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Abstract
Let N ∈ B(H) be a normal operator acting on a real or complex
Hilbert space H. Define N† := N−1

1 ⊕ 0 : R(N) ⊕ K(N) →
H, where N1 = N|R(N). Let the fractional semigroup Fr(W)
denote the collection of all words of the form f �1 f �2 · · · f �k in
which f j ∈ L∞(W) and f � is either f or f †, where f † =

χ{ f,0}/( f + χ{ f =0}) and L∞(W) is a certain normed functional al-
gebra of functions defined on σF(W), besides that, W = W∗ ∈

B(H) and F = R or C indicates the underlying scalar field.
The fractional calculus ( f �1 f �2 · · · f �k )(W) on Fr(W) is defined as
f �1 (W) f �2 (W) · · · f �k (W), where f †j (W) = ( f j(W))†. The present
paper studies sufficient conditions on f j to ensure such frac-
tional calculus are unbounded normal operators. The results
will be extended beyond continuous functions.
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1. Introduction

In this preliminary section we study some basic properties of bounded linear operators be-
tween Hilbert spaces needed in the later developments; for reference to spectral theory, selfadjoint
operators and functional calculus of bounded operators we suggest [3]-[7] and [9]-[10]. For every
Hilbert space H , {0} with underlying field F, the spectrum of an operator T ∈ B(H) are defined
as follows:

σF(T ) = F\{λ ∈ F : λI − T is bijective}. (1.1)

An operator T ∈ B(H) is called selfadjoint, if T = T ∗. A selfadjoint operator T is called
positive or, more precisely, nonnegative if it satisfies 〈T x, x〉 ≥ 0 for all x ∈ H.

In the rest of the paper, to avoid confusion of the notations for ”closure of a set” as in Z̄ = Z∪Z′

and the ”conjugate of a complex number” as in z̄ = Re(z) − i Im(z), the latter will be denoted by
z∗. Throughout the paper, D(·), R(·), and K(·) stand for the domain, the range and the kernel
(null space) of some linear operator. Also, the symbol ⊕ represents the orthogonal direct sum of
subspaces or unbounded operators. Sometimes, we replace M ⊕ N by M+̇N only to emphasise
that the resulting direct sum of the two linear subspaces M and N may not be orthogonal.

In this paper, we study a class of unbounded normal operators. Given an arbitrary operator
A ∈ B(H) of the form A = B ⊕ 0 with K(B) = {0}, its Moor-Penrose inverse A† will be an
unbounded operator defined by

A† = B−1 ⊕ 0 ; D(A†) = R(A) ⊕ K(A). (1.2)

( Note that R(A) = R(B).) Identify H × K with the Hilbert space obtained from the external direct
sum H ⊕K. For an operator T with graph G(T ) ⊂ H ×K, the inverse T−1, the closure T , the scalar
multiple αT (α ∈ C) and the adjoint T ∗ of T are determined by the following graphs:

G(T−1) =
{
[y, x]T : [x, y]T ∈ G(T )

}
⊂ K × H;

G(T ) = G(T ) ⊂ H × K;
G(αT ) =

{
[x, αy]T : [x, y]T ∈ G(T )

}
⊂ H × K;

G(T ∗) = G(−T−1)⊥ ⊂ K × H.

The operators T−1, T̄ and T ∗ need not be single-valued even if T itself is a single-valued one. The
operator T ∗ is single-valued if and only if T is densely defined. The operator T is closed if T = T̄ .
Note that T ∗ = (T̄ )∗ = T ∗. Finally, if T1 : D(T1) ⊂ H → K and T2 : D(T2) ⊂ K → L are linear
operators for some Hilbert spaces H,K and L. Then T2T1 is the linear operator with

D(T2T1) := {x ∈ D(T1) : T1x ∈ D(T2)} and (T2T1)x = T2(T1x). (1.3)

