Wavelets and Linear Algebra

http://wala.vru.ac.ir

Some inequalities related to 4-convex functions

Shiva Mohtashami ${ }^{\text {a }}$, Abbas Salemi ${ }^{\text {b }}$, Mohammad Soleymani ${ }^{\text {c,** }}$
${ }^{a}$ Department of Mathematics, Islamic Azad University, Kerman branch, Kerman, Iran.
${ }^{b}$ Department of Applied Mathematics and Mahani Mathematical Research
Center, Shahid Bahonar University of Kerman, Kerman, Iran.
${ }^{c}$ Department of Mathematics and Mahani Mathematical Research Center, Shahid Bahonar University of Kerman, Kerman, Iran.

Article Info

Article history:
Received 13 July 2020
Accepted 12 February 2021
Available online 20 July 2021
Communicated by Ali Armandnejad

Keywords:

Majorization, 4-convex function, inequalities, divided difference.

2000 MSC:
26D15, 26A51.

Abstract

In this paper, we consider the class of 4-convex functions and we obtain some inequalities related to 4-convex functions. Moreover, for $k \leq n$, we present a majorization $<_{k}$ on \mathbb{R}_{n} and we give some equivalent conditions for $<_{4}$ on \mathbb{R}_{4}.

(C) (2021) Wavelets and Linear Algebra

[^0]
1. Introduction

Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{n}$, where $x_{i} \geq 0$ and let p be a nonzero real number. The power mean of x is defined as $L_{p}(x):=\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{p}\right)^{\frac{1}{p}}$. We know that $\lim _{p \rightarrow+\infty} L_{p}(x)=\max \left\{x_{1}, \ldots, x_{n}\right\}$, see [5]. The $k^{\text {th }}$ order divided difference of $f:[a, b] \longrightarrow \mathbb{R}$ at distinct points x_{0}, \ldots, x_{n} in $[a, b]$ is defined by $f\left[x_{i}\right]:=f\left(x_{i}\right)$, and for $1 \leq k \leq n$,

$$
\begin{equation*}
f\left[x_{0}, \ldots, x_{k}\right]:=\frac{f\left[x_{1}, \ldots, x_{k}\right]-f\left[x_{0}, \ldots, x_{k-1}\right]}{x_{k}-x_{0}} \tag{1.1}
\end{equation*}
$$

Also, we define $f[x, x]:=\lim _{y \rightarrow x} f[x, y]=f^{\prime}(x)$.
Convex function is appear in many fields of mathematics. In the last century mathematicians introduced and investigated many generalizations of convexity. The notion of nth order convexity or n-convexity was defined in terms of divided differences. The concept of n-convexity are motived by some basic questions in optimization and convex programming. In this paper, we use n-convexity to introduce a new concept of majorization.

It is perfectly reasonable, then, to consider new forms of majorization for $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ in \mathbb{R}_{n}, wherein inequality $\sum_{i=1}^{n} f\left(x_{i}\right) \leq \sum_{i=1}^{n} f\left(y_{i}\right)$ is assumed to hold for the class of n -convex functions instead of convex ones. This is the theme of our paper.

Definition 1.1. Let $n \geq 0$. A function $f:[a, b] \longrightarrow \mathbb{R}$ is said to be n-convex on $[a, b]$ if $f\left[x_{0}, \ldots, x_{n}\right] \geq 0$, where $x_{i} \in[a, b], i=0,1, \ldots, n$.

Let F is a real- valued function defined on the bounded closed interval $[a, b]$ and given the $(r+1)$ points $P_{k}, 0 \leq k \leq r$, with coordinates $\left(x_{k}, F\left(x_{k}\right)\right), 0 \leq k \leq r$, respectively, there is a unique polynomial of degree at most r passing through these points given by

$$
\pi_{r}\left(F ; x ; P_{k}\right)=\pi_{r}\left(x ; P_{k}\right)=\sum_{k=0}^{r} F\left(x_{k}\right) \prod_{j=0, j \neq k}^{r} \frac{\left(x-x_{j}\right)}{\left(x_{k}-x_{j}\right)} .
$$

Theorem 1.2. [3, Theorem 5] Let

$$
P_{k}=\left(x_{k}, y_{k}\right), 1 \leq k \leq n, n \geq 2, a \leq x_{1}<\ldots<x_{n} \leq b,
$$

be any n distinct points on the graph of the function F. Then F is n-convex if and only if for all such sets of n distinct points, the graph lies alternately above and below the curve $y=\pi_{n-1}\left(F ; x ; P_{k}\right)$, lying below if $x_{n-1} \leq x \leq x_{n}$. Further $\pi_{n-1}\left(x ; P_{k}\right) \leq F(x), x_{n} \leq x \leq b$; and $\pi_{n-1}\left(x ; P_{k}\right) \leq F(x)(\geq$ $F(x)$) if $a \leq x<x_{1}, n$ being even (odd).

