

Decomposability of Weak Majorization

Fatemeh Khalooei^{a,*}, Asma Ilkhanizadeh Manesh^b

^aDepartment of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran. ^bAssistant Professor, Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O. Box: 7713936417, Rafsanjan, Iran.

ARTICLE INFO

Article history: Received 27 February 2021 Accepted 23 August 2021 Available online 14 March 2022 Communicated by Hamid Reza afshin

Keywords:

Decomposability, Doubly substochastic matrix, Weak majorization, Majorization.

2000 MSC: 15A04, 15A51

Abstract

Let $x, y \in \mathbb{R}^n$. We use the notation $x \prec_w y$ when x is weakly majorized by y. We say that $x \prec_w y$ is decomposable at k $(1 \le k < n)$ if $x \prec_w y$ has a coincidence at k and $y_k \ne y_{k+1}$. Corresponding to this majorization we have a doubly substochastic matrix P. The paper presents $x \prec_w y$ is decomposable at some k $(1 \le k < n)$ if and only if P is of the form $D \oplus Q$ where Dand Q are doubly stochastic and doubly substochastic matrices, respectively. Also, we write some algorithms to obtain x from ywhen $x \prec_w y$.

© (2022) Wavelets and Linear Algebra

http://doi.org/10.22072/wala.2021.525980.1321 © (2022) Wavelets and Linear Algebra

^{*}Corresponding author

Email addresses: f_khalooei@uk.ac.ir (Fatemeh Khalooei), a.ilkhani@vru.ac.ir (Asma Ilkhanizadeh Manesh)

1. Introduction

Let \mathbf{M}_n be the set of all real matrices of order n. A matrix $D \in \mathbf{M}_n$ of nonnegative real numbers for which the sums of the entries in each row and each column are all one is said to be *doubly stochastic*. We denote the set of all doubly stochastic matrices of order n by Ω_n .

Let \mathbb{R}^n be the set of all *n*-tuples (x_1, \ldots, x_n) of real numbers. Set \mathbb{R}^n_+ the set of all $x \in \mathbb{R}^n$ with nonnegative entires. For vector $x \in \mathbb{R}^n$, the notations $x \ge 0$ and x > 0 mean that $x_i \ge 0$ and $x_i > 0$ for $i = 1, \ldots, n$, respectively. Also, for $x, y \in \mathbb{R}^n, x \ge y$ means that $x - y \ge 0$. Let x^{\downarrow} and x^{\uparrow} be the vectors obtained by rearranging the coordinates of $x \in \mathbb{R}^n$ in the decreasing and the increasing orders, respectively. Thus, $x^{\downarrow} = (x_1^{\downarrow}, \ldots, x_n^{\downarrow})$, where $x_1^{\downarrow} \ge \cdots \ge x_n^{\downarrow}$. Similarly, $x^{\uparrow} = (x_1^{\uparrow}, \ldots, x_n^{\uparrow})$, where $x_1^{\uparrow} \le \cdots \le x_n^{\uparrow}$.

Let $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n) \in \mathbb{R}^n$. We say that x is *majorized* by y, in symbols x < y, if

$$\sum_{i=1}^{k} x_i^{\downarrow} \le \sum_{i=1}^{k} y_i^{\downarrow}, \quad 1 \le k \le n,$$

and

$$\sum_{i=1}^n x_i = \sum_{i=1}^n y_i.$$

For further information about majorization, we refer the reader to [2, 3], [5]–[7] and [9]. Let $x, y \in \mathbb{R}^n$, we say that x is (*weakly*) submajorized by y, in symbols $x \prec_w y$, if

$$\sum_{i=1}^k x_i^{\downarrow} \le \sum_{i=1}^k y_i^{\downarrow}, \qquad 1 \le k \le n.$$

The following concepts are defined in [1, 4] and [8]. Let $x, y \in \mathbb{R}^n$, $x \prec y$, and

$$\delta_k = \sum_{i=1}^k (y_i^{\downarrow} - x_i^{\downarrow}) \qquad 1 \le k \le n - 1, \tag{1.1}$$

then $\delta_k \ge 0$.

