Decomposability of Weak Majorization

Fatemeh Khalooei ${ }^{\text {a,** }}$, Asma Ilkhanizadeh Manesh ${ }^{\text {b }}$
${ }^{a}$ Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran.
${ }^{b}$ Assistant Professor, Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O. Box: 7713936417, Rafsanjan, Iran.

Article Info

Article history:
Received 27 February 2021
Accepted 23 August 2021
Available online 14 March 2022
Communicated by Hamid Reza afshin

Keywords:

Decomposability,
Doubly substochastic matrix, Weak majorization, Majorization.

2000 MSC:
15A04, 15A51

Abstract

Let $x, y \in \mathbb{R}^{n}$. We use the notation $x<_{w} y$ when x is weakly majorized by y. We say that $x<_{w} y$ is decomposable at k $(1 \leq k<n)$ if $x<_{w} y$ has a coincidence at k and $y_{k} \neq y_{k+1}$. Corresponding to this majorization we have a doubly substochastic matrix P. The paper presents $x<_{w} y$ is decomposable at some $k(1 \leq k<n)$ if and only if P is of the form $D \oplus Q$ where D and Q are doubly stochastic and doubly substochastic matrices, respectively. Also, we write some algorithms to obtain x from y when $x<_{w} y$.

© (2022) Wavelets and Linear Algebra

[^0]
1. Introduction

Let \mathbf{M}_{n} be the set of all real matrices of order n. A matrix $D \in \mathbf{M}_{n}$ of nonnegative real numbers for which the sums of the entries in each row and each column are all one is said to be doubly stochastic. We denote the set of all doubly stochastic matrices of order n by Ω_{n}.
Let \mathbb{R}^{n} be the set of all n-tuples $\left(x_{1}, \ldots, x_{n}\right)$ of real numbers. Set \mathbb{R}_{+}^{n} the set of all $x \in \mathbb{R}^{n}$ with nonnegative entires. For vector $x \in \mathbb{R}^{n}$, the notations $x \geq 0$ and $x>0$ mean that $x_{i} \geq 0$ and $x_{i}>0$ for $i=1, \ldots, n$, respectively. Also, for $x, y \in \mathbb{R}^{n}, x \geq y$ means that $x-y \geq 0$. Let x^{\downarrow} and x^{\uparrow} be the vectors obtained by rearranging the coordinates of $x \in \mathbb{R}^{n}$ in the decreasing and the increasing orders, respectively. Thus, $x^{\downarrow}=\left(x_{1}^{\downarrow}, \ldots, x_{n}^{\downarrow}\right)$, where $x_{1}^{\downarrow} \geq \cdots \geq x_{n}^{\downarrow}$. Similarly, $x^{\uparrow}=\left(x_{1}^{\uparrow}, \ldots, x_{n}^{\uparrow}\right)$, where $x_{1}^{\uparrow} \leq \cdots \leq x_{n}^{\uparrow}$.
Let $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$. We say that x is majorized by y, in symbols $x<y$, if

$$
\sum_{i=1}^{k} x_{i}^{\downarrow} \leq \sum_{i=1}^{k} y_{i}^{\downarrow}, \quad 1 \leq k \leq n,
$$

and

$$
\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i} .
$$

For further information about majorization, we refer the reader to [2, 3], [5]-[7] and [9] . Let $x, y \in \mathbb{R}^{n}$, we say that x is (weakly) submajorized by y, in symbols $x<_{w} y$, if

$$
\sum_{i=1}^{k} x_{i}^{\downarrow} \leq \sum_{i=1}^{k} y_{i}^{\downarrow}, \quad 1 \leq k \leq n .
$$

The following concepts are defined in [1, 4] and [8].
Let $x, y \in \mathbb{R}^{n}, x<y$, and

$$
\begin{equation*}
\delta_{k}=\sum_{i=1}^{k}\left(y_{i}^{\downarrow}-x_{i}^{\downarrow}\right) \quad 1 \leq k \leq n-1, \tag{1.1}
\end{equation*}
$$

then $\delta_{k} \geq 0$.
If $\delta_{k}=0$, we say that $x<y$ has a coincidence at k. If $x<y$ has a coincidence at k and $y_{k} \neq y_{k+1}$, we say that $x<y$ is decomposable at k.

Definition 1.1. A matrix $P \in \mathbf{M}_{n}$ with nonnegative entries is called doubly substochastic if the sums of the entries in each row and each column are less than or equal one.