Definition 1.3. Let $x, y \in \mathbb{R}_{n}$. Then x is said to be majorized by y, written $x<y$, if

$$
\sum_{i=1}^{k} x_{[i]} \leq \sum_{i=1}^{k} y_{[i]}
$$

for $k=1, \ldots, n$ with equality at $k=n$, where $x_{[i]}$ and $y_{[i]}$ are the $i^{t h}$ largest component of the vectors x and y respectively.

The following theorem characterizes majorization in terms of convex (2-convex) functions on \mathbb{R}.

Theorem 1.4. [5, Theorem 108] Let $x, y \in \mathbb{R}_{n}$. Then the following statements are equivalent:

1. $x<y$
2. $\sum_{i=1}^{n} f\left(x_{i}\right) \leq \sum_{i=1}^{n} f\left(y_{i}\right)$, for all convex functions $f: \mathbb{R} \longrightarrow \mathbb{R}$.

Furthermore, if f is strictly convex, then the equality can occur, only when two vectors x and y are permutations of each other.

In $[1,2,6]$, the authors presented some consequences of inequalities describing the behavior of 3-convex functions.

Theorem 1.5. [2, Theorem 2] Suppose that $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}$ are real numbers. Then the inequality $\sum_{i=1}^{3} f\left(x_{i}\right) \leq \sum_{i=1}^{3} f\left(y_{i}\right)$ is valid for all 3-convex functions $f: \mathbb{R} \rightarrow \mathbb{R}$ if and only if

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =y_{1}+y_{2}+y_{3}, \\
x_{1}^{2}+x_{2}^{2}+x_{3}^{2} & =y_{1}^{2}+y_{2}^{2}+y_{3}^{2}, \\
\max \left\{x_{1}, x_{2}, x_{3}\right\} & \leq \max \left\{y_{1}, y_{2}, y_{3}\right\} .
\end{aligned}
$$

In this note, we state an extension of these results for 4-convex functions. Let x_{1}, \ldots, x_{n} be variables. For $k \geq 1$, the $k^{t h}$ power sum is denoted by

$$
\begin{equation*}
p_{k}\left(x_{1}, \ldots, x_{n}\right):=\sum_{i=1}^{n} x_{i}^{k}=x_{1}^{k}+\cdots+x_{n}^{k} . \tag{1.2}
\end{equation*}
$$

Let $1 \leq k \leq n$. The $k^{\text {th }}$ elementary symmetric polynomial (that is, the sum of all distinct products of k distinct variables) is denoted by

$$
\begin{equation*}
e_{k}\left(x_{1}, \ldots, x_{n}\right):=\sum_{1 \leq l_{1}<\cdots<l_{k} \leq n} x_{l_{1}} \cdots x_{l_{k}}, \quad \& \quad e_{0}\left(x_{1}, \ldots, x_{n}\right)=1 . \tag{1.3}
\end{equation*}
$$

Newton's identities, can be used to recursively express elementary symmetric polynomials in terms of power sums (for more information see [7]).

$$
\begin{equation*}
k e_{k}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{k}(-1)^{i-1} e_{k-i}\left(x_{1}, \ldots, x_{n}\right) p_{i}\left(x_{1}, \ldots, x_{n}\right) . \tag{1.4}
\end{equation*}
$$

Let $f(x):=x^{n}+\sum_{k=1}^{n} a_{n-k} x^{n-k}=\prod_{k=1}^{n}\left(x-\alpha_{k}\right)$. By Vieta's formulas [4], for $1 \leq k \leq n$,

$$
\begin{equation*}
a_{n-k}=(-1)^{k} e_{k}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \tag{1.5}
\end{equation*}
$$

It is clear that $a_{0}=e_{n}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\prod_{i=1}^{n} \alpha_{i}$ and $a_{n-1}=e_{1}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\sum_{i=1}^{n} \alpha_{i}$.

2. 4-Convex functions

In this section, we will state two key lemmas to find some simpler conditions for inequalities on 4-convex functions.

Lemma 2.1. Let the polynomials $f(x)=x^{n}+\sum_{k=1}^{n} a_{n-k} x^{n-k}=\prod_{k=1}^{n}\left(x-\alpha_{k}\right)$ and $g(x)=x^{n}+$ $\sum_{k=1}^{n} b_{n-k} x^{n-k}=\prod_{k=1}^{n}\left(x-\beta_{k}\right)$ be given. If $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$ and there exists $1 \leq m \leq n$ such that $p_{j}(\alpha)=p_{j}(\beta)$, for all $1 \leq j \leq m-1$, then $f-g$ is a polynomial of degree less than or equal $n-m$. In particular, if $m=n$, then $f-g$ is a constant polynomial.

