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Abstract
In this paper, some algebraic and geometrical properties of the
rank−k numerical hulls of normal matrices are investigated. A
characterization of normal matrices whose rank−1 numerical
hulls are equal to their numerical range is given. Moreover, us-
ing the extreme points of the numerical range, the higher rank
numerical hulls of matrices of the form A1 ⊕ iA2, where A1 and
A2 are Hermitian, are investigated. The higher rank numerical
hulls of the basic circulant matrix are also studied.
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1. Introduction and preliminaries

Let Mn×m be the vector space of all n × m complex matrices. For the case n = m, Mn×n is
denoted by Mn. Throughout the paper, k,m and n are considered as positive integers, and k ≤ n.
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Moreover, Ik denotes the k × k identity matrix, and In×k = {X ∈ Mn×k : X∗X = Ik}, that is the set of
all n× k isometry matrices. Motivated by the study of convergence of iterative methods in solving
linear systems, researchers studied the polynomial numerical hull of order m of a matrix A ∈ Mn

which is defined and denoted, e.g., see [11], by

Vm(A) =
{
λ ∈ C : |p(λ)| ≤ ∥p(A)∥ for all p ∈ Pm

}
,

where Pm is the set of all scalar polynomials of degree m or less, and ∥.∥ is the spectral matrix
norm (i.e., the matrix norm subordinate to the Euclidean vector norm). This is a set designed to
give more information than the spectrum alone can provide about the behavior of the matrix A
under the action of polynomials and other functions. For the case m = 1, V1(A) reduces to the
classical numerical range of A; i.e., V1(A) = W(A) := {x∗Ax : x ∈ Cn, x∗x = 1}, which is useful
in studying and understanding matrices and operators, and has many applications in numerical
analysis, differential equations, systems theory (see [8], [9, Chapter 1] and refrences cited there).
It is known that V1(A) is convex with conv(σ(A)) ⊆ V1(A), where conv(σ(A)) denotes the convex
hull of the spectrum σ(A) of A, and the equality holds if A is a normal matrix. In the following
proposition, we list some properties of the polynomial numerical hulls of matrices which will be
useful in our discussion. For more information, see [1, 4, 5, 7].

Proposition 1.1. Let A ∈ Mn. Then the following assertions are true:

(i) {Vm(A) = {µ ∈ C : (µ, . . . , µm) ∈ conv(W(A, . . . , Am))}}, where for A1, . . . , Am ∈ Mn, W(A1, . . . , Am) =
{(x∗A1x, . . . , x∗Amx) : x ∈ Cn, x∗x = 1} is the joint numerical range;

(ii) If A is a normal matrix, then ∂(W(A)) ∩ V2(A) ⊆ σ(A), where ∂(.) denotes the boundary;

(iii) If A is a normal matrix whose spectrum consists of three non-colinear points and λ0 is the orthocenter
of the triangle σ(A), then V2(A) = σ(A) ∪ ({λ0} ∩W(A));

(iv) Let A = diag(α,−β, ıγ, ıθ), where α, β, γ and θ are distinct positive numbers. Then V2(A) = σ(A) if
and only if σ(A) is an orthocentric system;

(v) Let A = A1 ⊕ ıA2, where A∗1 = A1 and A2 is a semi-definite matrix. Then V3(A) = σ(A); and if A1
and A2 are semi-definite matrices, then V2(A) = σ(A).

One of the other motivation concerns the study of higher rank numerical ranges of matrices
which are useful in quantum error correction [12]. In this connection, the rank-k numerical range
of A ∈ Mn is defined and denoted by

Λk(A) =
{
λ ∈ C : X∗AX = λIk for some X ∈ In×k

}
=
{
λ ∈ C : PAP = λP for some rank-k orthogonal projection P ∈ Mn

}
.