A densely defined closed operator T is called normal if TT ∗ = T ∗T . In general, when we write
A = B for a pair of operators A and B, we mean D(A) = D(B) and Ax = Bx for all x in their
common domain. Recall that if φ and ψ are given functions, the notation φ ⊂ ψ means that
D(φ) ⊂ D(ψ) and φ = ψ|D(φ). Also, in dealing with an unbounded linear operator T , the expression
I + T would always mean ID(T ) + T .
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For reader’s convenience, we conclude the section by certain facts from [9] which will be
necessary for our main results in the next section. We assume N = T + iτ ∈ B(H) is a normal
operator, where (T, τ) is a commuting pair of selfadjoint operators on H over the field F. (When
F = R, assume τ = 0.) The notation Ab(N) ⊂ FF will denote the algebra of all Borel functions
bounded on σF(N). Also, if D is a subset of a topological linear space, then ∨̄(D) will denote
the closure of its linear span. (We define ∨̄(∅) = {0}.) For a vector x ∈ H, the smallest invariant
subspace and the smallest reducing invariant subspace of N containing x can be, respectively,
formulated as follows:

Z(N; x) := ∨̄{Nmx : m = 0, 1, 2, · · · } and
Z(N,N∗; x) := Z(T, τ; x) = ∨̄{NmN∗nx : m, n = 0, 1, 2, · · · }

= ∨̄{T mτnx : m, n = 0, 1, 2, · · · }.

Let T = T ∗ ∈ B(H). It is known that the polynomial functional calculus can be extended to an
isometric *-algebra isomorphism f 7→ f (T ) : CF(σF(T ))→ B(H) such that

|| f (T )|| = || f ||σF(T ), ∀ f ∈ CF(σF(T )).

More generally, if N ∈ B(H) is a complex normal operator or a real selfadjoint operator, one can
extend this result to a normed linear space of Borel functions including the collectionAb(N) of all
bounded Borel functions defined on σF(N).

Theorem 1.1. ([9]) Let N = T + iτ ∈ B(H) be a real selfadjoint or a complex normal operator.
Then, for each x ∈ H, there exist a positive Borel measure (F,B, µN

x ) and a unitary operator
Ux : L2

F(µN
x )→ Z(N,N∗; x) such that for all f ∈ F[x], for all φ ∈ L2

F(µN
x ) and for all y ∈ H,

Ux f = f (N)x, ||µN
x || = µN

x (σF(N)) = ||x||2, and (1.4)

〈Uxφ, y〉 =

∫
φ(s){[U∗xPy](s)}∗dµN

x (s), (1.5)

where P : H → H is the orthogonal projection onto Z(N,N∗; x). Moreover, the mapping f 7→
f (N) : Ab(N) → B(H) defined by f (N)x = Ux f is a ∗-algebra homomorphism extending the
continuous functional calculus, and, if QN = NQ for some Q ∈ B(H), then Q f (N) = f (N)Q.

We now equip Ab(N) with a norm with respect to which the functional calculus f 7→ f (T, τ) :
Ab(N)→ B(H) is an isometric ∗-algebra isomorphism.

Definition 1.2. ([9]) Suppose the notation and the hypotheses of Theorem 1.1 are valid. For each
f ∈ Ab(N) define ν( f ) = supx∈H || f ||L∞(µN

x ). Then ν is a seminorm onAb(N) which induces a norm
|| · ||N on the completion L∞(N) of the quotient spaceAb(N)/{ f : ν( f ) = 0}.

Theorem 1.3. ([9]) With the notation established in Theorem 1.1 and Definition 1.2, g(N) = 0 if
ν(g) = 0. Moreover, the functional calculus f 7→ f (T, τ) : L∞(N) → B(H) induces an isometric
∗-algebra isomorphism.
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Let W ∈ B(H) be a selfadjoint operator. If g ∈ L∞(W), so is g∗ and g∗(W) = g(W)∗, where g∗

denotes the complex conjugate of the complex-valued function g, and g(W)∗ denotes the adjoint
of the Hilbert space operator g(W). Let the fractional semigroup Fr(W) denote the collection
of all words of the form f �1 f �2 · · · f �k in which f j ∈ L∞(W) and f � is either f or f †, where f † =

χ{ f,0}/( f + χ{ f =0}). In other words,

f †(x) :=
1

f (x)
, if f (x) , 0 and f †(x) := 0, otherwise.

Also, L∞(W) is a certain normed functional algebra of functions defined on σF(W). The fractional
calculus ( f �1 f �2 · · · f �k )(W) on Fr(W) is defined as f �1 (W) f �2 (W) · · · f �k (W), where f †j (W) =

( f j(W))†.
In the following section, we study certain properties of such operator words and, in the third

section, we find sufficient conditions on the functions fi to assure the normality of such unbounded
operators.