Proof. We will show that $e_{j}(\alpha)=e_{j}(\beta), \quad 1 \leq j \leq m-1$. By (1.4), for $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{n}$,

$$
\begin{equation*}
k e_{k}(x)=\sum_{i=1}^{k}(-1)^{i-1} e_{k-i}(x) p_{i}(x), 1 \leq k \leq n . \tag{2.1}
\end{equation*}
$$

By taking $k=1$ and $x=\alpha$ in (2.1), $e_{1}(\alpha)=p_{1}(\alpha)$. Since $p_{1}(\alpha)=p_{1}(\beta)$, we obtain that $e_{1}(\alpha)=$ $e_{1}(\beta)$. Also, by taking $k=2$ and $x=\alpha$ in (2.1), we have

$$
2 e_{2}(\alpha)=e_{1}(\alpha) p_{1}(\alpha)-p_{2}(\alpha) .
$$

Since $p_{j}(\alpha)=p_{j}(\beta), j=1,2$ and $e_{1}(\alpha)=e_{1}(\beta)$, we obtain that $e_{2}(\alpha)=e_{2}(\beta)$. By (1.4), we know that e_{k} can be written recursively in terms of power sums p_{k}. Now by continuing this method $e_{i}(\alpha)=e_{i}(\beta), 1 \leq i \leq m-1$. Then by (1.5), $a_{n-k}=(-1)^{k} e_{k}(\alpha)=(-1)^{k} e_{k}(\beta)=b_{n-k}, k=1, \ldots, m-1$. Therefore $f-g=\left(a_{n-m}-b_{n-m}\right) x^{n-m}+\cdots+\left(a_{1}-b_{1}\right) x+\left(a_{0}-b_{0}\right)$ is a polynomial of degree less than or equal $n-m$. In particular, if $\mathrm{m}=\mathrm{n}$, then $f-g=a_{0}-b_{0}$ is a constant polynomial and the proof is complete.

Lemma 2.2. Let $\alpha_{k}, \beta_{k}, k=1, \ldots, n$ be real numbers such that $\alpha_{1} \geq \cdots \geq \alpha_{n}$ and $\beta_{1} \geq \cdots \geq \beta_{n}$ and $\sum_{k=1}^{n} \alpha_{k}^{j}=\sum_{k=1}^{n} \beta_{k}^{j}$ for all $1 \leq j \leq n-1$. Then the following assertions hold.

1. If $\alpha_{p}=\beta_{q}$, for some $1 \leq p, q \leq n$, then $\alpha_{i}=\beta_{i}$ for all $i=1, \ldots, n$.
2. If $\alpha_{1}<\beta_{1}$, then $(-1)^{n-1} \alpha_{n}<(-1)^{n-1} \beta_{n}$.

Proof. We consider two functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$, defined by $f(x)=\prod_{k=1}^{n}\left(x-\alpha_{k}\right)$ and $g(x)=$ $\prod_{k=1}^{n}\left(x-\beta_{k}\right)$. Then, there exist $a_{i}, b_{i} \in \mathbb{R}, i=0, \ldots, n-1$ such that $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ and $g(x)=x^{n}+b_{n-1} x^{n-1}+\cdots+b_{0}$. By (1.5), $e_{k}(\alpha)=(-1)^{k} a_{n-k}$ and $e_{k}(\beta)=(-1)^{k} b_{n-k}$, where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$. By Lemma 2.1, we know that $f(x)-g(x)=a_{0}-b_{0}$, for any $x \in \mathbb{R}$. Define $\gamma:=a_{0}-b_{0}$.

1. Let $\alpha_{p}=\beta_{q}$ for some $1 \leq p, q \leq n$. Then $f\left(\beta_{q}\right)=f\left(\alpha_{p}\right)=0$ and $g\left(\alpha_{p}\right)=g\left(\beta_{q}\right)=0$. Therefore, $\gamma=f\left(\alpha_{p}\right)-g\left(\alpha_{p}\right)=0$ and hence $0=\gamma=f(x)-g(x)$ for any $x \in \mathbb{R}$. Then $\alpha_{i}=\beta_{i}$ for all $i=2, \ldots, n$.
2. Let $\alpha_{1}<\beta_{1}$. We know that α_{1} is the largest root of the monic polynomial $f(x)$. Then $f(x) \geq 0$ for any $x \geq \alpha_{1}$. Since $\beta_{1}>\alpha_{1}$, we obtain that $f\left(\beta_{1}\right)>0=g\left(\beta_{1}\right)$ and hence $\gamma=f\left(\beta_{1}\right)-g\left(\beta_{1}\right)>0$. Now, we consider two cases:
Case 1: suppose that n is even. We know that β_{n} is the smallest root of the monic polynomial $g(x)$. Then $g(x) \geq 0$ for any $x \leq \beta_{n}$. Since $f(x)>g(x)$ for all $x \in \mathbb{R}$, we obtain that $f(x)>0$ for all $x \leq \beta_{n}$. Therefore, $\beta_{n}<\alpha_{n}$.
Case 2: suppose that n is odd. We know that α_{n} is the smallest root of the monic polynomial $f(x)$. By the same method as above, $g(x)<f(x) \leq 0$ for any $x \leq \alpha_{n}$. Therefore, $\beta_{n}>\alpha_{n}$.

In [2], G. Bennett presented a p-free inequality. Now, by using Lemma 2.2, in the following theorem, we extend [2, Theorem 1].