If $\delta_k = 0$, we say that $x \prec y$ has a *coincidence* at k. If $x \prec y$ has a coincidence at k and $y_k \neq y_{k+1}$, we say that $x \prec y$ is *decomposable* at k.

Definition 1.1. A matrix $P \in \mathbf{M}_n$ with nonnegative entries is called *doubly substochastic* if the sums of the entries in each row and each column are less than or equal one.

Theorem 1.2. [9] The following assertions are true for weakly majorization.

- (i) [9, A.4] Let $x, y \in \mathbb{R}^n_+$, then $x \prec_w y$ if and only if x = Py for some doubly substochastic matrix $P \in M_n$.
- (ii) [9, A.9] Let $x, y \in \mathbb{R}^n$, then $x \prec_w y$ if and only if there exists a vector $u \in \mathbb{R}^n$ such that $x \leq u \prec y$.

The following lemma involves a special kind of linear transformation called a T-transform. The matrix of a T-transform has the form

$$T = \lambda I + (1 - \lambda)Q,$$

where $0 \le \lambda \le 1$ and Q is a permutation matrix that just interchanges two coordinates.

Lemma 1.3. [9, A.3] Let $x, y \in \mathbb{R}^n$, then $x \prec y$ if and only if x can be derived from y by successive applications of a finite number of T-transforms.

Here, we study weak majorization and related doubly substochastic matrices. We also present that decomposability of $x \prec_w y$ is a necessary and sufficient condition for *P* to be a direct sum of $D \oplus Q$, where x = Py, $D \in \Omega_n$ and *Q* is a doubly substochastic matrix.

We find an algorithm to construct a vector *u* such that $x \le u < y$. Using this algorithm we write an algorithm to find linear transformations which transform *y* to *x* where $x <_w y$.

2. Decomposability and weak majorization

Let $x, y \in \mathbb{R}^n_+$ and $x \prec_w y$, then by Theorem 1.2 (i) there exists some doubly substochastic matrix P such that x = Py. In this section, we find some necessary and sufficient conditions for construction of the matrix P as a direct sum of a doubly stochastic and a doubly substochastic matrices.

Definition 2.1. Let $x, y \in \mathbb{R}^n$, $x \prec_w y$, and

$$\delta_k = \sum_{i=1}^k (y_i^{\downarrow} - x_i^{\downarrow}) \qquad 1 \le k \le n - 1, \tag{2.1}$$

then $\delta_k \ge 0$. If $\delta_k = 0$, we state that $x \prec_w y$ has a *coincidence* at k. If $x \prec_w y$ has a coincidence at k and $y_k \ne y_{k+1}$, we say that $x \prec_w y$ is *decomposable* at k.

In the following two theorems, we prove that $P = D \oplus Q$ for some $D \in \Omega_k$ and doubly substochastic matrix $Q \in \mathbf{M}_{n-k}$ if and only if there exists some $1 \le k \le n-1$ such that $x \prec_w y$ is decomposable at k.

Theorem 2.2. Let $x, y \in \mathbb{R}^n_+$. Suppose that $x \prec_w y$ is decomposable at k and x = Py for some doubly substochastic matrix $P \in M_n$. Then there exist matrices $D \in \Omega_k$ and doubly substochastic matrix $Q \in M_{n-k}$ such that $P = D \oplus Q$.

