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Abstract
Let x, y ∈ Rn. We use the notation x ≺w y when x is weakly
majorized by y. We say that x ≺w y is decomposable at k
(1 ≤ k < n) if x ≺w y has a coincidence at k and yk , yk+1. Cor-
responding to this majorization we have a doubly substochastic
matrix P. The paper presents x ≺w y is decomposable at some
k (1 ≤ k < n) if and only if P is of the form D ⊕ Q where D
and Q are doubly stochastic and doubly substochastic matrices,
respectively. Also, we write some algorithms to obtain x from y
when x ≺w y.
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1. Introduction

Let Mn be the set of all real matrices of order n. A matrix D ∈Mn of nonnegative real numbers
for which the sums of the entries in each row and each column are all one is said to be doubly
stochastic. We denote the set of all doubly stochastic matrices of order n by Ωn.
Let Rn be the set of all n−tuples (x1, . . . , xn) of real numbers. Set Rn

+ the set of all x ∈ Rn with
nonnegative entires. For vector x ∈ Rn, the notations x ≥ 0 and x > 0 mean that xi ≥ 0 and xi > 0
for i = 1, . . . , n, respectively. Also, for x, y ∈ Rn, x ≥ y means that x − y ≥ 0. Let x↓ and x↑ be
the vectors obtained by rearranging the coordinates of x ∈ Rn in the decreasing and the increasing
orders, respectively. Thus, x↓ = (x↓1, . . . , x

↓
n), where x↓1 ≥ · · · ≥ x↓n. Similarly, x↑ = (x↑1, . . . , x

↑
n),

where x↑1 ≤ · · · ≤ x↑n.
Let x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Rn. We say that x is majorized by y, in symbols x ≺ y,
if

k∑
i=1

x↓i ≤
k∑

i=1

y↓i , 1 ≤ k ≤ n,

and
n∑

i=1

xi =

n∑
i=1

yi.

For further information about majorization, we refer the reader to [2, 3], [5]–[7] and [9] . Let
x, y ∈ Rn, we say that x is (weakly) submajorized by y, in symbols x ≺w y, if

k∑
i=1

x↓i ≤
k∑

i=1

y↓i , 1 ≤ k ≤ n.

The following concepts are defined in [1, 4] and [8].
Let x, y ∈ Rn, x ≺ y, and

δk =

k∑
i=1

(y↓i − x↓i ) 1 ≤ k ≤ n − 1, (1.1)

then δk ≥ 0.
If δk = 0, we say that x ≺ y has a coincidence at k. If x ≺ y has a coincidence at k and yk , yk+1,
we say that x ≺ y is decomposable at k.

Definition 1.1. A matrix P ∈ Mn with nonnegative entries is called doubly substochastic if the
sums of the entries in each row and each column are less than or equal one.

Theorem 1.2. [9] The following assertions are true for weakly majorization.

(i) [9, A.4] Let x, y ∈ Rn
+, then x ≺w y if and only if x = Py for some doubly substochastic matrix

P ∈ Mn.

(ii) [9, A.9] Let x, y ∈ Rn, then x ≺w y if and only if there exists a vector u ∈ Rn such that
x ≤ u ≺ y.
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The following lemma involves a special kind of linear transformation called a T−transform.
The matrix of a T−transform has the form

T = λI + (1 − λ)Q,

where 0 ≤ λ ≤ 1 and Q is a permutation matrix that just interchanges two coordinates.

Lemma 1.3. [9, A.3] Let x, y ∈ Rn, then x ≺ y if and only if x can be derived from y by successive
applications of a finite number of T−transforms.

Here, we study weak majorization and related doubly substochastic matrices. We also present
that decomposability of x ≺w y is a necessary and sufficient condition for P to be a direct sum of
D ⊕ Q, where x = Py, D ∈ Ωn and Q is a doubly substochastic matrix.
We find an algorithm to construct a vector u such that x ≤ u ≺ y. Using this algorithm we write an
algorithm to find linear transformations which transform y to x where x ≺w y.

2. Decomposability and weak majorization

Let x, y ∈ Rn
+ and x ≺w y, then by Theorem 1.2 (i) there exists some doubly substochastic

matrix P such that x = Py. In this section, we find some necessary and sufficient conditions for
construction of the matrix P as a direct sum of a doubly stochastic and a doubly substochastic
matrices.