Theorem 2.3. Suppose that $x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}, y_{4}$ are positive numbers. Then the following inequalities hold:

$$
\begin{align*}
x_{1}^{p}+x_{2}^{p}+x_{3}^{p}+x_{4}^{p} \leq y_{1}^{p}+y_{2}^{p}+y_{3}^{p}+y_{4}^{p}, & p \in(-\infty, 0] \cup[1,2] \cup[3, \infty) \tag{2.2}\\
x_{1}^{p}+x_{2}^{p}+x_{3}^{p}+x_{4}^{p} \geq y_{1}^{p}+y_{2}^{p}+y_{3}^{p}+y_{4}^{p}, & p \in[0,1] \cup[2,3],
\end{align*}
$$

if and only if the following conditions are satisfied:

$$
\begin{align*}
x_{1}+x_{2}+x_{3}+x_{4} & =y_{1}+y_{2}+y_{3}+y_{4} \tag{2.3}\\
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} & =y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2} \tag{2.4}\\
x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3} & =y_{1}^{3}+y_{2}^{3}+y_{3}^{3}+y_{4}^{3} \tag{2.5}\\
\max \left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} & \leq \max \left\{y_{1}, y_{2}, y_{3}, y_{4}\right\} . \tag{2.6}
\end{align*}
$$

Proof. If inequalities in (2.2) hold, then (2.3), (2.4) and (2.5) follow by taking $p=1,2,3$ in (2.2). Now, we rephrase (2.2) in terms of L_{p}-means, $p \geq 3$.

$$
\begin{equation*}
\left(\frac{x_{1}^{p}+x_{2}^{p}+x_{3}^{p}+x_{4}^{p}}{4}\right)^{\frac{1}{p}} \leq\left(\frac{y_{1}^{p}+y_{2}^{p}+y_{3}^{p}+y_{4}^{p}}{4}\right)^{\frac{1}{p}} . \tag{2.7}
\end{equation*}
$$

Then (2.6) follows by making $p \rightarrow+\infty$ in (2.7).
Conversely, we assume that the sets $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ are disjoint. If they have a point in common then by Lemma 2.2 they coincide and the result holds. It will be convenient to assume that the sets $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ are arranged in decreasing order

$$
x_{1} \geq x_{2} \geq x_{3} \geq x_{4} \quad \text { and } \quad y_{1} \geq y_{2} \geq y_{3} \geq y_{4} .
$$

We will show that

$$
\begin{equation*}
y_{1}>x_{1} \geq x_{2}>y_{2} \geq y_{3}>x_{3} \geq x_{4}>y_{4} . \tag{2.8}
\end{equation*}
$$

We consider two functions $h, l: \mathbb{R} \longrightarrow \mathbb{R}$, defined by

$$
h(x)=\prod_{i=1}^{4}\left(x-x_{i}\right) \quad, \quad l(x)=\prod_{i=1}^{4}\left(x-y_{i}\right) .
$$

The first and last strict inequalities in (2.8) are followed by (2.6) and Lemma 2.2. If the third inequality fails to hold, then $x_{2} \leq y_{2}$. Now, by (2.6) we have $x_{1}+x_{2} \leq y_{1}+y_{2}$. Since $x_{4} \geq y_{4}$, by (2.3) we have $x_{1}+x_{2}+x_{3} \leq y_{1}+y_{2}+y_{3}$. Then equation (2.3) and Definition 1.3 implies that $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)<\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$. By Theorem 1.4 we have

$$
f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+f\left(x_{4}\right)<f\left(y_{1}\right)+f\left(y_{2}\right)+f\left(y_{3}\right)+f\left(y_{4}\right),
$$

for all strictly convex functions $f:\left[y_{4}, y_{1}\right] \longrightarrow \mathbb{R}$. By considering the strictly convex function $f(x)=x^{2}$, we obtain a contradiction by (2.4). Therefore $x_{2}>y_{2}$. If the fifth inequality fails to hold, then $y_{3} \leq x_{3}$. Since $x_{4} \geq y_{4}$, we have $y_{3}+y_{4} \leq x_{3}+x_{4}$. We deduce from (2.3) that $x_{1}+x_{2} \leq y_{1}+y_{2}$. The same argument as above implies that $y_{3}>x_{3}$ and hence $y_{1}>x_{1} \geq x_{2}>y_{2} \geq y_{3}>x_{3} \geq x_{4}>y_{4}$. Now, we will show that

$$
\begin{equation*}
\int_{y_{4}}^{x_{4}} \varphi(x) d x+\int_{y_{2}}^{x_{2}} \varphi(x) d x \leq \int_{x_{3}}^{y_{3}} \varphi(x) d x+\int_{x_{1}}^{y_{1}} \varphi(x) d x \tag{2.9}
\end{equation*}
$$

for all 3-convex functions $\varphi:\left[y_{4}, y_{1}\right] \longrightarrow \mathbb{R}$. We consider a quadratic function g that agree with φ at x_{4}, y_{3} and x_{2}. By Theorem 1.2, we know that $\varphi(x) \leq g(x)$ for $x \in\left[y_{4}, x_{4}\right]$ or $x \in\left[y_{2}, x_{2}\right]$ and $\varphi(x) \geq g(x)$ for $x \in\left[x_{3}, y_{3}\right]$ or $x \in\left[x_{1}, y_{1}\right]$. By (2.3), (2.4) and (2.5), the inequality (2.9) is an equality for g. Therefore,

