Theorem 2.11. Let $f:[0, c] \longrightarrow \mathbb{R}$ be a m-convex function and $\left\{x_{i}\right\}_{i=0}^{n} \subseteq\left[0, m^{n} c\right]$, then

$$
f\left(\sum_{i=0}^{n} p_{i} x_{i}\right) \leq m^{n} \sum_{i=0}^{n} p_{i} f\left(\frac{x_{i}}{m^{n}}\right) .
$$

Proof. By the Lemma 2.2 we have $m^{i} f\left(\frac{x_{i}}{m^{i}}\right) \leq m^{n} f\left(\frac{x_{i}}{m^{n}}\right)$ and by the Theorem 2.5 have $f\left(\sum_{i=0}^{n} p_{i} x_{i}\right) \leq$ $\sum_{i=0}^{n} m^{i} p_{i} f\left(\frac{x_{i}}{m^{i}}\right)$, thus

$$
\begin{aligned}
f\left(\sum_{i=0}^{n} p_{i} x_{i}\right) & \leq \sum_{i=0}^{n} m^{i} p_{i} f\left(\frac{x_{i}}{m^{i}}\right) \\
& \leq \sum_{i=0}^{n} m^{n} p_{i} f\left(\frac{x_{i}}{m^{n}}\right)=m^{n} \sum_{i=0}^{n} p_{i} f\left(\frac{x_{i}}{m^{n}}\right) .
\end{aligned}
$$

Theorem 2.12. Let $f:[0, c] \longrightarrow \mathbb{R}$ be a m-convex function and $\left\{x_{i}\right\}_{i=0}^{n} \subseteq\left[0, m^{n} c\right]$, then

$$
\begin{aligned}
0 & \leq m^{n} \max _{0 \leq r \leq s \leq n}\left\{p_{r} f\left(\frac{x_{r}}{m^{n}}\right)+p_{s} f\left(\frac{x_{s}}{m^{n}}\right)-\left(p_{r}+p_{s}\right) f\left(\frac{p_{r} x_{r}+p_{s} x_{s}}{m^{n}\left(p_{r}+p_{s}\right)}\right)\right\} \\
& \leq m^{n} \sum_{i=0}^{n} p_{i} f\left(\frac{x_{i}}{m^{n}}\right)-m f\left(\sum_{i=0}^{n} p_{i} x_{i}\right) .
\end{aligned}
$$

Proof. By the use of Theorem 2.11 have

$$
\begin{aligned}
f\left(\sum_{i=0}^{n} p_{i} x_{i}\right) & =f\left(\left(p_{r}+p_{s}\right) \frac{p_{r} x_{r}+p_{s} x_{s}}{p_{r}+p_{s}}+\sum_{i \neq r, s} p_{i} x_{i}\right) \\
& \leq m^{n-1}\left(\left(p_{r}+p_{s}\right) f\left(\frac{p_{r} x_{r}+p_{s} x_{s}}{p_{r}+p_{s}}\right)+\sum_{i \neq r, s} p_{i} f\left(\frac{x_{i}}{m^{n}}\right)\right) .
\end{aligned}
$$

Hence,

$$
m^{n} \sum_{i \neq r, s} p_{i} f\left(\frac{x_{i}}{m^{n}}\right)-m f\left(\sum_{i=0}^{n} p_{i} x_{i}\right) \geq-m^{n}\left(\left(p_{r}+p_{s}\right) f\left(\frac{p_{r} x_{r}+p_{s} x_{s}}{p_{r}+p_{s}}\right)\right) .
$$

Therefore,

$$
\begin{aligned}
m^{n} \sum_{i=0}^{n} p_{i} f\left(\frac{x_{i}}{m^{n}}\right)-m f\left(\sum_{i=0}^{n} p_{i} x_{i}\right) & \geq m^{n}\left\{p_{r} f\left(\frac{x_{r}}{m^{n}}\right)+p_{s} f\left(\frac{x_{s}}{m^{n}}\right)\right. \\
& \left.-\left(p_{r}+p_{s}\right) f\left(\frac{p_{r} x_{r}+p_{s} x_{s}}{m^{n}\left(p_{r}+p_{s}\right)}\right)\right\}
\end{aligned}
$$