Theorem 1.2. [9] The following assertions are true for weakly majorization.
(i) [9, A.4] Let $x, y \in \mathbb{R}_{+}^{n}$, then $x<_{w} y$ if and only if $x=$ Py for some doubly substochastic matrix $P \in \boldsymbol{M}_{n}$.
(ii) [9, A.9] Let $x, y \in \mathbb{R}^{n}$, then $x<_{w} y$ if and only if there exists a vector $u \in \mathbb{R}^{n}$ such that $x \leq u<y$.

The following lemma involves a special kind of linear transformation called a T-transform. The matrix of a T-transform has the form

$$
T=\lambda I+(1-\lambda) Q,
$$

where $0 \leq \lambda \leq 1$ and Q is a permutation matrix that just interchanges two coordinates.
Lemma 1.3. [9, A.3] Let $x, y \in \mathbb{R}^{n}$, then $x<y$ if and only if x can be derived from y by successive applications of a finite number of T-transforms.

Here, we study weak majorization and related doubly substochastic matrices. We also present that decomposability of $x<_{w} y$ is a necessary and sufficient condition for P to be a direct sum of $D \oplus Q$, where $x=P y, D \in \Omega_{n}$ and Q is a doubly substochastic matrix.
We find an algorithm to construct a vector u such that $x \leq u<y$. Using this algorithm we write an algorithm to find linear transformations which transform y to x where $x<_{w} y$.

2. Decomposability and weak majorization

Let $x, y \in \mathbb{R}_{+}^{n}$ and $x<_{w} y$, then by Theorem 1.2 (i) there exists some doubly substochastic matrix P such that $x=P y$. In this section, we find some necessary and sufficient conditions for construction of the matrix P as a direct sum of a doubly stochastic and a doubly substochastic matrices.

Definition 2.1. Let $x, y \in \mathbb{R}^{n}, x<_{w} y$, and

$$
\begin{equation*}
\delta_{k}=\sum_{i=1}^{k}\left(y_{i}^{\downarrow}-x_{i}^{\downarrow}\right) \quad 1 \leq k \leq n-1, \tag{2.1}
\end{equation*}
$$

then $\delta_{k} \geq 0$. If $\delta_{k}=0$, we state that $x<_{w} y$ has a coincidence at k. If $x<_{w} y$ has a coincidence at k and $y_{k} \neq y_{k+1}$, we say that $x<_{w} y$ is decomposable at k.

In the following two theorems, we prove that $P=D \oplus Q$ for some $D \in \Omega_{k}$ and doubly substochastic matrix $Q \in \mathbf{M}_{n-k}$ if and only if there exists some $1 \leq k \leq n-1$ such that $x<_{w} y$ is decomposable at k.
Theorem 2.2. Let $x, y \in \mathbb{R}_{+}^{n}$. Suppose that $x<_{w} y$ is decomposable at k and $x=P y$ for some doubly substochastic matrix $P \in \boldsymbol{M}_{n}$. Then there exist matrices $D \in \Omega_{k}$ and doubly substochastic matrix $Q \in \boldsymbol{M}_{n-k}$ such that $P=D \oplus Q$.
Proof. Without loss of generality, we can assume that x, y are vectors with entries in nonincreasing order. Let $P=\left(p_{i j}\right)$. Then

$$
\begin{aligned}
\sum_{i=1}^{k}\left(x_{i}-y_{k}\right) & =\sum_{i=1}^{k}\left(\sum_{j=1}^{n} p_{i j} y_{j}-y_{k}\right) \\
& \leq \sum_{i=1}^{k}\left(\sum_{j=1}^{n} p_{i j}\left(y_{j}-y_{k}\right)\right) \\
& =\sum_{j=1}^{n}\left(\sum_{i=1}^{k} p_{i j}\left(y_{j}-y_{k}\right)\right) \\
& =\sum_{j=1}^{k} \sum_{i=1}^{k} p_{i j}\left(y_{j}-y_{k}\right)+\sum_{j=k+1}^{n} \sum_{i=1}^{k} p_{i j}\left(y_{j}-y_{k}\right)
\end{aligned}
$$