$$
\begin{aligned}
& \int_{y_{4}}^{x_{4}} \varphi(x) d x+\int_{y_{2}}^{x_{2}} \varphi(x) d x \leq \int_{y_{4}}^{x_{4}} g(x) d x+\int_{y_{2}}^{x_{2}} g(x) d x \\
= & \int_{x_{3}}^{y_{3}} g(x) d x+\int_{x_{1}}^{y_{1}} g(x) d x \leq \int_{x_{3}}^{y_{3}} \varphi(x) d x+\int_{x_{1}}^{y_{1}} \varphi(x) d x .
\end{aligned}
$$

Now, applying (2.9) to the following 3-convex functions, the result holds.

$$
\varphi(x)=\left\{\begin{array}{cc}
p x^{p-1} & p \leq 0 \text { or } 1 \leq p \leq 2 \text { or } p \geq 3, \\
-p x^{p-1} & 0 \leq p \leq 1 \text { or } 2 \leq p \leq 3 .
\end{array}\right.
$$

Example 2.4. Let $x_{1}=x_{2}=2, x_{3}=x_{4}=7$ and $y_{1}=1, y_{2}=4, y_{3}=5, y_{4}=8$. Since

$$
x_{1}^{i}+x_{2}^{i}+x_{3}^{i}+x_{4}^{i}=y_{1}^{i}+y_{2}^{i}+y_{3}^{i}+y_{4}^{i},
$$

for $i=1,2,3$ and

$$
\max \left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \leq \max \left\{y_{1}, y_{2}, y_{3}, y_{4}\right\},
$$

for $p \leq 0$ or $1 \leq p \leq 2$ or $p \geq 3$, we have

$$
2\left(2^{p}\right)+2\left(7^{p}\right) \leq 1^{p}+4^{p}+5^{p}+8^{p}
$$

The inequality reverses direction if $0 \leq p \leq 1$ or $2 \leq p \leq 3$.
In the following, we define k-majorization $<_{k}$ on $\mathbb{R}_{n}, k \leq n$.

Definition 2.5. Let $k \leq n$ be positive integers. The vector $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is said to be k majorized by $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$, denoted by $x<_{k} y$, if $\Sigma_{i=1}^{n} f\left(x_{i}\right) \leq \Sigma_{i=1}^{n} f\left(y_{i}\right)$ for all k-convex functions $f: \mathbb{R} \rightarrow \mathbb{R}$.

In the following theorem, we extend [2, Theorem 2] for 4-convex functions.
Theorem 2.6. Let $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right), y=\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \in \mathbb{R}_{4}$. Then $x<_{4} y$ if and only if hypotheses (2.3)-(2.6) hold.

Proof. Let $x<_{4} y$. Then by choosing $f_{j}(x):= \pm x^{j}$ for $j=1,2,3$, we obtain that $x_{1}^{j}+x_{2}^{j}+x_{3}^{j}+x_{4}^{j} \leq$ $y_{1}^{j}+y_{2}^{j}+y_{3}^{j}+y_{4}^{j}$ and $x_{1}^{j}+x_{2}^{j}+x_{3}^{j}+x_{4}^{j} \geq y_{1}^{j}+y_{2}^{j}+y_{3}^{j}+y_{4}^{j}, j=1,2,3$. Therefore, (2.3)-(2.5) hold. It is enough to show that (2.6) holds. Let $m:=\max \left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$. We consider non negative 4-convex function

$$
f(x):= \begin{cases}(x-m)^{3} & x>m, \\ 0 & x \leq m .\end{cases}
$$

Since $x<_{4} y$ and f is a nonnegative 4-convex function, we obtain that

$$
\begin{aligned}
& 0 \leq f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+f\left(x_{4}\right) \leq f\left(y_{1}\right)+f\left(y_{2}\right)+f\left(y_{3}\right)+f\left(y_{4}\right) \\
& =\left(y_{1}-m\right)^{3}+\left(y_{2}-m\right)^{3}+\left(y_{3}-m\right)^{3}+\left(y_{4}-m\right)^{3} \leq 0 .
\end{aligned}
$$

Therefore, $f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+f\left(x_{4}\right)=0$ and we obtain that $f\left(x_{1}\right)=f\left(x_{2}\right)=f\left(x_{3}\right)=f\left(x_{4}\right)=$ 0 . The definition of $f(x)$ implies that $x_{i} \leq m, i=1,2,3,4$. Then $\max \left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \leq m=$ $\max \left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ and (2.6) holds. Conversely, By Lemma 2.2, without loss of generality, we assume that the sets $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ are disjoint. It will be convenient to assume that the sets $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ are arranged in decreasing order $x_{1} \geq x_{2} \geq x_{3} \geq$ x_{4} and $y_{1} \geq y_{2} \geq y_{3} \geq y_{4}$. Then by the same method as in the proof of Theorem 2.3, we obtain that $y_{1}>x_{1} \geq x_{2}>y_{2} \geq y_{3}>x_{3} \geq x_{4}>y_{4}$. Now, let f be an arbitrary 4-convex function. we consider four cases:

Case 1: Let $y_{2} \neq y_{3}$. Since f is 4 -convex function, by using (1.1) several times

$$
\begin{aligned}
0 \leq & f\left[x_{i}, y_{1}, y_{2}, y_{3}, y_{4}\right]=\frac{f\left[y_{1}, y_{2}, y_{3}, y_{4}\right]-f\left[x_{i}, y_{1}, y_{2}, y_{3}\right]}{y_{4}-x_{i}} \\
= & \frac{1}{y_{4}-x_{i}}\left(\frac{f\left[y_{2}, y_{3}, y_{4}\right]-f\left[y_{1}, y_{2}, y_{3}\right]}{y_{4}-y_{1}}-\frac{f\left[y_{1}, y_{2}, y_{3},\right]-f\left[x_{i}, y_{1}, y_{2}\right]}{y_{3}-x_{i}}\right) \\
= & \frac{1}{\left(y_{4}-x_{i}\right)\left(y_{4}-y_{1}\right)\left(y_{4}-y_{2}\right)}\left(\frac{f\left(y_{4}\right)-f\left(y_{3}\right)}{y_{4}-y_{3}}-\frac{f\left(y_{3}\right)-f\left(y_{2}\right)}{y_{3}-y_{2}}\right) \\
& -\frac{1}{\left(y_{4}-x_{i}\right)\left(y_{4}-y_{1}\right)\left(y_{3}-y_{1}\right)}\left(\frac{f\left(y_{3}\right)-f\left(y_{2}\right)}{y_{3}-y_{2}}-\frac{f\left(y_{2}\right)-f\left(y_{1}\right)}{y_{2}-y_{1}}\right) \\
& -\frac{1}{\left(y_{4}-x_{i}\right)\left(y_{3}-x_{i}\right)\left(y_{3}-y_{1}\right)}\left(\frac{f\left(y_{3}\right)-f\left(y_{2}\right)}{y_{3}-y_{2}}-\frac{f\left(y_{2}\right)-f\left(y_{1}\right)}{y_{2}-y_{1}}\right) \\
& +\frac{1}{\left(y_{4}-x_{i}\right)\left(y_{3}-x_{i}\right)\left(y_{2}-x_{i}\right)}\left(\frac{f\left(y_{2}\right)-f\left(y_{1}\right)}{y_{2}-y_{1}}-\frac{f\left(y_{1}\right)-f\left(x_{i}\right)}{y_{1}-x_{i}}\right) .
\end{aligned}
$$

Easy computations show that

$$
\begin{aligned}
0 & \leq \frac{f\left(x_{i}\right)}{\left(y_{4}-x_{i}\right)\left(y_{3}-x_{i}\right)\left(y_{2}-x_{i}\right)\left(y_{1}-x_{i}\right)}+\frac{f\left(y_{4}\right)}{\left(y_{4}-x_{i}\right)\left(y_{4}-y_{1}\right)\left(y_{4}-y_{2}\right)\left(y_{4}-y_{3}\right)} \\
& -\frac{f\left(y_{3}\right)}{\left(y_{4}-y_{3}\right)\left(y_{3}-y_{2}\right)\left(y_{3}-y_{1}\right)\left(y_{3}-x_{i}\right)}+\frac{f\left(y_{2}\right)}{\left(y_{4}-y_{2}\right)\left(y_{3}-y_{2}\right)\left(y_{2}-y_{1}\right)\left(y_{2}-x_{i}\right)} \\
& -\frac{f\left(y_{1}\right)}{\left(y_{4}-y_{1}\right)\left(y_{3}-y_{1}\right)\left(y_{2}-y_{1}\right)\left(y_{1}-x_{i}\right)} .
\end{aligned}
$$

Therefore $f\left(x_{i}\right) \leq \sum_{k=1}^{4} f\left(y_{k}\right) \prod_{j=1, j \neq k}^{4} \frac{\left(y_{j}-x_{i}\right)}{\left(y_{j}-y_{k}\right)}, i=1,2,3,4$ and hence

$$
\sum_{i=1}^{4} f\left(x_{i}\right) \leq \sum_{i=1}^{4} \sum_{k=1}^{4} f\left(y_{k}\right) \prod_{j=1, j \neq k}^{4} \frac{\left(y_{j}-x_{i}\right)}{\left(y_{j}-y_{k}\right)}=\sum_{k=1}^{4} f\left(y_{k}\right)\left(\sum_{i=1}^{4} \prod_{j=1, j \neq k}^{4} \frac{\left(y_{j}-x_{i}\right)}{\left(y_{j}-y_{k}\right)}\right) .
$$

By using (2.3)-(2.5), we obtain that $\sum_{i=1}^{4} \prod_{j=1, j \neq k}^{4} \frac{\left(y_{j}-x_{i}\right)}{\left(y_{j}-y_{k}\right)}=1$. Then $\sum_{i=1}^{4} f\left(x_{i}\right) \leq \sum_{i=1}^{4} f\left(y_{k}\right)$ for all 4-convex functions, and hence $x<_{4} y$.