For k = 1, Λ1(A) coincides with W(A). The sets Λk(A) are convex for any k ∈ {1, . . . , n}, and
they are generally called higher rank numerical ranges of A. In the following proposition, the
higher rank numerical ranges of normal matrices, which will be useful in our discussion, are
characterized.
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Proposition 1.2. ([10, Corollary 2.4]) Let A ∈ Mn be a normal matrix with eigenvalues λ1, . . . , λn

(counting multiplicities). Then

Λk(A) =
∩

1⩽ j1<···< jn−k+1⩽n

conv
(
{λ j1 , . . . , λ jn−k+1}

)
.

Recently, the notion of rank-k numerical hull of order m of a matrix A ∈ Mn has been defined
in [13], as a generalization of Vm(A) and Λk(A), and has been denoted by:

Xm
k (A) =

{
λ ∈ C : (λ, λ2, . . . , λm) ∈ conv(Λk(A, A2, . . . , Am))

}
,

where Λk(A1, . . . , Am) = {(λ1, . . . , λm) ∈ Cm : ∃X ∈ In×k s.t. X∗A jX = λ jIk, j = 1, . . . ,m} is the
joint rank-k numerical range of (A1, . . . , Am) ∈ Mn × · · · × Mn︸            ︷︷            ︸

m−times

. It is clear that Xm
1 (A) = Vm(A) and

X1
k(A) = Λk(A). The sets Xm

k (A), where k ∈ {1, 2, . . . , n} and m ∈ N, are generally called the higher
rank numerical hulls of A. The rank−k spectrum of a matrix A ∈ Mn, as a generalization of the
spectrum of A, is defined and denoted in [13] by σk(A) = {λ ∈ C : dim(ker(λIn − A)) ≥ k}. Next,
we list some properties of the higher rank numerical hulls and the rank-k spectrum of matrices
which will be useful in our discussion. One may see [13] for more details.

Proposition 1.3. Let A ∈ Mn. Then the following assertions are true:

(i) σk(A) ⊆ σk−1(A) ⊆ · · · ⊆ σ1(A) = σ(A);

(ii) σk(A) ⊆ Xm
k (A) ⊆ Xm

k−1(A) ⊆ · · · ⊆ Xm
1 (A) = Vm(A) ⊆ Vm−1(A) ⊆ · · · ⊆ V1(A) = W(A);

(iii) σk(A) ⊆ Xm
k (A) ⊆ Xm−1

k (A) ⊆ · · · ⊆ X1
k(A) = Λk(A) ⊆ Λk−1(A) ⊆ · · · ⊆ Λ1(A) = W(A);

(iv) Xm
k (A) ⊆ Vm(A) ∩ Λk(A);

(v) Xm
k (αA + βIn) = αXm

k (A) + β, where α, β ∈ C;

(vi) If A is Hermitian and m ≥ 2, then Xm
k (A) = σk(A);

(vii) If A is unitary, then Xm
k (A) ∩ σ(A) = σk(A);

(viii) If m, k ≥ 2, n = 2k, and A is a unitary matrix with distinct eigenvalues, then Xm
k (A) = ∅.

In this paper, we are going to study some algebraic and geometrical properties of the higher
rank numerical hulls of normal matrices. For this, in Section 2, we find the conditions that under
them Xm

k (A) is empty or a nonempty set in C. We also characterize the higher rank numerical hulls
of a unitary matrix such that its spectrum lies in a semicircle. Moreover, we give a characterization
of normal matrices A whose Xm

1 (A) = Vm(A) = W(A). In Section 3, by using the extreme points
of the numerical range, we study the higher rank numerical hulls of matrices of the form A1 ⊕ iA2,
where A1 and A2 are Hermitian. In Section 4, we study the higher rank numerical hulls of the basic
circulant matrix.
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2. Some general properties

At first we show that there are matrices such that their higher rank numerical hulls are nonempty.
It will also be useful in our discussion. Note that by Proposition 1.3(ii), σ(A) ⊆ Vm(A), and hence
Vm(A) is a nonempty set.