$y_{j}-y_{k}<0$ for $j>k$, thus

$$
\begin{aligned}
\sum_{i=1}^{k}\left(x_{i}-y_{k}\right) & \leq \sum_{j=1}^{k}\left(\sum_{i=1}^{k} p_{i j}\left(y_{j}-y_{k}\right)\right) \\
& =\sum_{j=1}^{k}\left(y_{j}-y_{k}\right) \sum_{i=1}^{k} p_{i j} \\
& \leq \sum_{j=1}^{k}\left(y_{j}-y_{k}\right)
\end{aligned}
$$

But

$$
\sum_{i=1}^{k}\left(x_{i}-y_{k}\right)=\sum_{j=1}^{k}\left(y_{j}-y_{k}\right) .
$$

Thus,

$$
\sum_{j=k+1}^{n} \sum_{i=1}^{k} p_{i j}\left(y_{j}-y_{k}\right)=0
$$

Since $y_{j}-y_{k}$ is negative, for all $j=k+1, \ldots, n$, then $p_{i j}=0$, where $1 \leq i \leq k$ and $k+1 \leq j \leq n$ so that

$$
P=\left[\begin{array}{l|l}
D & 0 \\
\hline C & Q
\end{array}\right]
$$

Now, we claim that $C=0$. We know that $x_{i}=\sum_{j=1}^{k} p_{i j} y_{j}$ for $i=1, \ldots, k$. Then

$$
\begin{aligned}
\sum_{i=1}^{k} x_{i}=\sum_{i=1}^{k} \sum_{j=1}^{k} p_{i j} y_{j} & \Longrightarrow \sum_{i=1}^{k} y_{i}=\sum_{i=1}^{k} \sum_{j=1}^{k} p_{i j} y_{j} \\
& \Longrightarrow \sum_{i=1}^{k} y_{i}-\sum_{i=1}^{k} \sum_{j=1}^{k} p_{i j} y_{j}=0 \\
& \Longrightarrow \sum_{i=1}^{k}\left(1-\alpha_{i}\right) y_{i}=0
\end{aligned}
$$

where $\alpha_{i}=\sum_{j=1}^{k} p_{j i}$, for $i=1, \ldots, k$.
So, $1-\alpha_{i}=0$ for $i=1, \ldots, k$, because $y_{i}>0$ and $1-\alpha_{i} \geq 0$ for all $i=1, \ldots, k$ (if $y_{k}=0$, then $y_{k+1}=0$. But we know that $y_{k} \neq y_{k+1}$). It follows that $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{k}=1$.
As D is a doubly substochastic matrix of order k, we deduce that $D \in \Omega_{k}$ and $C=0$.
So that

$$
P=\left[\begin{array}{l|l}
D & 0 \\
\hline 0 & Q
\end{array}\right] .
$$

Here, we state a corollary which one can prove it with the same argument in Theorem 2.2. This corollary omit the decomposable assumption of Theorem 2.2.

Corollary 2.3. Suppose $x, y \in \mathbb{R}_{+}^{n}, x<_{w} y$, and $x=P y$ where P is a doubly substochastic matrix. If there is a coincidence at k and $y_{1} \geq \ldots \geq y_{k}=y_{k+1}=\cdots=y_{l}>y_{l+1}$ where $k<l<n$, then $p_{i j}=0$, where $1 \leq i \leq k$ and $l+1 \leq j \leq n$.

Now, we state the converse of Theorem 2.2 which is some necessary conditions for decomposability of $x<_{w} y$.

Theorem 2.4. Let $x, y \in \mathbb{R}_{+}^{n}$ with $x<_{w} y$. If there exists some $k(1 \leq k \leq n)$ that for every $P \in \boldsymbol{M}_{n}$ such that $x=P y$, we have $P=D \oplus Q$ where $D \in \Omega_{k}$ and Q is a doubly substochastic matrix of order $n-k$, then $x<_{w} y$ is decomposable at k.

Proof. Let $x<_{w} y$. Then $x=$ Py for some doubly substochastic matrix P. The hypothesis ensures that $P=D \oplus Q$ where $D \in \Omega_{k}$ and Q is a doubly substochastic matrix of order $n-k$.