Case 2: Let $y_{2}=y_{3}, x_{1} \neq x_{2}$, and $x_{3} \neq x_{4}$. Since f is 4 -convex function, the divided difference $f\left[x_{1}, x_{2}, x_{3}, x_{4}, y_{i}\right] \geq 0$. Then by the same method as in Case 1 , we obtain that $f\left(y_{i}\right) \geq$ $\sum_{k=1}^{4} f\left(x_{k}\right) \prod_{j=1, j \neq k}^{4} \not\left(\frac{\left(y_{i}-x_{j}\right)}{\left(x_{k}-x_{j}\right)}\right.$. Again, by using the same method as above, $\sum_{i=1}^{4} f\left(y_{i}\right) \geq \sum_{i=1}^{4} f\left(x_{i}\right)$ for all 4-convex functions f, and hence $x<_{4} y$.

Case 3: Let $y_{2}=y_{3}, x_{1}=x_{2}$, and $x_{3}=x_{4}$. Since f is 4-convex function, the divided difference $f\left[x_{1}, x_{1}, x_{3}, x_{3}, x\right] \geq 0$. Note that $f[l, l]:=f^{\prime}(l)$. By the same method as above, we have

$$
\begin{aligned}
0 & \leq f\left[x_{1}, x_{1}, x_{3}, x_{3}, y_{i}\right]=\frac{f\left[x_{1}, x_{3}, x_{3}, y_{i}\right]-f\left[x_{1}, x_{1}, x_{3}, x_{3}\right]}{y_{i}-x_{1}} \\
& =\frac{1}{\left(y_{i}-x_{1}\right)^{2}\left(x-x_{3}\right)}\left(\frac{f(x)-f\left(x_{3}\right)}{x-x_{3}}-f^{\prime}\left(x_{3}\right)\right) \\
& -\frac{1}{\left(y_{i}-x_{1}\right)^{2}\left(x_{3}-x_{1}\right)}\left(f^{\prime}\left(x_{3}\right)-\frac{f\left(x_{3}\right)-f\left(x_{1}\right)}{x_{3}-x_{1}}\right) \\
& -\frac{1}{\left(y_{i}-x_{1}\right)\left(x_{3}-x_{1}\right)^{2}}\left(f^{\prime}\left(x_{3}\right)-\frac{f\left(x_{3}\right)-f\left(x_{1}\right)}{x_{3}-x_{1}}\right) \\
& +\frac{1}{\left(y_{i}-x_{1}\right)\left(x_{3}-x_{1}\right)^{2}}\left(\frac{f\left(x_{3}\right)-f\left(x_{1}\right)}{x_{3}-x_{1}}-f^{\prime}\left(x_{1}\right)\right)
\end{aligned}
$$

Therefore, for $i=1,2,3,4$,

$$
\begin{aligned}
f\left(y_{i}\right) & \geq \frac{\left(y_{i}-x_{1}\right)\left(y_{i}-x_{3}\right)^{2}}{\left(x_{3}-x_{1}\right)^{2}} f^{\prime}\left(x_{1}\right)+\frac{\left(y_{i}-x_{1}\right)^{2}\left(y_{i}-x_{3}\right)}{\left(x_{3}-x_{1}\right)^{2}} f^{\prime}\left(x_{3}\right) \\
& +\frac{\left(y_{i}-x_{3}\right)^{2}\left(x_{3}+2 x-3 x_{1}\right)}{\left(x_{3}-x_{1}\right)^{3}} f\left(x_{1}\right) \\
& -\frac{\left(y_{i}-x_{3}\right)^{2}\left(x_{3}-x_{1}\right)-\left(x_{3}-x_{1}\right)^{3}+2\left(y_{i}-x_{1}\right)\left(y_{i}-x_{3}\right)^{2}}{\left(x_{3}-x_{1}\right)^{3}} f\left(x_{3}\right) .
\end{aligned}
$$

By using (2.3)-(2.5), the coefficients of $f^{\prime}\left(x_{1}\right), f^{\prime}\left(x_{3}\right), f\left(x_{1}\right), f\left(x_{3}\right)$ are equal 1 . Thus, $\sum_{i=1}^{4} f\left(y_{i}\right) \geq$ $\sum_{i=1}^{4} f\left(x_{i}\right)$ for all 4-convex functions f, and hence $x<_{4} y$.

Case 4: Let $y_{2}=y_{3}$ and $\left(x_{1} \neq x_{2}, x_{3}=x_{4}\right.$ or $\left.x_{1}=x_{2}, x_{3} \neq x_{4}\right)$. We consider the divided differences $f\left[x_{1}, x_{2}, x_{3}, x_{3}, x\right]$ or $f\left[x_{1}, x_{1}, x_{3}, x_{4}, x\right]$ respectively. By the same method as in Case 3 , $\sum_{i=1}^{4} f\left(y_{i}\right) \geq \sum_{i=1}^{4} f\left(x_{i}\right)$ for all 4-convex functions f, and hence $x<_{4} y$.