Theorem 2.1. Let A ∈ Mn. Then the following assertions are true:

(i) If 2k > n, then Xm
k (A) is empty or a singleton set. Moreover,

σk(A) ⊆ Xm
k (A) ⊆ σ2k−n(A);

(ii) If 2k > n + 1 and A is a nonderogatory matrix, then Xm
k (A) = ∅;

(iii) Xm
k (Ik ⊗ A) = Vm(A).

Proof. To prove (i), we assume that Xm
k (A) , ∅ and it contains at least two points such as λ0 and

λ1. Since Xm
k (A) ⊆ Λk(A), there exist X = [x1, x2, . . . , xk] and Y = [y1, y2, . . . , yk] in In×k such that

X∗AX = λ0Ik and Y∗AY = λ1Ik. We assume that w is a unit vector in the intersection of column
spaces of X and Y . So, there exist αi, βi ∈ C, i = 1, . . . , k, such that

∑k
i=1 αixi = w =

∑k
i=1 βiyi,

where
∑k

i=1|αi|2 = 1 =
∑k

i=1|βi|2. Therefore, w∗Aw =
∑k

i=1|αi|2x∗i Axi = λ0
∑k

i=1|αi|2 = λ0. Also, by
a similar way, we have w∗Aw = λ1. So, λ0 = λ1, and hence, Xm

k (A) is a singleton set. The left
inclusion in the other assertion in (i) is trivial. To prove the right inclusion, let λ ∈ Xm

k (A) be given.
Then there exists a rank−k orthogonal projection P ∈ Mn such that PAP = λP. So, the equality
A − λI = P(A − λI)(I − P) + (I − P)(A − λI) shows that rank(A − λI) ≤ rank(P(A − λI)(I − P)) +
rank((I−P)(A−λI)) ≤ 2 rank(I−P) = 2(n−k). Hence, dim(ker(A−λI)) ≥ n− (2n−2k) = 2k−n.
So, λ ∈ σ2k−n(A), and this completes the proof of (i).

The result in (ii) easily follows from (i).
By [13, Proposition 2.4] and Proposition 1.3(ii), Vm(A) ⊆ Xm

k (Ik ⊗ A) ⊆ Vm(Ik ⊗ A). By [3,
Theorem 3.5(v)], Vm(Ik ⊗ A) = Vm(A), and hence, the result in (iii) also holds. So, the proof is
complete.

In the following proposition, we characterize the higher rank numerical hulls of unitary matri-
ces whose spectrum lies in a semicircle (including the end points). Recall that for such matrices,
we have V2(A) = σ(A); see [4, Theorem 2.8].

Proposition 2.2. Let A ∈ Mn be a unitary matrix such that σ(A) lies in a semicircle (including the
end points). Then

Xm
k (A) =


W(A) if k = m = 1;
σ(A) if k = 1,m > 1;
σk(A) if k > 1,m > 1;
Λk(A) if k > 1,m = 1.
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Proof. The result for the cases k = m = 1, and k > 1 and m = 1, follows from Proposition
1.3((ii) and (iii)). Now, if k = 1 and m > 1, then V2(A) = σ(A) and hence by Proposition
1.3(ii), Xm

1 (A) = Vm(A) = σ(A). We now assume that k,m > 1. By Proposition 1.3(ii), we
have σk(A) ⊆ Xm

k (A) ⊆ V2(A) = σ(A). So, by the hypothesis and Proposition 1.3(vii), we have
Xm

k (A) = Xm
k (A) ∩ σ(A) ⊆ σk(A), and so, Xm

k (A) = σk(A). This completes the proof.

It is known, see for example Proposition 1.1(iv), that Vm(A) is not necessarily convex. In the
following theorem, we will consider the convexity of Xm

1 (A), where m ≥ 2 and A is normal.

Theorem 2.3. Let 2 ≤ m ≤ n be a positive integer, and A ∈ Mn be a normal matrix. Then the
following statements are equivalent:

(i) Vm(A) = W(A);

(ii) Vm(A) is convex;

(iii) A is a scalar matrix.