2. Noncommutativity

In this section, assume W ∈ B(H) is a selfadjoint operator on a real or complex Hilbert space H
and study the properties of the operator words f �1 (W) f �2 (W) · · · f �k (W) as defined in the previous
section. The fractional functional calculus ( f , g) 7→ f (W)g(W)† (for f , g ∈ C(σ(W))) has been
used by von Neumann in representaions such as T ∗T = (I−W)W−1 for any densely defined closed
linear operator T : D(T ) ⊂ H → K, where W = (I +T ∗T )−1 ∈ B(H) is the von Neumann generator
of T . For more details about the von Neumann generator of an operatotor see [2]. First we need
some notations. For f , g ∈ L∞(W) , define

T := f (W)g(W)†, (2.1)
θ := W |K(g(W)) and ω := W |

R(g(W)). (2.2)

and verify that
H = H1 ⊕ H2, where H1 = K(g(W)), and H2 = R(g(W));
f (W) = f (θ) ⊕ f (ω), and f (W)† = f (θ)† ⊕ f (ω)†;
g(W) = 0 ⊕ g(ω), and g∗(W) = 0 ⊕ g∗(ω);
g(W)† = 0 ⊕ g(ω)−1 and g∗(W)† = 0 ⊕ g∗(ω)−1.

(2.3)

Note that if ν(g − h) = 0 for some nowhere vanishing h defined on σF(W), then g† = 1/h and
g(W)† = g(W)−1. Therefore, it is unamiguous to define (1/g)(W) = g†(W) = g(W)−1. Furthermore,
the following assertions are obvious.

W = θ ⊕ ω , and, R(g(W)) = R(g(ω)); (2.4)
T = 0 ⊕ f (ω)g(ω)−1;
D(T ) = D(g(W)†) = K(g(W)) ⊕ R(g(ω));
K(T ) = K(g(W)) ⊕ K( f (ω));
R(T ) = R( f (ω)) = f (W)(R(g(W))).
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The verification of the less obvious fact R(g(W)) = R(g(ω)) follows from the equality g(W)(x1 ⊕

x2) = g(W)x2 = g(ω)x2 for all x1 ⊕ x2 ∈ H1 ⊕ H2. If W is a bounded injective positive selfadjoint
operator and if α > 0, then W−α means (Wα)−1 in its algebraic sense with D((Wα)−1) = R(Wα).
(Note that Wα = h(W), where h(t) := tα for 0 ≤ t ≤ ||W ||.)

Proposition 2.1. Let W ∈ B(H) be a positive operator and, let f , g ∈ L∞(W). The following
assertions are true.

(I) f (W)g(W) = g(W) f (W);

(II) f (W)g(W)† ⊂ g(W)† f (W);

(III) if σ(W) has an accumulation point, then there exist f , g such that the linear operators
f (W)†g(W)† and g(W)† f (W)† are not comparable .

Proof. Fact (I) is clear. For (II), let θ, ω be as in (2.2). Thus, g(ω) is injective and g(θ) = 0.
Therefore,

f (W)g(W)† = 0 ⊕ f (ω)g(ω)†, g(W)† f (W) = 0 ⊕ g(ω)† f (ω) (2.5)

in which g(ω)† = g(ω)−1. Thus, it is sufficient to show that f (ω)g(ω)−1 ⊂ g(ω)−1 f (ω). First
we show that R(g(ω)) ⊂ D(g(ω)−1 f (ω)), and this follows from the fact that f (ω) leaves R(g(ω))
invariant. To show f (ω)g(ω)−1x = g(ω)−1 f (ω)x for all x = g(ω)ξ ∈ R(g(ω)), observe that

g(ω)−1 f (ω)x = g(ω)−1 f (ω)g(ω)ξ = g(ω)−1g(ω) f (ω)ξ
= f (ω)ξ = f (ω)g(ω)−1g(ω)ξ = f (ω)g(ω)−1x.

This proves (II). For (III), choose a strictly monoton sequence {λn} ⊂ σ(W) converging to some
λ ∈ σ(W). Define rn = min {|λn − λn−1| , |λn − λn+1|} /2 for n ≥ 2 and define r1 = |λ2 − λ1| /2. Next,
define ϕn ∈ CF(σ(W)) by

ϕn(t) = 2−n(1 − r−1
n |t − λn|) X[λn−rn , λn+rn] , n = 1, 2, · · · .