So,

$$
\begin{aligned}
& m^{n} \sum_{i=0}^{n} p_{i} f\left(\frac{x_{i}}{m^{n}}\right)-m f\left(\sum_{i=0}^{n} p_{i} x_{i}\right) \\
& \geq m^{n} \max _{0 \leq r<s \leq n}\left\{p_{r} f\left(\frac{x_{r}}{m^{n}}\right)+p_{s} f\left(\frac{x_{s}}{m^{n}}\right)-\left(p_{r}+p_{s}\right) f\left(\frac{p_{r} x_{r}+p_{s} x_{s}}{m^{n}\left(p_{r}+p_{s}\right)}\right)\right\} \geq 0 .
\end{aligned}
$$

In view of the above theorem we have the following theorem.
Theorem 2.13. Let $f:[0, c] \longrightarrow \mathbb{R}$ be a m-convex function and $\mu=\min _{0 \leq i \leq n}\left\{x_{i}\right\}$ and $v=$ $\max _{0 \leq i \leq n}\left\{x_{i}\right\}$, then

$$
\begin{aligned}
& \frac{m^{n}}{n+1} \sum_{i=0}^{n} f\left(\frac{x_{i}}{m^{n}}\right)-m f\left(\frac{\sum_{i=0}^{n} x_{i}}{n+1}\right) \\
& \geq \frac{m^{n}}{n+1}\left(f\left(\frac{\mu}{m^{n}}\right)+f\left(\frac{v}{m^{n}}\right)-2 f\left(\frac{\mu+v}{2 m^{n}}\right)\right)
\end{aligned}
$$

Proof. Applying Theorem 2.12 and putting $\mu=\min _{0 \leq i \leq n}\left\{x_{i}\right\}, v=\max _{0 \leq i \leq n}\left\{x_{i}\right\}$ and $p_{i}=\frac{1}{n+1}$, for every $0 \leq i \leq n$.

Acknowledgments

I would like to thank the referee for carefully reading the manuscript and for giving such constructive comments which substantially helped improving the quality of the paper.

References

[1] H. Barsam, S. M. Ramezani and Y. Sayyari, On the new Hermite-Hadamard type inequalities for s-convex functions, Afr. Mat., 32, (2021), 1355-1367.
[2] H. Barsam and A.R. Sattarzadeh, Hermite-Hadamard inequalities for uniformly convex functions and Its Applications in Means, Miskolc Math. Notes, 21(2), (2020), 621-630.
[3] S.S. Dragomir, A converse result for Jensen's discrete inequality via Grss inequality and applications in information theory, Analele Univ. Oradea, Fasc. Math., 7, (1999-2000), 178-189.
[4] S.S. Dragomir, On some new inequalities of Hermite-Hadamard type for m-convex functions, Tamkang J. Math., 33(1), (2002), 45-55.
[5] S.S. Dragomir and C.J. Goh, Some bounds on entropy measures in Information Theory, Appl. Math. Lett., 10(3), (1997), 23-28.
[6] S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
[7] D.S. Mitrinovic, Analytic Inequalities, Springer, New York, 1970.
[8] Z. Pavic and M. Avci Ardic, The most important inequalities of m-convex functions, Turk. J. Math., 41(3), (2017), 625-635.
[9] M.Z. Sarikaya, H. Budak and F. Usta, Some generalized integral inequalities via fractional integrals, Acta Math. Univ. Comen., New Ser., 89(1), (2020), 27-38.
[10] Y.Sayyari and H. Barsam, Hermite-Hadamard type inequality for m-convex functions by using a new inequality for differentiable functions, J. Mahani Math. Res. Cent., 9(2), (2020), 55-67.
[11] S. Simic, Jensens inequality and new entropy bounds, Appl. Math. Lett., 22(8), (2009), 1262-1265.

[^0]: *Corresponding author
 Email addresses: hasanbarsam@ujiroft.ac.ir (Hasan Barsam), y.sayyari@gmail.com (Yamin Sayyari) http://doi.org/10.22072/wala.2022.537949.1344 © (2022) Wavelets and Linear Algebra