Definition 2.1. Let x, y ∈ Rn, x ≺w y, and

δk =

k∑
i=1

(y↓i − x↓i ) 1 ≤ k ≤ n − 1, (2.1)

then δk ≥ 0. If δk = 0, we state that x ≺w y has a coincidence at k. If x ≺w y has a coincidence at k
and yk , yk+1, we say that x ≺w y is decomposable at k.

In the following two theorems, we prove that P = D ⊕ Q for some D ∈ Ωk and doubly
substochastic matrix Q ∈ Mn−k if and only if there exists some 1 ≤ k ≤ n − 1 such that x ≺w y is
decomposable at k.

Theorem 2.2. Let x, y ∈ Rn
+. Suppose that x ≺w y is decomposable at k and x = Py for some

doubly substochastic matrix P ∈ Mn. Then there exist matrices D ∈ Ωk and doubly substochastic
matrix Q ∈ Mn−k such that P = D ⊕ Q.

Proof. Without loss of generality, we can assume that x, y are vectors with entries in nonincreas-
ing order. Let P = (pi j). Then

∑k
i=1(xi − yk) =

∑k
i=1(
∑n

j=1 pi jy j − yk)

≤
∑k

i=1(
∑n

j=1 pi j(y j − yk))

=
∑n

j=1(
∑k

i=1 pi j(y j − yk))

=
∑k

j=1
∑k

i=1 pi j(y j − yk) +
∑n

j=k+1
∑k

i=1 pi j(y j − yk)
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y j − yk < 0 for j > k, thus

∑k
i=1(xi − yk) ≤

∑k
j=1(
∑k

i=1 pi j(y j − yk))

=
∑k

j=1(y j − yk)
∑k

i=1 pi j

≤
∑k

j=1(y j − yk).

But
k∑

i=1

(xi − yk) =

k∑
j=1

(y j − yk).

Thus,
n∑

j=k+1

k∑
i=1

pi j(y j − yk) = 0.

Since y j − yk is negative, for all j = k + 1, . . . , n, then pi j = 0, where 1 ≤ i ≤ k and k + 1 ≤ j ≤ n
so that

P =

[
D 0
C Q

]
.

Now, we claim that C = 0. We know that xi =
∑k

j=1 pi jy j for i = 1, . . . , k. Then∑k
i=1 xi =

∑k
i=1
∑k

j=1 pi jy j =⇒
∑k

i=1 yi =
∑k

i=1
∑k

j=1 pi jy j

=⇒
∑k

i=1 yi −
∑k

i=1
∑k

j=1 pi jy j = 0

=⇒
∑k

i=1(1 − αi)yi = 0,

where αi =
∑k

j=1 p ji, for i = 1, . . . , k.
So, 1 − αi = 0 for i = 1, . . . , k, because yi > 0 and 1 − αi ≥ 0 for all i = 1, . . . , k (if yk = 0, then
yk+1 = 0. But we know that yk , yk+1). It follows that α1 = α2 = · · · = αk = 1.
As D is a doubly substochastic matrix of order k, we deduce that D ∈ Ωk and C = 0.
So that

P =

[
D 0
0 Q

]
.

Here, we state a corollary which one can prove it with the same argument in Theorem 2.2. This
corollary omit the decomposable assumption of Theorem 2.2.

Corollary 2.3. Suppose x, y ∈ Rn
+, x ≺w y, and x = Py where P is a doubly substochastic matrix.

If there is a coincidence at k and y1 ≥ . . . ≥ yk = yk+1 = · · · = yl > yl+1 where k < l < n, then
pi j = 0, where 1 ≤ i ≤ k and l + 1 ≤ j ≤ n.
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Now, we state the converse of Theorem 2.2 which is some necessary conditions for decompos-
ability of x ≺w y.

Theorem 2.4. Let x, y ∈ Rn
+ with x ≺w y. If there exists some k (1 ≤ k ≤ n) that for every P ∈ Mn

such that x = Py, we have P = D ⊕ Q where D ∈ Ωk and Q is a doubly substochastic matrix of
order n − k, then x ≺w y is decomposable at k.