Now, write

f (t) =

∞∑
n=1

ϕ2n(t) , and, g(t) =

∞∑
n=1

ϕ2n−1(t).

Since f (W)g(W) = g(W) f (W) = 0, it follows that R(g(W)) ⊂ K( f (W)), R( f (W)) ⊂ K(g(W)).
Consider the direct sum H = H1 ⊕ H2 = (K1 ⊕ K2) ⊕ H2 in which

K1 = K( f (θ)), K2 = R̄( f (θ)) = R̄( f (W)). (2.6)

Moreover, W = θ1 ⊕ θ2 ⊕ ω where θi = θ |Ki for i = 1, 2 and f (θ) = 0 ⊕ f (θ2). Then

f (W)† = 0 ⊕ f (θ2)−1 ⊕ 0, g(W)† = 0 ⊕ 0 ⊕ g(ω)−1.

Thus,

f (W)†g(W)† = 0 on D( f (W)†g(W)†) = K1+̇K2+̇R(g(ω))
g(W)† f (W)† = 0 on D(g(W)† f (W)†) = K1+̇R( f (θ2))+̇H2.
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Since f (W) = 0 ⊕ f (θ2) ⊕ 0 and since 2−2n = f (λ2n) ∈ σ( f (W)), it follows that 2−2n ∈ σ( f (θ2))
and, hence, 0 ∈ σ( f (θ2)). Similarly, 0 ∈ σ(g(ω)). Since f (θ2) and g(ω) are injective, it follows
from the Banach inverse mapping theorem that R( f (θ2)) , K2 and R(g(ω)) , H2. Therefore,
D( f (W)†g(W)†) , D(g(W)† f (W)†) and, hence, f (W)†g(W)† , g(W)† f (W)†.

Corollary 2.2. Let W ∈ B(H) be a positive operator and, for f ∈ L∞(W), let f (W)� denote either
f (W) or f (W)†. Define S W = Πk

i=1 fk+1−i(W)� for some functions f1, f2, · · · , fk ∈ L∞(W). Define
J† = { j : f j(W)� = f j(W)†; 1 ≤ j ≤ k} ordered by its hereditary order from J := {1 < 2 < 3 <
· · · < k}. Then

[Π j<J† f j(W)][Π j∈J† f j(W)†] ⊂ S W ⊂ [Π j∈J† f j(W)†][Π j<J† f j(W)]. (2.7)

The hereditary order in J† is important and may affect the result if changed.

Proof. In Proposition 2.1, we have proven (2.7) for two functions and the general case follows
from induction on the number of consecutive interchanges.

Theorem 2.3. For the linear operator T defined in (2.1) the following assertions are true.

(i) T ∗ ⊃ g∗(W)† f ∗(W) = 0 ⊕ g∗(ω)−1 f ∗(ω) ⊃ f ∗(W)g∗(W)† = 0 ⊕ f ∗(ω)g∗(ω)−1;

(ii) If f and g are real-valued, then T is symmetric; i.e., T ⊂ T ∗;

(iii) The operator T need not be normal.

(iv) g(W)†g∗(W)† = |g|2(W)†; in particular, g(W)† and g∗(W)† commute.

Proof. Except for the inclusion T ∗ ⊃ 0 ⊕ g∗(ω)−1 f ∗(ω), the remainder of (i)-(ii) are immediate
consequences of Theorem 2.2. To prove this particular inclusion, note that T = 0 ⊕ τ and T ∗ =

0 ⊕ τ∗, where τ = f (ω)g(ω)−1 : R(g(ω)) ⊂ H2 → H2. Therefore, we have to show that τ∗ ⊃
g∗(ω)−1 f ∗(ω). For the latter, let u ∈ D(g∗(ω)−1 f ∗(ω)). Hence, f ∗(ω)u = g∗(ω)v for some v ∈ H2.
Then, for w = g(ω)ξ ∈ D(τ),

〈g∗(ω)−1 f ∗(ω)u,w〉 = 〈 f ∗(ω)u, ξ〉 = 〈u, f (ω)ξ〉 = 〈u, τw〉.