Proof. Without loss of generality, we can assume that *x*, *y* are vectors with entries in nonincreasing order. Let $P = (p_{ij})$. Then

$$\begin{split} \sum_{i=1}^{k} (x_i - y_k) &= \sum_{i=1}^{k} (\sum_{j=1}^{n} p_{ij} y_j - y_k) \\ &\leq \sum_{i=1}^{k} (\sum_{j=1}^{n} p_{ij} (y_j - y_k)) \\ &= \sum_{j=1}^{n} (\sum_{i=1}^{k} p_{ij} (y_j - y_k)) \\ &= \sum_{j=1}^{k} \sum_{i=1}^{k} p_{ij} (y_j - y_k) + \sum_{j=k+1}^{n} \sum_{i=1}^{k} p_{ij} (y_j - y_k) \end{split}$$

 $y_i - y_k < 0$ for j > k, thus

$$\sum_{i=1}^{k} (x_i - y_k) \leq \sum_{j=1}^{k} (\sum_{i=1}^{k} p_{ij}(y_j - y_k))$$
$$= \sum_{j=1}^{k} (y_j - y_k) \sum_{i=1}^{k} p_{ij}$$
$$\leq \sum_{j=1}^{k} (y_j - y_k).$$

But

$$\sum_{i=1}^{k} (x_i - y_k) = \sum_{j=1}^{k} (y_j - y_k).$$

Thus,

$$\sum_{j=k+1}^{n} \sum_{i=1}^{k} p_{ij}(y_j - y_k) = 0.$$

Since $y_j - y_k$ is negative, for all j = k + 1, ..., n, then $p_{ij} = 0$, where $1 \le i \le k$ and $k + 1 \le j \le n$ so that

$$P = \left[\begin{array}{c|c} D & 0 \\ \hline C & Q \end{array} \right].$$

Now, we claim that C = 0. We know that $x_i = \sum_{j=1}^k p_{ij} y_j$ for i = 1, ..., k. Then

$$\sum_{i=1}^{k} x_i = \sum_{i=1}^{k} \sum_{j=1}^{k} p_{ij} y_j \implies \sum_{i=1}^{k} y_i = \sum_{i=1}^{k} \sum_{j=1}^{k} p_{ij} y_j$$
$$\implies \sum_{i=1}^{k} y_i - \sum_{i=1}^{k} \sum_{j=1}^{k} p_{ij} y_j = 0$$
$$\implies \sum_{i=1}^{k} (1 - \alpha_i) y_i = 0,$$

where $\alpha_i = \sum_{j=1}^k p_{ji}$, for $i = 1, \dots, k$.

So, $1 - \alpha_i = 0$ for i = 1, ..., k, because $y_i > 0$ and $1 - \alpha_i \ge 0$ for all i = 1, ..., k (if $y_k = 0$, then $y_{k+1} = 0$. But we know that $y_k \ne y_{k+1}$). It follows that $\alpha_1 = \alpha_2 = \cdots = \alpha_k = 1$. As *D* is a doubly substochastic matrix of order *k*, we deduce that $D \in \Omega_k$ and C = 0. So that

$$P = \left[\begin{array}{c|c} D & 0 \\ \hline 0 & Q \end{array} \right].$$

Here, we state a corollary which one can prove it with the same argument in Theorem 2.2. This corollary omit the decomposable assumption of Theorem 2.2.

Corollary 2.3. Suppose $x, y \in \mathbb{R}^n_+$, $x \prec_w y$, and x = Py where P is a doubly substochastic matrix. If there is a coincidence at k and $y_1 \ge \ldots \ge y_k = y_{k+1} = \cdots = y_l > y_{l+1}$ where k < l < n, then $p_{ij} = 0$, where $1 \le i \le k$ and $l+1 \le j \le n$.

Now, we state the converse of Theorem 2.2 which is some necessary conditions for decomposability of $x \prec_w y$.

Theorem 2.4. Let $x, y \in \mathbb{R}^n_+$ with $x \prec_w y$. If there exists some k $(1 \le k \le n)$ that for every $P \in M_n$ such that x = Py, we have $P = D \oplus Q$ where $D \in \Omega_k$ and Q is a doubly substochastic matrix of order n - k, then $x \prec_w y$ is decomposable at k.

Proof. Let $x \prec_w y$. Then x = Py for some doubly substochastic matrix P. The hypothesis ensures that $P = D \oplus Q$ where $D \in \Omega_k$ and Q is a doubly substochastic matrix of order n - k.