The relation $x=P y$ ensures that $\left(x_{1}, \ldots, x_{k}\right)=D\left(y_{1}, \ldots, y_{k}\right)$ where $D \in \Omega_{k}$, and so $\left(x_{1}, \ldots, x_{k}\right)<$ $\left(y_{1}, \ldots, y_{k}\right)$. It follows that $\sum_{i=1}^{k} x_{i}=\sum_{i=1}^{k} y_{i}$. Therefore, $x<y$ has a coincidence at k.
Now, we claim that $y_{k} \neq y_{k+1}$. If not; $y_{k}=y_{k+1}$. We will construct a matrix P^{\prime} such that $x=P^{\prime} y$, but P^{\prime} is not as a direct sum of some doubly stochastic matrix and a doubly substochastic matrix. Set $P=\left[P^{1} P^{2} \ldots P^{n}\right]$, where P^{i} is the ith column of the matrix P. Now, define

$$
P^{\prime}=\left[P^{1} \ldots P^{k-1} P^{k+1} P^{k} P^{k+2} \ldots P^{n}\right] .
$$

We observe that $x=P^{\prime} y$. As $y_{k}=y_{k+1}$ and P has the form given in the hypothesis, we see that P^{\prime} has the same form which we wanted to create. It is a contradiction. Hence $y_{k} \neq y_{k+1}$, and so $x<_{w} y$ is decomposable at k.

3. Algorithms for weak majorization

Let $x, y \in \mathbb{R}_{+}^{n}$. This section is devided into two parts. In the first part, with an algorithm, we obtain the vector structure u which $x \leq u<y$ when $x<_{w} y$. In the second part, we obtain the structure of linear transformations that convert vector y into vector x in the relation $x<_{w} y$.

3.1. Some middle vector for $x<_{w} y$

Consider $x, y \in \mathbb{R}_{+}^{n}$ assuming that $x<_{w} y$. Here, we present some vector u such that $x \leq u<_{w} y$. We see $x<_{w} u<_{w} y$.

Proposition 3.1. Let $x, y \in \mathbb{R}_{+}^{n}$ with $x<_{w} y$. Then there is a vector u such that $x \leq u<_{w} y$ and there exists some $l(1 \leq l \leq n)$ such that $u<_{w} y$ has a coincidence at l. Furthermore, $x_{l+1} \leq y_{l+1}$ whenever $l \neq n$.

Proof. We consider the various possible cases separately.
Case 1. If $x<_{w} y$ has no coincidence.
Define $\delta=\min _{1 \leq k \leq n} \delta_{k}$, where δ_{k} is as in the relation (2.1). So $\delta=\delta_{l}$ for some $1 \leq l \leq n$. Put $u=x+\delta e_{1}\left(e_{1} \in \mathbb{R}^{n}\right)$. As $\delta>0$, it follows that $x \leq u$. We observe that $u<_{w} y$, because $x<_{w} y$ and $x_{1}+\delta \leq y_{1}$. We see $u<_{w} y$ has a coincidence at l. Now, we claim that $x_{l+1} \leq y_{l+1}$ whenever $l \neq n$. Otherwise, $x_{l+1}>y_{l+1}$, and it shows that $\delta_{l+1}<\delta_{l}$, that is a contradiction. Therefore, $x_{l+1} \leq y_{l+1}$.

Case 2. If $x<_{w} y$ has a coincidence at k.
Set $l=k$ and $u=x$. Since $x<_{w} y$ has a coincidence at l, we have $x_{l+1} \leq y_{l+1}$ when $l \neq n$.

Let $x, y \in \mathbb{R}_{+}^{n}$ and $x<_{w} y$. In the following algorithm, we present the vector u which obtained in the Theorem 1.2(ii) of [9] and in the Proposition 3.1 with a stronger condition, see Theorem 3.2.

Algorithm \mathcal{A}

Input: Two vectors $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ with $x<_{w} y$.

1. Initialize: Let $u=0$.
2. for $x<_{w} y$ do
(a) If $x<_{w} y$ doesn't have any coincidences;
let $\delta=\min _{1 \leq t \leq n} \delta_{t}=\delta_{k}$, and let $v=\left(x_{1}+\delta, x_{2}, \ldots, x_{k}\right) \in \mathbb{R}^{k}$.
set $u=u \oplus v$.
let $x=\left(x_{k+1}, \ldots, x_{n}\right)$ and $y=\left(y_{k+1}, \ldots, y_{n}\right)$.
Go on 2.
(b) If k is the greatest index such that $x<_{w} y$ has a coincidence at k.
(a^{\prime}) If $k=n$; let $u=u \oplus x$.
(b^{\prime}) If $k<n$; let $v=\left(x_{1}, \ldots, x_{k}\right)$.
set $u=u \oplus v$.
let $x=\left(x_{k+1}, \ldots, x_{n}\right)$ and $y=\left(y_{k+1}, \ldots, y_{n}\right)$.
Go on 2.
Output: u.
In the following theorem, we find the relations between x and y with u obtained from the Algorithm \mathcal{A}.

