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Abstract
This paper is devoted to definition standard higher dimension
shearlet group S = R+×Rn−1×Rn and determination of square-
integrable subrepresentations of this group. Also we give a char-
acterisation of admissible vectors associated with the Hilbert
spaces corresponding to each subrepresentation.
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1. Introduction

Wavelet systems have been a popular method to analyze multidimensional data; however, these
systems do not yield any information about directional components. To solve this problem, sev-
eral approaches have been suggested in the context of directional signal analysis such as ridgelets
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[6], curvelets [5], contourlets and surfacelet [9], shearlets [12, 16], and many others. Among all
these approaches, the shearlet transform stands out because it is related to group theory, i.e., this
transform can be derived from a square-integrable representation of the shearlet group (see [7]).
Therefore, in the context of the shearlet transform, all the powerful tools of group representation
theory can be exploited. In addition, shearlets have been shown to yield (almost) optimally sparse
representations which are either built on band-limited or on compactly supported functions [11, 14]
and have been implemented [15]. It is becoming more common for higher dimensional data sets to
appear, which need to be analyzed. For analyzing data in Rn, n ≥ 3, the shearlet transform has to
be generalized to higher dimensions. Finding optimal representations of signals in higher dimen-
sions is currently the subject of the researches by Dahlke et all [8]. Although wavelets, provide
to be a satisfactory tool in one dimension, do not provide any directional information. So there is
an important motivation to obtain directional representations which capture directional features,
like orientations of curves in images, while providing sparse decompositions. Hense Dahlke et all
in [8] introduced higher dimensional shearlet transform. Irreducible unitary representations of a
locally compact group G, are the basic building blocks of the harmonic analysis associated to G.
In fact by Gelfand-Raikov Theorem a locally compact group always has enough irreducible repre-
sentations to separate points [10]. It is known that the standard unitary representations of shearlet
group (2-D) and standard higher dimensional shearlet group are not square-integrable or even ir-
reducible. In this paper we determine all irreducible and square-integrable sub-representations of
these groups, where recently in [3] the authors characterize irreducible as well as square-integrable
subrepresentations of the standard shearlet group representation in 2-D.

More precisely this paper is structured as follow. In Section 2, the class of semi-direct product
of locally compact groups and their representations are introduced. In section 3, we state some
preliminaries about higher dimensional shearlet group, its unitary representation and the associated
shearlet transform and introduce standard higher dimension shearlet group. Section 4 is devoted
to determination of irreducible subrepresentations of standard higher dimensional shearlet group
representation and characterizing admissibility condition for any vector associated to the Hilbert
spaces corresponding to these subrepresentations.

2. Preliminaries and notation

We shall use the following conventions throughout the paper. For two locally compact groups
H and K, let h 7→ τh be a homomorphism of H into the group of automorphisms of K denoted
by Aut(K). Also assume that the mapping (h, k) 7→ τhk, from H × K (endowed with the product
topology) onto K is continuous. Then the set H × K with the operations:

(h, k)(h′, k′) := (hh′, kτh(k′)),

and

(h, k)−1 = (h−1, τh−1(k−1),

is a locally compact group. This group is denoted by H⋉τK and called the semi direct product of H
and K, respectively. The left Haar measure of G = H⋉τK is dµGτ

(h, k) = δ(h)dµH(h)dµK(k), where
dµH and dµK are the left Haar measures on H and K, respectively and δ is a positive continuous
homomorphism on H which is given by
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dµK(k) = δ(h)dµK(τh(k)).

For more details on semi direct product groups see [1, 13]. The unitary representation of G =
H ⋉τ K on the Hilbert space L2(K), denoted by (U, L2(K)), is defined by

U(h, k) f (y) = δ(h)
1
2 f (τh−1(yk−1)),

for all f ∈ L2(K), (h, k) ∈ G. This representation is called quasi-regular representation of G. It
is worthwhile to note that this representation generally is not irreducible [1, 2]. Assume that K is
also Abelian and consider K̂ as the dual group of K. To build an irreducible subrepresentation of
U, one can define an action of H on K̂ by

H × K̂ −→ K̂; (h,w) = w ◦ τh−1.

For a fixed ω ∈ K̂, the orbit Ow and the stabilizer Hw of w are defined by

Ow =
{
w ◦ τh−1; h ∈ H

}
, Hw :=

{
h ∈ H; woτh−1 = w

}
.

One can easily see that Hw is a closed subgroup of H and Ow is an H-invariant subset in K̂, that is
Hwh ⊆ Hw, for all h ∈ H.