The relation x = Py ensures that $(x_1, \ldots, x_k) = D(y_1, \ldots, y_k)$ where $D \in \Omega_k$, and so $(x_1, \ldots, x_k) < (y_1, \ldots, y_k)$. It follows that $\sum_{i=1}^k x_i = \sum_{i=1}^k y_i$. Therefore, x < y has a coincidence at k. Now, we claim that $y_k \neq y_{k+1}$. If not; $y_k = y_{k+1}$. We will construct a matrix P' such that x = P'y, but P' is not as a direct sum of some doubly stochastic matrix and a doubly substochastic matrix. Set $P = [P^1 P^2 \dots P^n]$, where P^i is the ith column of the matrix P. Now, define

$$P' = [P^1 \dots P^{k-1} P^{k+1} P^k P^{k+2} \dots P^n].$$

We observe that x = P'y. As $y_k = y_{k+1}$ and *P* has the form given in the hypothesis, we see that *P'* has the same form which we wanted to create. It is a contradiction. Hence $y_k \neq y_{k+1}$, and so $x \prec_w y$ is decomposable at *k*.

3. Algorithms for weak majorization

Let $x, y \in \mathbb{R}^n_+$. This section is devided into two parts. In the first part, with an algorithm, we obtain the vector structure u which $x \le u < y$ when $x <_w y$. In the second part, we obtain the structure of linear transformations that convert vector y into vector x in the relation $x <_w y$.

3.1. Some middle vector for $x \prec_w y$

Consider $x, y \in \mathbb{R}^n_+$ assuming that $x \prec_w y$. Here, we present some vector u such that $x \leq u \prec_w y$. We see $x \prec_w u \prec_w y$.

Proposition 3.1. Let $x, y \in \mathbb{R}^n_+$ with $x \prec_w y$. Then there is a vector u such that $x \leq u \prec_w y$ and there exists some $l \ (1 \leq l \leq n)$ such that $u \prec_w y$ has a coincidence at l. Furthermore, $x_{l+1} \leq y_{l+1}$ whenever $l \neq n$.

Proof. We consider the various possible cases separately.

Case 1. If $x \prec_w y$ has no coincidence.

Case 2. If $x \prec_w y$ has a coincidence at k.

Define $\delta = \min_{1 \le k \le n} \delta_k$, where δ_k is as in the relation (2.1). So $\delta = \delta_l$ for some $1 \le l \le n$. Put $u = x + \delta e_1$ ($e_1 \in \mathbb{R}^n$). As $\delta > 0$, it follows that $x \le u$. We observe that $u \prec_w y$, because $x \prec_w y$ and $x_1 + \delta \le y_1$. We see $u \prec_w y$ has a coincidence at *l*. Now, we claim that $x_{l+1} \le y_{l+1}$ whenever $l \ne n$. Otherwise, $x_{l+1} > y_{l+1}$, and it shows that $\delta_{l+1} < \delta_l$, that is a contradiction. Therefore, $x_{l+1} \le y_{l+1}$.

Set l = k and u = x. Since $x \prec_w y$ has a coincidence at l, we have $x_{l+1} \leq y_{l+1}$ when $l \neq n$.

Let $x, y \in \mathbb{R}^n_+$ and $x \prec_w y$. In the following algorithm, we present the vector *u* which obtained in the Theorem 1.2(ii) of [9] and in the Proposition 3.1 with a stronger condition, see Theorem 3.2.

Algorithm A

Input: Two vectors $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n) \in \mathbb{R}^n$ with $x \prec_w y$. 1. Initialize: Let u = 0. 2. for $x \prec_w y$ do (a) If $x \prec_w y$ doesn't have any coincidences; let $\delta = \min_{1 \le t \le n} \delta_t = \delta_k$, and let $v = (x_1 + \delta, x_2, ..., x_k) \in \mathbb{R}^k$. set $u = u \oplus v$. let $x = (x_{k+1}, ..., x_n)$ and $y = (y_{k+1}, ..., y_n)$. Go on 2. (b) If k is the greatest index such that $x \prec_w y$ has a coincidence at k. (a') If k = n; let $u = u \oplus x$. (b') If k < n; let $v = (x_1, ..., x_k)$. set $u = u \oplus v$. let $x = (x_{k+1}, ..., x_n)$ and $y = (y_{k+1}, ..., y_n)$. Go on 2.