The following example gives us a pair of vectors x, y where x is 4-majorized but not majorized by y.

Example 2.7. Let $x=(2,2,7,7)$ and $y=(1,4,5,8)$. By Definition 1.3, it is clear that the majorization fails but Example 2.4 and Theorem 2.6 imply that $(2,2,7,7)<_{4}(1,4,5,8)$.

In the following remark, the equivalent conditions for $x<_{k} y$ in $\mathbb{R}_{k}, k=2,3,4$ are summarized.
Remark 2.8. 1. Let $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in \mathbb{R}_{2}$. Then by Theorem 1.4, $x<_{2} y$ if and only if the following hold:

$$
\begin{aligned}
x_{1}+x_{2} & =y_{1}+y_{2}, \\
\max \left\{x_{1}, x_{2}\right\} & \leq \max \left\{y_{1}, y_{2}\right\} .
\end{aligned}
$$

2. Let $x=\left(x_{1}, x_{2}, x_{3}\right), y=\left(y_{1}, y_{2}, y_{3}\right) \in \mathbb{R}_{3}$. Then by Theorem 1.5, we obtain that $x<_{3} y$ if and only if the following hold:

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =y_{1}+y_{2}+y_{3}, \\
x_{1}^{2}+x_{2}^{2}+x_{3}^{2} & =y_{1}^{2}+y_{2}^{2}+y_{3}^{2}, \\
\max \left\{x_{1}, x_{2}, x_{3}\right\} & \leq \max \left\{y_{1}, y_{2}, y_{3}\right\} .
\end{aligned}
$$

3. Let $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right), y=\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \in \mathbb{R}_{4}$. Then by Theorem $2.6 x<_{4} y$ if and only if the following hold:

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4} & =y_{1}+y_{2}+y_{3}+y_{4} \\
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} & =y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2} \\
x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3} & =y_{1}^{3}+y_{2}^{3}+y_{3}^{3}+y_{4}^{3} \\
\max \left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} & \leq \max \left\{y_{1}, y_{2}, y_{3}, y_{4}\right\} .
\end{aligned}
$$

In the above remark, we state equivalent conditions for $x<_{k} y$ in $\mathbb{R}_{k}, k=2,3,4$.
Remark 2.9. Let $x=\left(x_{1}, x_{2}, \ldots, x_{k}\right), y=\left(y_{1}, y_{2}, \ldots, y_{k}\right) \in \mathbb{R}_{k}, k=2,3,4$. Then by Remark 2.8, $x<_{k} y$ and $y<_{k} x$ hold if and only if x and y are permutation of each other.

It would be nice to characterize $x<_{k} y$ in \mathbb{R}_{k} for $k \geq 5$.
conjecture 2.10. Let $x=\left(x_{1}, x_{2}, \ldots, x_{k}\right), y=\left(y_{1}, y_{2}, \ldots, y_{k}\right) \in \mathbb{R}_{k}, k \geq 5$. Then $x<_{k} y$ if and only if the following hold:

$$
\begin{aligned}
x_{1}^{i}+x_{2}^{i}+\cdots+x_{k}^{i} & =y_{1}^{i}+y_{2}^{i}+\cdots+y_{k}^{i}, \quad i=1,2, \ldots, k-1, \\
\max \left\{x_{1}, x_{2}, \ldots, x_{k}\right\} & \leq \max \left\{y_{1}, y_{2}, \ldots, y_{k}\right\} .
\end{aligned}
$$

Acknowledgments

The authors would like to thank the anonymous reviewers to improve this paper by their useful comments.

References

[1] G. Bennett, A p-free ℓ^{p}-inequality, J. Math. Inequal., 3(1) (2009), 155-159.
[2] G. Bennett, p-free ℓ^{p}-inequalities, Am. Math. Mon., 117(4) (2010), 334-351.
[3] P.S. Bullen, A criterion for n-convexity, Pac. J. Math., 36(1) (1971), 81-98.
[4] J.L. Coolidge, A Treatise on Algebraic Plane Curves, New York, 1959.
[5] G.H. Hardy, J.E. Littlewood and G. Polya, Inequalities, 2nd edition, Cambridge University Press, Cambridge, 1967.
[6] D.S. Marinescu and M. Monea, Some inequalities for convex and 3-convex function with applications, Kragujevac J. Math., 39(1) (2015), 83-91.
[7] D.G. Mead, Newton's identities, Am. Math. Mon., 99(8) (1992), 749-751.
[8] L.M. Milne-Thomson, The calculus of Finite Differences, Macmillan, London, 1933.

[^0]: *Corresponding author
 Email addresses: mohtashami@yahoo.com (Shiva Mohtashami), salemi@uk.ac.ir (Abbas Salemi), m.soleymani@uk.ac.ir (Mohammad Soleymani)