3. Standard higher dimensional sherlet group

For analysing data in Rn, n ≥ 3, Dahlke et all [8] generalized two dimensional shearlet trans-
form to higher dimensions, in the fallowing method.

Let In denote the n × n identity matrix, also 0n, the vector with n entries. For a ∈ R∗ := R \ {0}
and s ∈ Rn−1

Aa =

(
a 0n−1

0T
n−1 sgn(a)|a| 1n In−1

)
and S s =

(
1 s

0T
n−1 In−1

)
.

The choice of S s lead shearlet transform to be a square integrable group representation. In order
to have directional selectivity, the dilation factors at the diagonal of Aa is chosen in an anisotropic
way, i.e., if the first diagonal entry is a, the other ones should increase less than linearly in a as
a→ ∞. The set R∗ × Rn−1 × Rn endowed with the operation

(a, s, t) ◦ (a′, s′, t′) = (aa′, s + |a|1− 1
n s′, t + S sAat′),

is a locally compact group S, which is called full higher dimensional shearlet group. The left and
right Haar measures on S are given by

dµl(a, s, t) =
1
|a|n+1 dadsdt and dµr(a, s, t) =

1
|a|dadsdt.

For f ∈ L2(Rn) the map π : S→U(L2(Rn)), defined by

π(a, s, t) f (x) = fa,s,t(x) := |a| 1
2n−1 f

(
A−1

a S −1
s (x − t)

)
,
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is a unitary representation of locally compact group S on the Hilbert space L2(Rn), with respect
to the Haar measure dµl. It is worthwhile to know that this representation is irreducible square
integrable representation. For more details on full higher dimensional shearlet group see [8].
Recall that a non trivial function ψ ∈ L2(Rn) is called admissible with respect to π if∫

S
| ⟨ψ, π(a, s, t)ψ⟩ |2 dµl(a, s, t) < ∞. (3.1)

If there exists at least one admissible vector ψ ∈ L2(Rn) with respect to π , then π is called square-
integrable [1]. In the sequel, by a square-integrable representation, we mean irreducible square-
integrable representation.

Although the representation of full higher dimensional shearlrt group R∗×Rn−1×Rn, is square
integrable, but the representation of standard higher dimensional shearlet group R+ × Rn−1 × Rn,
which we will define in the sequel with similar method, is not square integrable in general.

Now we are ready to define standard higher dimensional sherlet group. Consider n× n dilation
matrices, depend on a parameter a ∈ R+, defined by

Aa =

(
a 0n−1

0T
n−1 a

1
n In−1

)
,

in which In is n × n identity matrix. The dilation factor at the diagonal of Aa is chosen in an
anisotropic way. This choice of Aa enables us to detect special directional information. The n × n
shear matrices is defined by

Ss =

(
1 s

0T
n−1 In−1

)
,

where s ∈ Rn−1. The set of shear matrices form a subgroup of GLn(R), all real n × n non-singular
matrices . The similar calculation like full higher dimensional shearlet group show that, the set
R+ × Rn−1 × Rn equipped with the group operations

(a, s, t)o(a′, s′, t′) = (aa′, s + a1− 1
n s′, t + S sAat′)

and

(a, s, t)−1 = (a−1,−a
1
n−1s,−A−1

a S −1
s t),

is a locally compact group. Its left and right Haar measures are given by

dµl(a, s, t) =
1

an+1 da ds dt,

and

dµr(a, s, t) = 1
a da ds dt,
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respectively. In the sequel, by higher dimensional shearlet group S, we mean standard higher
dimensional shearlet group. We regard our higher dimensional shearlet group, the semi direct
product group S = H ⋉τ Rn, in the following form

S =
{
(M, t); M ∈ H, t ∈ Rn

}
,

where H is the group of the matrices

H =
{
S sAa; s ∈ Rn−1, a ∈ R+

}
⊆ GL(n,R), (3.2)

and the homomorphism τ : H → Aut(Rn) is defined by

τM(t) = Mt = S sAat. (3.3)

So for any ψ ∈ L2(Rn), the quasi-regular representation of S = H ⋉τ Rn is defined by

π(a, s, t) f (x) = fa,s,t(x) : = (detAa)
−1
2 f

(
A−1

a S −1
s (x − t)

)
(3.4)

= a
1

2n−1 f
(
A−1

a S −1
s (x − t)

)
, (3.5)

which is a unitary representation of S on U(L2(Rn)).
A function ψ ∈ L2(Rn) that fulfils the admissibility condition (3.1), is called a continuous

shearlet and the transform

SHψ : L2(Rn) −→ L2(S),

defined by

SHψ f (a, s, t) := ⟨ f , ψa,s,t⟩ = f ∗ ψ∗a,s,0(t)

is called a continuous shearlet transform.