Output: *u*.

In the following theorem, we find the relations between *x* and *y* with *u* obtained from the Algorithm \mathcal{A} .

Theorem 3.2. Suppose $x, y \in \mathbb{R}^n_+$ with $x \prec_w y$. Then Algorithm \mathcal{A} offers some $u \in \mathbb{R}^n$ such that $x \leq u \prec y$.

Proof. First, we claim that

$$(x_1,\ldots,x_k)\leq v\prec (y_1,\ldots,y_k),$$

where $v = (x_1 + \delta, x_2, ..., x_k)$. As $\delta > 0$, we see $x \le v$. By the definition of δ ,

$$\sum_{i=1}^{l} v_i = \delta + \sum_{i=1}^{l} x_i \le \sum_{i=1}^{l} y_i, \quad 1 \le l \le k.$$

Also, as $\delta = \delta_k$, we observe that

$$\sum_{i=1}^{k} v_i = \delta + \sum_{i=1}^{k} x_i = \sum_{i=1}^{k} y_i.$$

It implies that v < y. Set $X_1 = (x_1, \ldots, x_k)$, $Y_1 = (y_1, \ldots, y_k)$ and $U_1 = v$. Now, find v_1 such that $X_2 = (x_{k+1}, \ldots, x_{k_1}) \le v_1 < Y_2 = (y_{k+1}, \ldots, y_{k_1})$ then set $U_2 = v_1$. By continuing this process, we can find U_3, \ldots, U_m .

Now, since $u = U_1 \oplus U_2 \oplus \cdots \oplus U_m$ and $X_i \le U_i < Y_i$ for i = 1, ..., m where $x = X_1 \oplus X_2 \oplus \cdots \oplus X_m$ and $y = Y_1 \oplus Y_2 \oplus \cdots \oplus Y_m$, we deduce that $x \le u < y$.

3.2. Linear transformations and weak majorization

The following theorems are existential theorems which are in the book Marshall [9]. Here, for $x, y \in \mathbb{R}^n_+$ with $x \prec_w y$ we write an algorithm that presents the structure of linear transformations expressed in these theorems.

Theorem 3.3. [9] Let $x, y \in \mathbb{R}^n_+$. The following conditions are equivalent.

(*i*) $x \prec_w y$;

(ii) x can be derived from y by successive applications of a finite number of T-transforms followed by a finite number of transformations of the form

$$T_{\alpha}(z) = (z_1, \dots, z_{i-1}, \alpha z_i, z_{i+1}, \dots, z_n), \quad 0 \le \alpha \le 1$$

Theorem 3.4. [9] Let $x, y \in \mathbb{R}^n_+$ with $x \prec_w y$. Then there exist some *T*-transforms T_1, \ldots, T_m and some linear transformations $T_{\alpha_1}, \ldots, T_{\alpha_l}$ such that

$$x = T_{\alpha_1} \dots T_{\alpha_l} T_1, \dots, T_m y.$$

Proof. Let $x \prec_w y$. Theorem 2.4 ensures that there is some u such that $x \le u \prec y$. As $u \prec y$, there exist *T*-transforms T_1, \ldots, T_m such that $u = T_1 \ldots T_m y$.

Also, since $x \le u$, there exist transformations $T_{\alpha_1}, \ldots, T_{\alpha_l}$ such that $x = T_{\alpha_1} \ldots T_{\alpha_l} u$. Now, we conclude that $x = T_{\alpha_1} \ldots T_{\alpha_l} T_1 \ldots T_m y$.

If $x, y \in \mathbb{R}^n$ and x < y, then by Lemma 1.3 there exist T-transforms T_1, \ldots, T_k such that $x = T_1 \cdots T_k y$. Next, Algorithms \mathcal{B} and C express the structures of T_1, \ldots, T_k .