Proof. It is enough to prove (ii) =⇒ (iii); because the other cases are trivial. In view of Propo-
sition 1.3((i) and (ii)), and the fact that W(A) = conv(σ(A)), we see that V2(A) = W(A). So, by
Proposition 1.1(ii), we have

∂W(A) = ∂W(A) ∩ V2(A) ⊆ σ(A).

Since σ(A) is totally disconnected and ∂W(A) is a connected set, the above inclusion shows that
σ(A) must be a singleton set in C. Hence, the normality of A implies that it is a scalar matrix. So
the proof is complete.

At the end of this section, we take our attention to matrices whose square are Hermitian. Let
A ∈ Mn. Recall, e.g., see [9, Definition 1.6.2], that a point α ∈ ∂W(A) is said to be a sharp point of
W(A) if there are angles θ1 and θ2 with 0 ≤ θ1 < θ2 < 2π such that for all θ ∈ (θ1, θ2),

Re(eıθα) = max
{
Re(β) : β ∈ W(eıθA)

}
.

In [9, Theorem 1.6.3], it is also known that every sharp point of W(A) is an eigenvalue of A. Now,
to state our result, we need the following lemma.

Lemma 2.4. [9, Theorem 1.6.8] Let A ∈ Mn. Then W(A) = conv(σ(A)) if and only if either
A is normal or A is unitarily similar to a matrix of the form A1 ⊕ A2, where A1 is normal and
W(A2) ⊆ W(A1).

Theorem 2.5. Let A ∈ Mn be such that A2 is Hermitian. Moreover, let 2 ≤ m ≤ n be a positive
integer. Then the following assertions are true:

(i) W(A) = Vm(A) if and only if A is a scalar matrix;

(ii) If W(A) = conv(Vm(A)), then A is normal or A is unitarily similar to a matrix of the form
A1 ⊕ A2, where A1 is normal and W(A2) ⊆ W(A1).
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Proof. In view of Proposition 1.3(ii), we assume, without loss of generality, that m = 2. We know,
e.g., see [4, Theorem 4.3], that W(A, A2) is convex. So, by Proposition 1.1(i), ζ ∈ V2(A) if and
only if (ζ, ζ2) ∈ W(A, A2). Since A2 is Hermitian, ζ2 ∈ R. Thus, ζ ∈ R ∪ ıR. This shows that

V2(A) ⊆ R ∪ ıR. (2.1)

Now, to prove the assertion in (i), at first we assume that W(A) = V2(A). So, by (2.1), W(A) =
V2(A) ⊆ R ∪ ıR. Hence, the convexity of W(A) implies that W(A) ⊆ R or W(A) ⊆ ıR. So, A is
normal, and hence, by Theorem 2.3, A is a scalar matrix. The converse of (i) is trivial.

To prove the assertion in (ii), let W(A) = conv(V2(A)). Also, by (2.1), V2(A) ⊆ R ∪ ıR. So,
W(A)(= conv(V2(A))) is a line segment or a triangle, or a convex quadrilateral. Therefore, W(A)
has two or three, or four sharp points which are eigenvalues of A. So, W(A) = conv(V2(A)) =
conv(σ(A)), and hence, by Lemma 2.4, the result holds. So, the proof is complete.

3. On higher rank numerical hulls of normal matrices of the form A1 ⊕ ıA2

In this section, we study the rank-k numerical hulls of matrices of the form A1 ⊕ ıA2, where
A1, A2 are Hermitian. We characterized this set, as in Theorem 2.1(i), for the case k > n/2. So, the
results in this section are important for the case 1 ≤ k ≤ n

2
. At first, we need the following lemma.

Lemma 3.1. Let A ∈ Mn be a normal matrix. Then

Λk(A) ∩ ext(W(A)) ⊆ σk(A),

where ext(.) denotes the set of all extreme points.