The admissibility condition usually yields to a resolution of the identity that leads to recon-
struction of a signal f ∈ L2(Rn) from the representation coefficients (⟨ψ, π(a, s, t)ψ⟩)(a,s,t)∈S.

4. Main results

Let GL(n,R) denote the group of invertible n × n real matrices with the usual topology. It is
well known that any subgroup of the group GL(n,R) has a natural action on Rn via (x,M) 7−→ Mx.
The action of GL(n,R) on the dual group R̂n is (k,M) 7→ MT k, where MT denotes the transpose
of matrix M. Let H be an n-dimensional closed subgroup of GL(n,R). Note that for any γ0 ∈ R̂n,
its orbit under H is Oγ0 =

{
M−Tγ0; M ∈ H

}
. We say that H has an open free H-orbit in R̂n, if there

exists a γ0 ∈ R̂n such that Oγ0 is an open set in R̂n and furthermore, M−T k = k for any k ∈ Oγ0

implies that M = In. In other words, the stabilizer of any k ∈ Oγ0 is trivial. Note that for any
H ⋉τ Rn where H is an n-dimensional subgroup of GL(n,R), it is not always the case that open



Zare, Kamyabi-Gol, Amiri/Wavelets and Linear Algebra 4(1) (2017) 11 - 21 16

free orbit of H exists in R̂n. However, if there does exist one such orbit, then R̂n is disjoint union
of such orbits [1].

Let U be an open subset of R̂n and L2(U) denote the closed subspace of L2(R̂n) consisting of
elements supported on U and considerH2

U = F−1(L2(U)), where F−1(L2(U)) is the inverse Fourier
transform of L2(U). ThenH2

U can be thought of as a generalized Hardy space [4]. It is worthwhile
to note that if U is a free H-orbit in R̂n and ρ is a unitary representation of H ⋉τ Rn on L2(Rn),
then ρ|H2

U
is a square integrable representation of H ⋉τRn onH2

U [4, Theorem 1]. Also an element

ψ ∈ H2
U , is admissible if and only if ψ̂Ψ

1
2
γ ∈ L2(U), where Ψγ = ΨH ◦ α−1

γ , in which ΨH(h) = ∆H(h)
δ(h)

and αγ : H → U is a homeomorphism defined by αγ(h) = γh [4, Corollary 1]. The main goal of
this section is to determine all square-integrable subrepresentations of higher dimensional shearlet
group. To do this aim, first in the next theorem we shall show that the action of H on Rn is free.

Theorem 4.1. Let H be an n-dimensional closed subgroup of GL(n,R) defined in (3.2). Then the
action of H on R̂n given by M.γ := γoτM−1 is free, that is, for any γ ∈ R̂n, Hγ =

{
In
}
.

Proof. Using equations (3.3) we have

γoτM−1(t) = γ
(
M−1t

)
= γ

(
A−1

a S −1
s t

)
= γ

(
S −s

n√
an−1

A 1
a
t
)
= e

2πiγ.S −s
n√

an−1
A 1

a
t

= e
2πiA 1

a
S T

−s
n√

an−1

γ.t

= A 1
a
S T

−s
n√

an−1
γ(t),

where a ∈ R+ and s = (s1, · · · , sn−1) ∈ Rn−1. Therefore we have

M.γ = A 1
a
S T

−s
n√

an−1
γ

=

( 1
a 0n−1

0T
n−1 a

−1
n In−1

)  1 0n−1
−sT

n√an−1
In−1



γ1
...
γn


=

( 1
a 0n−1
−sT

a a
−1
n In−1

) 
γ1
...
γn

 ,
i.e., 

1
a 0 0 · · · 0
−s1

a
1
n√a 0 · · · 0

...
...

. . .
...