Since u and w were arbitrary selections, g∗(ω)−1 f ∗(ω) ⊂ τ∗.
For Part (iii), let f (t) = g(t) ≡ t and assume W is an injective positive operator whose inverse

W−1 is not bounded. Then R(W) is not closed and, hence, the densely defined operator T =

WW−1 = IR(W) is not closed. Thus T is not normal or selfadjoint. However, it is true that T ⊂ T ∗ =

I and TT ∗ = T = T ∗T .
In view of (2.4), Part (iv) is equivalent with

g(ω)−1g∗(ω)−1 = |g|2(ω)−1.

If u ∈ D(g(ω)−1g∗(ω)−1), then u = g∗(ω)v and v = g(ω)w for some v,w ∈ H. Then u =

g∗(ω)g(ω)w = |g|2(ω)w ∈ D(|g|2(ω)−1) and g(ω)−1g∗(ω)−1u = w = |g|2(ω)−1u. Thus, g(ω)−1g∗(ω)−1 ⊂

|g|2(ω)−1. For the inverse inclusion, let u ∈ D(|g|2(ω)−1). Then u = |g|2(ω)η = g∗(ω)g(ω)η for some
η ∈ H. Hence, g(ω)−1g∗(ω)−1u = η = |g|2(ω)−1u.
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3. Commutativity

In this section, we study sufficient conditions which imply the commutativity of

f (W)g(W)† = g(W)† f (W)

and conclude the normality of the operator T = f (W)g(W)† for Borel functions f , g. The proof is
based on a condition involving the ranges of f (W) and g(W). The following key lemma provides
sufficient conditions on f and g to ensure the normality of the operator T . The lemma will be
often used throughout the remainder of the paper and may be referred to as the key lemma. The
consequences of a special case of the key lemma and other results of the paper are used in [1]
and [2] to prove the existence of dual frames for algebraic frames and to study the structure of
unbounded linear operators.

Lemma 3.1. (Key lemma) Let W be a bounded positive operator and let f , g ∈ Ab(W). The
following assertions are true.

(i) If x ∈ R(g(W)) for some x ∈ H, then f (W)x ∈ R(g(W)).

(ii) Assume f (a) , 0 for some a ∈ σF(W), and define h on σF(W) by

h(t) =

{ f (t)− f (a)
g(t) , t ∈ σ(W)\{a}, g(t) , 0,

0, otherwise.

If h ∈ Ab(W) and f (W)x ∈ R(g(W)) for some x ∈ H, then x ∈ R(g(W)) = R(g∗(W)).

Proof. In part (i), there exists ξ ∈ H such that x = g(W)ξ. Thus, Proposition 2.1 implies that
f (W)x = f (W)g(W)ξ = g(W) f (W)ξ ∈ R(g(W)).

For part (ii), with the hypotheses of the lemma, f (W)x − f (a)x = g(W)h(W)x. Now, choose
y ∈ H such that f (W)x = g(W)y. Then x = g(W)[y − h(W)x]/ f (a). The last equality follows from
the fact that R(N) = R(N∗) for any bounded normal operator N.

Theorem 3.2. Let W, f , g, a and ` be as in the Key Lemma 3.1. Let T = f (W)g(W)†. Then the
various parts of Theorem 2.3 can be sharpened as follows.

(i) T = T̄ = g(W)† f (W).

(ii) f ∗(W)g(W)† = g(W)† f ∗(W).

(iii) T ∗ = f ∗(W)g∗(W)† = g∗(W)† f ∗(W),D(T ∗) = R(g∗(W)) = R(g(W)) = D(T ).

(iv) T is normal and T ∗T = TT ∗ = | f |2(W)|g|2(W)† = |g|2(W)†| f |2(W).

(v) If f and g are real-valued, then T is selfadjoint.
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Proof. As in the proof of Proposition 2.1, it is sufficient to replace W by ω = W |R̄(g(W)) and,
hence, ω† = ω−1. It was shown that T = 0 ⊕ f (ω)g(ω)−1, D(T ) = K(g(ω)) ⊕ R(g(ω)) and
R(T ) = R( f (ω)). We continue the proof with the notation of the proof of Theorem 2.3. Let
τ = f (ω)g(ω)−1 : R(g(ω)) ⊂ H → K.

For Part (i), it is sufficient to show that τ is closed and D(g(ω)−1 f (ω)) ⊂ D(τ). Let xn ∈

R(g(ω)) be such that limn xn = x and limn τxn = y for some x ∈ H and some y ∈ K. We must show
that x ∈ R(g(ω)) and y = τx. Observe that

f (ω)x = lim
n

f (ω)xn = lim
n

f (ω)g(ω)g(ω)−1xn

= lim
n

g(ω)τxn = g(ω) lim
n
τxn = g(ω)y.