Proof. Let λ ∈ Λk(A) ∩ ext(W(A)), and let λ1, . . . , λn be the eigenvalues of A, counting multiplici-
ties. So, by Proposition 1.2,

λ ∈
∩

1⩽ j1<···< jn−k+1⩽n

conv
(
{λ j1 , . . . , λ jn−k+1}

)
.

Now, since ext(conv({λ1, . . . , λn}) = ext(W(A)) ⊆ σ(A), the algebraic multiplicity of λ is at least
k. We know that the algebraic and geometric multiplicity of eigenvalues of normal matrices are
equal. So, λ ∈ σk(A), and hence, the proof is complete.

Theorem 3.2. Let A = A1 ⊕ ıA2 ∈ Mn, where A1 and A2 are Hermitian. Moreover, let λ1, . . . , λn

be the eigenvalues of A, counting multiplicities. Then

σk(A) ⊆ Xm
k (A) ⊆

∩
1⩽ j1<···< jn−k+1⩽n

conv
(
{λ j1 , . . . , λ jn−k+1}

)
∩ σ(A), (3.1)

if one of the following conditions holds:
(i) A1 and A2 are semi-definite matrices and m ≥ 2,
(ii) A2 is a semi-definite matrix and m ≥ 3.
Under the condition (i) or (ii), the set equalities in (3.1) hold if σ(A) = ext(W(A)).
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Proof. If the condition (i) holds, then by Proposition 1.1(v), we have V2(A) = σ(A). So, by
Propositions 1.3((iv) and (ii)) and 1.2, we have

σk(A) ⊆ Xm
k (A) ⊆ V2(A) ∩ Λk(A) =

∩
1⩽ j1<···< jn−k+1⩽n

conv
(
{λ j1 , . . . , λ jn−k+1}

)
∩ σ(A),

and so, the result holds.
If condition (ii) holds, then using the same manner as in the proof above, the result also holds.
For the final assertion, let σ(A) = ext(W(A)). Now using Proposition 1.2 and Lemma 3.1, the

set equalities hold. This completes the proof.

Remark 3.3. Let A = A1 ⊕ ıA2 ∈ Mn, where A1 and A2 are semi-definite matrices. By Lemma 3.1
and Theorem 3.2, to study Xm

k (A), we have to find the members of Λk(A) ∩ σ(A) ∩ (ext(W(A)))c

that belong to Xm
k (A). In fact, Xm

k (A) is the union of the set of all these elements with σk(A).
In the next theorem, we find the set Xm

k (A) for some normal matrices A ∈ M4 of the form
A = A1 ⊕ ıA2.

Theorem 3.4. Let α, β, γ, θ are positive integers, and A = diag(α,−β, ıγ, ıθ) and
B = diag(α,−β, ıγ,−ıθ). If m ≥ 3 and k, l ≥ 2, then Xm

k (A) = ∅ = Xl
k(B).

Proof. We assume, without loss of generality, that α ≤ β and γ ≤ θ. In view of Remark 3.3, if
γ = θ, then Xm

k (A) = ∅, and for the case γ < θ, we have

Xm
k (A) ⊆ {ıγ}.

By Proposition 1.2, Λ2(A) = {ıγ}, Λ2(A2) = [−γ2, α2] and Λ2(A3) = {−ıγ3}. So,

conv
(
Λ2(A, A2, A3)

)
⊆ Λ2(A) × Λ2(A2) × Λ2(A3) = {ıγ} × [−γ2, α2] × {−ıγ3}.

A direct computation shows that (ıγ,−γ2,−ıγ3) < Λ2(A, A2, A3). Since (ıγ,−γ2,
− ıγ3) is a conical point of {ıγ} × [−γ2, α2] × {−ıγ3},(

ıγ,−γ2,−ıγ3
)
< conv

(
Λ2(A, A2, A3)

)
.