Theorem 3.2. Suppose $x, y \in \mathbb{R}_{+}^{n}$ with $x \prec_{w} y$. Then Algorithm \mathcal{A} offers some $u \in \mathbb{R}^{n}$ such that $x \leq u<y$.

Proof. First, we claim that

$$
\left(x_{1}, \ldots, x_{k}\right) \leq v<\left(y_{1}, \ldots, y_{k}\right),
$$

where $v=\left(x_{1}+\delta, x_{2}, \ldots, x_{k}\right)$.
As $\delta>0$, we see $x \leq v$. By the definition of δ,

$$
\sum_{i=1}^{l} v_{i}=\delta+\sum_{i=1}^{l} x_{i} \leq \sum_{i=1}^{l} y_{i}, \quad 1 \leq l \leq k
$$

Also, as $\delta=\delta_{k}$, we observe that

$$
\sum_{i=1}^{k} v_{i}=\delta+\sum_{i=1}^{k} x_{i}=\sum_{i=1}^{k} y_{i} .
$$

It implies that $v<y$. Set $X_{1}=\left(x_{1}, \ldots, x_{k}\right), Y_{1}=\left(y_{1}, \ldots y_{k}\right)$ and $U_{1}=v$. Now, find v_{1} such that $X_{2}=\left(x_{k+1}, \ldots, x_{k_{1}}\right) \leq v_{1}<Y_{2}=\left(y_{k+1}, \ldots, y_{k_{1}}\right)$ then set $U_{2}=v_{1}$. By continuing this process, we can find U_{3}, \ldots, U_{m}.
Now, since $u=U_{1} \oplus U_{2} \oplus \cdots \oplus U_{m}$ and $X_{i} \leq U_{i}<Y_{i}$ for $i=1, \ldots, m$ where $x=X_{1} \oplus X_{2} \oplus \cdots \oplus X_{m}$ and $y=Y_{1} \oplus Y_{2} \oplus \cdots \oplus Y_{m}$, we deduce that $x \leq u<y$.

3.2. Linear transformations and weak majorization

The following theorems are existential theorems which are in the book Marshall [9]. Here, for $x, y \in \mathbb{R}_{+}^{n}$ with $x<_{w} y$ we write an algorithm that presents the structure of linear transformations expressed in these theorems.

Theorem 3.3. [9] Let $x, y \in \mathbb{R}_{+}^{n}$. The following conditions are equivalent.
(i) $x<_{w} y$;
(ii) x can be derived from y by successive applications of a finite number of T-transforms followed by a finite number of transformations of the form

$$
T_{\alpha}(z)=\left(z_{1}, \ldots, z_{i-1}, \alpha z_{i}, z_{i+1}, \ldots, z_{n}\right), \quad 0 \leq \alpha \leq 1 .
$$

Theorem 3.4. [9] Let $x, y \in \mathbb{R}_{+}^{n}$ with $x \prec_{w} y$. Then there exist some T-transforms T_{1}, \ldots, T_{m} and some linear transformations $T_{\alpha_{1}}, \ldots, T_{\alpha_{l}}$ such that

$$
x=T_{\alpha_{1}} \ldots T_{\alpha_{l}} T_{1}, \ldots, T_{m} y .
$$

Proof. Let $x<_{w} y$. Theorem 2.4 ensures that there is some u such that $x \leq u<y$. As $u<y$, there exist T-transforms T_{1}, \ldots, T_{m} such that $u=T_{1} \ldots T_{m} y$.
Also, since $x \leq u$, there exist transformations $T_{\alpha_{1}}, \ldots, T_{\alpha_{l}}$ such that $x=T_{\alpha_{1}} \ldots T_{\alpha_{l}} u$. Now, we conclude that $x=T_{\alpha_{1}} \ldots T_{\alpha_{1}} T_{1} \ldots T_{m} y$.

If $x, y \in \mathbb{R}^{n}$ and $x<y$, then by Lemma 1.3 there exist T-transforms T_{1}, \ldots, T_{k} such that $x=T_{1} \cdots T_{k} y$. Next, Algorithms \mathcal{B} and C express the structures of T_{1}, \ldots, T_{k}.