By the key lemma, x ∈ R(g(ω)) and, by Part (i) of Theorem 2.2,

τx = f (ω)g(ω)−1x = g(ω)−1 f (ω)x = g(ω)−1g(ω)y = y.

Next, let x ∈ D(g(ω)−1 f (ω)). Since f (ω)x ∈ R(g(ω)), it follows from the Key Lemma 3.1, that
x ∈ R(g(ω)) = D(τ).

For Part (ii) also, it is sufficient to show that D(g(ω)−1 f ∗(ω)) ⊂ D( f ∗(ω)g(ω)−1). Let x ∈
D(g(ω)−1 f ∗(ω)). Thus, f ∗(ω)x ∈ R(g(ω)) = R(g∗(ω)). The Key lemma implies that x ∈ R(g∗(ω)) =

R(g(ω)) = D( f ∗(ω)g(ω)−1).
In (iii), observe that T ∗ = 0⊕ τ∗ and let u ∈ D(τ∗). Then (−τ∗u)⊕ u ⊥ G(τ) and, for all ξ ∈ H2,

0 = 〈g(ω)ξ ⊕ τg(ω)ξ,−τ∗u ⊕ u〉 = 〈g(ω)ξ ⊕ f (ω)g(ω)−1g(ω)ξ,−τ∗u ⊕ u〉
= 〈g(ω)ξ,−τ∗u〉 + 〈 f (ω)ξ, u〉 = 〈ξ,−g∗(ω)τ∗u + f ∗(ω)u〉.

The Key Lemma applied to the pair f ∗ and g∗ yields f ∗(ω)u = g∗(ω)τ∗u and, hence, u ∈ R(g∗(ω)) =

D( f ∗(ω)g∗(ω)−1). Therefore, in view of Part (i), τ∗u = g∗(ω)−1 f ∗(ω)u = f ∗(ω)g∗(ω)−1u which
implies that τ∗ ⊂ f ∗(ω)g∗(ω)−1 withD(τ∗) ⊂ R(g∗(ω)) = R(g(ω)) = D(τ). The inverse inclusions
follow from Part (ii) of Theorem 2.2.

To show TT ∗ = T ∗T , apply the last part of Theorem 2.2 as well as the previous parts of the
present theorem to conclude that

TT ∗ = f (ω)g(ω)−1 f ∗(ω)g∗(ω)−1 = g(ω)−1 f (ω)g∗(ω)−1 f ∗(ω)
= f ∗(ω) f (ω)g∗(ω)−1g(ω)−1 = g(ω)−1g∗(ω)−1 f (ω) f ∗(ω)
= | f |2(ω)|g|2(ω)−1 = |g|2(ω)−1| f |2(ω).

Writing similar expressions for T ∗T , it follows that TT ∗ = T ∗T . This proves Part (iv) from which
Part (v) follows immediately.
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[4] J.B. Conway, A Course in Functional Analysis, 2nd Edition, Springer-Verlag, New York, 1997.
[5] N. Dunford and J.T. Schwartz, Linear Operators; Part I: General Theory, Interscience Publishers, New York,

1957.
[6] N. Dunford and J.T. Schwartz, Linear Operators; Part II:Spectral Theory, Selfadjoint Operators in Hilbert Space,

Interscience Publishers, New York, 1963.
[7] P.M. Fitzpatrick, A note on the functional calculus for unbounded selfadjoint operators, J. Fixed Point Theor.

Appl., 13, (2013), 633–640.
[8] W. Groetsch, Stable Approximate Evaluation of Unbounded Operators, Springer, New York, 2006.
[9] M. Karimzadeh and M. Radjabalipour, On properties of real selfadjoint operators, Banach J. Math. Anal., 15(1),

(2020), DOI: 10.1007/s43037-020-00101-x.
[10] G.K. Pedersen, Analysis Now, Springer-Verlag, New York, 1989.
[11] M. Radjabalipour, On Fitzpatrick functions of monotone linear operators, J. Math. Anal. Appl., 401, (2013),

950–958.


	Introduction
	Noncommutativity
	Commutativity