Algorithm B

Input: Two vectors $x^{\downarrow} = (x_1^{\downarrow}, \dots, x_n^{\downarrow}), y^{\downarrow} = (y_1^{\downarrow}, \dots, y_n^{\downarrow}) \in \mathbb{R}^n$ with x < y. 1. Initialize: Let Q = I. 2. for x < y do let $j = \max\{i : x_i < y_i\},$ let $k = \min\{i : j < i, x_i > y_i\},$ let $\delta = \min\{y_j - x_j, x_k - y_k\},$ let $\lambda = 1 - \frac{\delta}{y_j - y_k},$ set $Q \mapsto$ interchange the ith and jth rows of Q. Output: Q. The $\mathcal{A}(x, y)$ symbol used for the subalgorithm means to put the inputs x and y in the algorithm \mathcal{A} .

Algorithm C

Input: Two vectors $x^{\downarrow} = (x_1^{\downarrow}, \dots, x_n^{\downarrow}), y^{\downarrow} = (y_1^{\downarrow}, \dots, y_n^{\downarrow}) \in \mathbb{R}^n$ with x < y. 1. $1 \mapsto i$. 2. for x < y do (a) If x = y, then Go on 2. (b) $Q = \mathcal{B}(x, y)$, set $T_i = \lambda I + (1 - \lambda)Q$, set $y = T_i y$. 3. Go on 2. Output: $T_1, T_2, ..., T_{i-1}$. *Algorithm* \mathcal{D} Input: Two vectors $x = (x_1, ..., x_n), y = (y_1, ..., y_n) \in \mathbb{R}^n$ with $x \prec_w y$. 1. $u = \mathcal{A}(x, y)$ 2. $T_1, ..., T_{i-1} = C(u, y)$ 3. (i : 1, n)4. for $x \le u$ do (a) If $x_i = u_i$, then $T_{\alpha_i} = I$ and Go on 4. (b) $T_{\alpha_i}(u_1, ..., u_n) = (x_1, ..., x_i, u_{i+1}, ..., u_n)$, Go on 4. Output: $T_{\alpha_1}, ..., T_{\alpha_n}$ Output: $T_{\alpha_1}, ..., T_{\alpha_n}, T_1, ..., T_{i-1}$

References

- T. Ando, Majorization, doubly stochastic matrices, and comparison of eigenvalues, *Linear Algebra Appl.*, **118**, (1989), 163–248.
- [2] A. Armandnejad and A. Ilkhanizade manesh, Gut-majorization on $\mathbb{M}_{n,m}$ and its linear preservers, *Electron. J. Linear Algebra*, **23**, (2012), 646–654.
- [3] R. Bhatia, Matrix Analysis, Springer, New York, 1997.
- [4] R.A. Brualdi, The doubly stochastic matrices of a vector majorization, *Linear Algebra Appl.*, **61**, (1984), 141–154.
- [5] G. Dahl and F. Margot, Weak k-majorization and polyhedra, Math. Program., 81, (1998), 37-53.
- [6] F. Khalooei, Linear preservers of two-sided matrix majorization, Wavelets and Linear Algebra, 1, (2014), 43–50.
- [7] F. Khalooei and A. Salemi, The structure of linear preservers of left matrix majorization on \mathbb{R}^p , *Electron. J. Linear Algebra*, **18**, (2009), 88–97.
- [8] R.B. Levow, A problem of mirsky concerning nonsingular doubly stochastic matrices, *Linear Algebra Appl.*, **5**, (1972), 197–206.
- [9] A.W. Marshall, I. Olkin and B.C. Arnold, *Inequalities: Theory of Majorization and Its Applications*, Springer, New York, 2011.
- [10] A. Mohammadhasani and A. Ilkhanizade manesh, Linear preservers of right sgut-majorization on \mathbb{R}^n , *Wavel. Linear Algebra*, **3**, (2017), 116–133.