Proof. Let x ≺w y. Then x = Py for some doubly substochastic matrix P. The hypothesis ensures
that P = D ⊕ Q where D ∈ Ωk and Q is a doubly substochastic matrix of order n − k.

The relation x = Py ensures that (x1, . . . , xk) = D(y1, . . . , yk) where D ∈ Ωk, and so (x1, . . . , xk) ≺
(y1, . . . , yk). It follows that

∑k
i=1 xi =

∑k
i=1 yi. Therefore, x ≺ y has a coincidence at k.

Now, we claim that yk , yk+1. If not; yk = yk+1. We will construct a matrix P′ such that x = P′y,
but P′ is not as a direct sum of some doubly stochastic matrix and a doubly substochastic matrix.
Set P = [P1P2 . . . Pn], where Pi is the ith column of the matrix P. Now, define

P′ = [P1 . . . Pk−1Pk+1PkPk+2 . . . Pn].

We observe that x = P′y. As yk = yk+1 and P has the form given in the hypothesis, we see that P′

has the same form which we wanted to create. It is a contradiction. Hence yk , yk+1, and so x ≺w y
is decomposable at k.

3. Algorithms for weak majorization

Let x, y ∈ Rn
+. This section is devided into two parts. In the first part, with an algorithm, we

obtain the vector structure u which x ≤ u ≺ y when x ≺w y. In the second part, we obtain the
structure of linear transformations that convert vector y into vector x in the relation x ≺w y.

3.1. Some middle vector for x ≺w y
Consider x, y ∈ Rn

+ assuming that x ≺w y. Here, we present some vector u such that x ≤ u ≺w y.
We see x ≺w u ≺w y.

Proposition 3.1. Let x, y ∈ Rn
+ with x ≺w y. Then there is a vector u such that x ≤ u ≺w y and

there exists some l (1 ≤ l ≤ n) such that u ≺w y has a coincidence at l. Furthermore, xl+1 ≤ yl+1

whenever l , n.

Proof. We consider the various possible cases separately.
Case 1. If x ≺w y has no coincidence.

Define δ = min1≤k≤n δk, where δk is as in the relation (2.1). So δ = δl for some 1 ≤ l ≤ n. Put
u = x + δe1 (e1 ∈ Rn). As δ > 0, it follows that x ≤ u. We observe that u ≺w y, because x ≺w y and
x1 + δ ≤ y1. We see u ≺w y has a coincidence at l. Now, we claim that xl+1 ≤ yl+1 whenever l , n.
Otherwise, xl+1 > yl+1, and it shows that δl+1 < δl, that is a contradiction. Therefore, xl+1 ≤ yl+1.

Case 2. If x ≺w y has a coincidence at k.
Set l = k and u = x. Since x ≺w y has a coincidence at l, we have xl+1 ≤ yl+1 when l , n.
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Let x, y ∈ Rn
+ and x ≺w y. In the following algorithm, we present the vector u which obtained

in the Theorem 1.2(ii) of [9] and in the Proposition 3.1 with a stronger condition, see Theorem
3.2.
AlgorithmA
Input: Two vectors x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn with x ≺w y.
1. Initialize: Let u = 0.
2. for x ≺w y do

(a) If x ≺w y doesn’t have any coincidences;
let δ = min1≤t≤n δt = δk, and let v = (x1 + δ, x2, . . . , xk) ∈ Rk.
set u = u ⊕ v.
let x = (xk+1, . . . , xn) and y = (yk+1, . . . , yn).
Go on 2.

(b) If k is the greatest index such that x ≺w y has a coincidence at k.
(a′) If k = n; let u = u ⊕ x.
(b′) If k < n; let v = (x1, . . . , xk).
set u = u ⊕ v.
let x = (xk+1, . . . , xn) and y = (yk+1, . . . , yn).
Go on 2.

Output: u.
In the following theorem, we find the relations between x and y with u obtained from the Algorithm
A.

Theorem 3.2. Suppose x, y ∈ Rn
+ with x ≺w y. Then Algorithm A offers some u ∈ Rn such that

x ≤ u ≺ y.