Algorithm \mathcal{B}

Input: Two vectors $x^{\downarrow}=\left(x_{1}^{\downarrow}, \ldots, x_{n}^{\downarrow}\right), y^{\downarrow}=\left(y_{1}^{\downarrow}, \ldots, y_{n}^{\downarrow}\right) \in \mathbb{R}^{n}$ with $x<y$.

1. Initialize: Let $Q=I$.
2. for $x<y$ do
let $j=\max \left\{i: x_{i}<y_{i}\right\}$,
let $k=\min \left\{i: j<i, x_{i}>y_{i}\right\}$,
let $\delta=\min \left\{y_{j}-x_{j}, x_{k}-y_{k}\right\}$,
let $\lambda=1-\frac{\delta}{y_{j}-y_{k}}$,
set $Q \longmapsto$ interchange the ith and jth rows of Q.
Output: Q.
The $\mathcal{A}(x, y)$ symbol used for the subalgorithm means to put the inputs x and y in the algorithm \mathcal{A}.

Algorithm C

Input: Two vectors $x^{\downarrow}=\left(x_{1}^{\downarrow}, \ldots, x_{n}^{\downarrow}\right), y^{\downarrow}=\left(y_{1}^{\downarrow}, \ldots, y_{n}^{\downarrow}\right) \in \mathbb{R}^{n}$ with $x<y$.

1. $1 \longmapsto i$.
2. for $x<y$ do
(a) If $x=y$, then Go on 2 .
(b) $Q=\mathcal{B}(x, y)$,
set $T_{i}=\lambda I+(1-\lambda) Q$,
set $y=T_{i} y$.
3. Go on 2.

Output: $T_{1}, T_{2}, \ldots, T_{i-1}$.

Algorithm \mathcal{D}

Input: Two vectors $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ with $x<_{w} y$.

1. $u=\mathcal{A}(x, y)$
2. $T_{1}, \ldots, T_{i-1}=C(u, y)$
3. $(i: 1, n)$
4. for $x \leq u$ do
(a) If $x_{i}=u_{i}$, then $T_{\alpha_{i}}=I$ and Go on 4.
(b) $T_{\alpha_{i}}\left(u_{1}, \ldots, u_{n}\right)=\left(x_{1}, \ldots, x_{i}, u_{i+1}, \ldots, u_{n}\right)$, Go on 4 .

Output: $T_{\alpha_{1}}, \ldots, T_{\alpha_{n}}$
Output: $T_{\alpha_{1}}, \ldots T_{\alpha_{n}}, T_{1}, \ldots, T_{i-1}$

References

[1] T. Ando, Majorization, doubly stochastic matrices, and comparison of eigenvalues, Linear Algebra Appl., 118, (1989), 163-248.
[2] A. Armandnejad and A. Ilkhanizade manesh, Gut-majorization on $\mathbb{M}_{n, m}$ and its linear preservers, Electron. J. Linear Algebra, 23, (2012), 646-654.
[3] R. Bhatia, Matrix Analysis, Springer, New York, 1997.
[4] R.A. Brualdi, The doubly stochastic matrices of a vector majorization, Linear Algebra Appl., 61, (1984), 141154.
[5] G. Dahl and F. Margot, Weak k-majorization and polyhedra, Math. Program., 81, (1998), 37-53.
[6] F. Khalooei, Linear preservers of two-sided matrix majorization, Wavelets and Linear Algebra, 1, (2014), 43-50.
[7] F. Khalooei and A. Salemi, The structure of linear preservers of left matrix majorization on \mathbb{R}^{p}, Electron. J. Linear Algebra, 18, (2009), 88-97.
[8] R.B. Levow, A problem of mirsky concerning nonsingular doubly stochastic matrices, Linear Algebra Appl., 5, (1972), 197-206.
[9] A.W. Marshall, I. Olkin and B.C. Arnold, Inequalities: Theory of Majorization and Its Applications, Springer, New York, 2011.
[10] A. Mohammadhasani and A. Ilkhanizade manesh, Linear preservers of right sgut-majorization on \mathbb{R}^{n}, Wavel. Linear Algebra, 3, (2017), 116-133.

[^0]: *Corresponding author
 Email addresses: f_khalooei@uk.ac.ir (Fatemeh Khalooei), a.ilkhani@vru.ac.ir (Asma Ilkhanizadeh Manesh)