So, ıγ < Xm
k (A), and hence Xm

k (A) = ∅. To prove the assertion for the matrix B, by Proposition
1.2, Λ2(B) = {0} and Λ2(B2) is a line-segment in the positive real axis. By Proposition 1.3(iii),
Xm

k (B) ⊆ Λ2(B) = {0}. Since (0, 0) < Λ2(B) × Λ2(B2), (0, 0) < conv(Λ2(B, B2)), and so, 0 < X2
2(B).

Hence, by Proposition 1.3((ii) and (iii)), Xl
k(B) = ∅. This completes the proof.

The final example is related to a case that we did not consider in Theorem 3.4.

Example 3.5. Let A = diag(0, 1, 2) ⊕ ı diag(1). Obviously σ2(A) = ∅. By Propositions 1.3(iii)
and 1.2, X2

2(A) ⊆ Λ2(A) = {1} and Λ2(A2) = [0, 1]. So,

Λ2(A, A2) ⊆ Λ2(A) × Λ2(A2) = {1} × [0, 1].

A direct computation shows that (1, 1) < Λ2(A, A2), and since (1, 1) is a conical point of Λ2(A) ×
Λ2(A2), (1, 1) < conv(Λ2(A, A2)). So, 1 < X2

2(A), and hence, X2
2(A) = ∅.
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4. Higher rank numerical hulls of the basic circulant matrix

Let

C =


c0 c1 c2 . . . cn−1

cn−1 c0 c1 . . . cn−2

. . . . . . . .
c1 c2 c3 . . . c0

 ∈ Mn

be an arbitrary circulant matrix. Also, let Pn = E12 + · · · + En−1,n + En1, where Ei j ∈ Mn is an
elementary matrix whose (i, j)-th entry is 1 and the other entries are 0. It is clear that

C = c0P0
n + c1P1

n + · · · + cn−1Pn−1
n .

By this idea, Pn is called the basic circulant matrix. It is known that Pn is unitarily similar to

Dn = diag(1, ω, . . . , ωn−1),

where ω = eı2π/n. Then, by [2, Proposition 2.3(iii)], Xm
k (Pn) = Xm

k (Dn). In the next theorem, we
study the higher rank numerical hulls of Dn. At first, we need the following two lemmas.

Lemma 4.1. Let Dn = diag(1, ω, . . . , ωn−1), where ω = ei2π/n. Then the following assertions are
true:

(i) [4, Theorem 3.1] If n/2 < m < n, then Vm(Dn) = σ(Dn) ∪ {0}. Also, if m = n/2, then
Vm(Dn) =

∪n−1
j=0 ω

j[0, 1];

(ii) [4, Theorem 3.3] Let F = (ω(p−1)(q−1)) ∈ Mn, 1 ≤ p, q ≤ n and 3 < m < n/2. Then
µ ∈ Vm(Dn) if and only if there exist complex numbers zm+2, . . . , zn−m such that z j = z̄n− j+2

and F−1[1, µ, . . . , µm, zm+2, . . . , zn−m,
µ̄m, . . . , µ̄]t} is a nonnegative vector.

The following lemma follows easily from [6, Corollary 2.8].

Lemma 4.2. If k < n/2, then Λk(Dn) is an n−sided convex polygon obtained by joining ω j and
ω j+k, where ω j+k = ω j+k−n if j + k > n ( j = 1, . . . , n).

Theorem 4.3. Let Dn = diag(1, ω, . . . , ωn−1), where ω = ei2π/n. Moreover, let F = (ω(p−1)(q−1)) ∈
Mn; 1 ≤ p, q ≤ n. Then the following assertions are true:

(i) If k = 1, then Xm
1 (Dn) equals to

conv({1, ω, . . . , ωn−1}), if m = 1,
{µ ∈ C : ∃zm+2, . . . , zn−m s.t. z j = z̄n− j+2 and
F−1[1, µ, . . . , µm, zm+2, . . . , zn−m, µ̄

m, . . . , µ̄]t

is a nonnegative vector}, if 3 < m < n/2,∪n−1
j=0 ω

j[0, 1], if m = n/2,
{0, 1, ω, . . . , ωn−1}, if n/2 < m < n,
{1, ω, . . . , ωn−1}, if m = n;
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(ii) If 1 < k < n/2, then