Proof. First, we claim that
(x1, . . . , xk) ≤ v ≺ (y1, . . . , yk),

where v = (x1 + δ, x2, . . . , xk).
As δ > 0, we see x ≤ v. By the definition of δ,

l∑
i=1

vi = δ +

l∑
i=1

xi ≤

l∑
i=1

yi, 1 ≤ l ≤ k.

Also, as δ = δk, we observe that

k∑
i=1

vi = δ +

k∑
i=1

xi =

k∑
i=1

yi.

It implies that v ≺ y. Set X1 = (x1, . . . , xk),Y1 = (y1, . . . yk) and U1 = v. Now, find v1 such that
X2 = (xk+1, . . . , xk1) ≤ v1 ≺ Y2 = (yk+1, . . . , yk1) then set U2 = v1. By continuing this process, we
can find U3, . . . ,Um.
Now, since u = U1 ⊕U2 ⊕ · · · ⊕Um and Xi ≤ Ui ≺ Yi for i = 1, . . . ,m where x = X1 ⊕ X2 ⊕ · · · ⊕ Xm

and y = Y1 ⊕ Y2 ⊕ · · · ⊕ Ym, we deduce that x ≤ u ≺ y.
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3.2. Linear transformations and weak majorization
The following theorems are existential theorems which are in the book Marshall [9]. Here, for

x, y ∈ Rn
+ with x ≺w y we write an algorithm that presents the structure of linear transformations

expressed in these theorems.

Theorem 3.3. [9] Let x, y ∈ Rn
+. The following conditions are equivalent.

(i) x ≺w y;
(ii) x can be derived from y by successive applications of a finite number of T-transforms followed
by a finite number of transformations of the form

Tα(z) = (z1, . . . , zi−1, αzi, zi+1, . . . , zn), 0 ≤ α ≤ 1.

Theorem 3.4. [9] Let x, y ∈ Rn
+ with x ≺w y. Then there exist some T-transforms T1, . . . ,Tm and

some linear transformations Tα1 , . . . ,Tαl such that

x = Tα1 . . . TαlT1, . . . ,Tmy.

Proof. Let x ≺w y. Theorem 2.4 ensures that there is some u such that x ≤ u ≺ y. As u ≺ y, there
exist T -transforms T1, . . . ,Tm such that u = T1 . . . Tmy.
Also, since x ≤ u, there exist transformations Tα1 , . . . ,Tαl such that x = Tα1 . . . Tαlu. Now, we
conclude that x = Tα1 . . . TαlT1 . . . Tmy.

If x, y ∈ Rn and x ≺ y, then by Lemma 1.3 there exist T−transforms T1, . . . ,Tk such that
x = T1 · · · Tky. Next, Algorithms B and C express the structures of T1, . . . ,Tk .

Algorithm B
Input: Two vectors x↓ = (x↓1, . . . , x

↓
n), y↓ = (y↓1, . . . , y

↓
n) ∈ Rn with x ≺ y.

1. Initialize: Let Q = I.
2. for x ≺ y do

let j = max{i : xi < yi},
let k = min{i : j < i, xi > yi},
let δ = min{y j − x j, xk − yk},
let λ = 1 − δ

y j−yk
,

set Q 7−→ interchange the ith and jth rows of Q.
Output: Q.

TheA(x, y) symbol used for the subalgorithm means to put the inputs x and y in the algorithm
A.

Algorithm C
Input: Two vectors x↓ = (x↓1, . . . , x

↓
n), y↓ = (y↓1, . . . , y

↓
n) ∈ Rn with x ≺ y.

1. 1 7−→ i.
2. for x ≺ y do

(a) If x = y, then Go on 2.
(b) Q = B(x, y),

set Ti = λI + (1 − λ)Q,
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set y = Tiy.
3. Go on 2.
Output: T1,T2, . . . ,Ti−1.

AlgorithmD
Input: Two vectors x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn with x ≺w y.
1. u = A(x, y)
2. T1, . . . ,Ti−1 = C(u, y)
3. (i : 1, n)
4. for x ≤ u do

(a) If xi = ui, then Tαi = I and Go on 4.
(b) Tαi(u1, . . . , un) = (x1, . . . , xi, ui+1, . . . , un), Go on 4.

Output: Tα1 , . . . ,Tαn

Output: Tα1 , . . .Tαn ,T1, . . . ,Ti−1
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