Xm
k (Dn) =

∩
0⩽ j1<···< jn−k+1⩽n−1

conv({ω j1 , . . . , ω jn−k+1}), if m = 1,

Xm
k (Dn) ⊆ {µ ∈ C : ∃zm+2, . . . , zn−m s.t. z j = z̄n− j+2

and F−1[1, µ, . . . , µm, zm+2, . . . , zn−m, µ̄
m, . . . , µ̄]t

is a nonnegative vector}, if 3 < m < n/2,

Xm
k (Dn) ⊆ ∪n−1

j=0
ωk

ωk + ω − 1
ω j+1[0, 1], if m = n/2,

Xm
k (Dn) ⊆ {0}, if n/2 < m < n,
Xm

k (Dn) = ∅, if m = n;

(iii) If k ⩾ n/2, then Xm
k (Dn) = ∅.

Proof. For k = 1 and m = 1, X1
1(Dn) = W(Dn) and since Dn is a normal matrix, X1

1(Dn) =
conv({1, ω, ω2, . . . , ωn−1}).

For the case k = 1 and 3 < m < n/2, by Lemma 4.1(ii) and Proposition 1.3(ii), the result holds.
By Lemma 4.1(i), the results in the cases k = 1 and n/2 < m < n or m = n/2, also hold.
For the case k = 1 and m = n, Xn

1(Dn) = Vn(Dn) = σ(Dn).
For the case 1 < k < n/2 and m = 1, by Propositions 1.3(iii) and 1.2, the result holds.
If 1 < k < n/2 and 3 < m < n/2, then the result follows from Proposition 1.3(iv) and Lemma

4.1(ii).
If 1 < k < n/2 and m = n/2, then Proposition 1.3(iv) and Lemma 4.1(i) imply that Xm

k (Dn) ⊆
(
∪n−1

j=0 ω
j[0, 1]) ∩ Λk(Dn). To make a better superset, using Lemma 4.2, we must find the inter-

section of the line segments ω j[0, 1] with Λk(Dn), where j = 0, 1, . . . , n − 1. This intersection

is { ω
k+ j+1

ωk + ω − 1
}. So, the above intersection equals to

∪n−1
j=0

ωk

ωk + ω − 1
ω j+1[0, 1], and hence, the

inclusion holds.
For the case 1 < k < n/2 and n/2 < m < n, by Lemma 4.1(i), we have Vm(Dn) = σ(Dn) ∪ {0}.

So, by Proposition 1.3(ii), Xm
k (Dn) ⊆ σ(Dn) ∪ {0}.

For k > 1, σk(Dn) = ∅. So, by Proposition 1.3(vii), Xm
k (Dn)∩σ(Dn) = ∅. Hence, Xm

k (Dn) ⊆ {0}.
For the case 1 < k < n/2 and m = n, conv(Λk(Dn,D2

n, . . . ,D
n
n = In)) ⊆ Λk(Dn)×· · ·×Λk(Dn−1

n )×
{1}. So, if there exists a scalar µ ∈ Xn

k(Dn), then µn = 1. This means that there is a 0 ≤ j ≤ n − 1
such that µ = ω j. By Lemma 4.2, the elements 1, ω, . . . , ωn−2 and ωn−1 do not belong to Λk(Dn)
for 1 < k < n/2. So, µ < Λk(Dn); a contradiction. Hence Xn

k(Dn) = ∅.
By Proposition 1.2, for the case k > n/2 + 1, we have Λk(Dn) = ∅. Hence, Xm

k (Dn) is also
empty.

By Proposition 1.3(viii), if k = n/2, then Xm
k (Dn) = ∅. So, the result in (iii) holds, and hence,

the proof is complete.
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