...
−sn−2

a 0 · · · 1
n√a 0

−sn−1
a 0 · · · 0 1

n√a



γ1
...
γn

 =


γ1
a−s1γ1

a +
γ2
n√a

...
−sn−1γ1

a +
γn
n√a

 .
So M.γ = γ yields a = 1, also s = 0 as a vector in Rn−1, i.e., M is the identity matrix for any
γ ∈ R̂n. Thus Hγ = {In} and so the action of H on R̂n is free.
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Now by the procedure in the proof of Theorem 4.1, we can find all orbits of the action of H
on R̂n. Note that the structure of the orbits depend on the choice of γi, i = 1, ..., n, to be positive,
negative or zero. The non-zero orbits are classified as two non-zero invariant subsets A+ := O(1,0,..,0)

and A− := O(−1,0,...,0), in which

O(1,0,...,0) =
{ 

x1
...

xn

 , x1 > 0, xi ∈ R f or i = 2, ..., n
}
,

and

O(−1,0,...,0) =
{ 

x1
...

xn

 , x1 < 0, xi ∈ R f or i = 2, ..., n
}
.

Note that A+ and A− are subsets of positive measure in R̂n. Now we are ready to determine
all square integrable subrepresentations of unitary representation of higher dimensional shearlet
group. Let π be the unitary representation of S defined in (3.4), we identify all square integrable
subrepresentations of π.

Theorem 4.2. Square-integrable subrepresentations of higher dimensional shearlet group are pre-
cisely the following two subrepresentations

π+ : S −→ U(H2
A+), π+(a, s, t)ψ = ψ(a,s,t),

and

π− : S −→ U(H2
A−), π−(a, s, t)ϕ = ϕ(a,s,t).

Proof. As we proved in Theorem 4.1, the action defined on R̂n is free for any γ ∈ R̂n. Therefore
A+ and A− are free H-orbits also with positive measure in R̂n. Hence using [4, Theorem 1], π+
and π− are square integrable representations of S onH2

A+ andH2
A− respectively. On the other hand

since A+ and A− are only invariant subsets of R̂n with positive measure, so π+ : S −→ U(H2
A+) and

π− : S −→ U(H2
A−) are the only square integrable subrepresentations of π defined by π+(a, s, t)ψ =

ψa,s,t and π−(a, s, t)ϕ = ϕa,s,t, where

ψa,s,t(x) = a
1
2n−1ψ(A−1

a S −1
s (x − t)),

and

ϕa,s,t(x) = a
1
2n−1ϕ(A−1

a S −1
s (x − t)).

In the next theorem all admissible vectors in H2
A+ and H2

A− are characterized, by using orbits,
in the other word we shall state admissibility condition for any vector inH2

A+ andH2
A− .
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Theorem 4.3. An element ψ ∈ H2
A+ (or ∈ H2

A−) is admissible if and only if∫
R̂n

|ψ̂(w)|2
wn

1
dw < ∞,

where w = (w1, · · · ,wn)T ∈ R̂n.

Proof. Recall that the higher dimensional shearlet group S, is a type of semi direct product group
denoted by H ⋉τ Rn, where H is locally compact group with group action (S sAa)o(S s′Aa′) =
S sAaS s′Aa′ such that

Aa =

(
a 0n−1

0T
n−1 a1/nIn−1

)
, a ∈ R+,

S s =

(
1 s

0T
n−1 In−1

)
, s ∈ Rn−1.

Therefore it is easily to compute that the modular function on H, is

∆H : H −→ (0,∞); ∆H(S sAa) =
( n
√

a)n−1

an−1 .

Since ψH(h) =
∆H(h)
det(h)

= 1
an , where h = S sAa ∈ H, so ψ(1,0,...,0)(ω1, ..., ωn) = ψHoα−1

(1,0,...,0)(w1, ...,wn) =

1
wn

1
. Hence [4, corollary 1] complete the proof i.e; ψ is admissible if and only if

∫
R̂n

|ψ̂(w)|2
wn

1
dw <

∞.

Now we give an example and present these results. It can be useful to state that in [3], the
square-integrable sub-representations of the standard shearlet group representation in 2-D is in-
vestigated.

Example 4.4. In this example we determine all irreducible and square-integrable subrepresenta-
tions of standard 3-D dimensional shearlet group.

Let S = (R+ ×R2) ⋉λ R3. The action of (R+ ×R2) on R̂3 given by (a, s).γ := γ ◦ λ(a,s)−1 is free
for any a ∈ R+ and s = (s1, s2) ∈ R2, indeed for any γ ∈ R̂3 we have Hγ = (1, 0, 0). Since

γ ◦ λ(a,s)−1(t) = γ(S −s
3√

a2
A 1

a
t)

= e
2πiγ.S −s

3√
a2

A 1
a

t

= e
2πiγ.A 1

a
S T
−s

3√
a2

t

= A 1
a
S T

−s
3√

a2

γ(t),
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we have

(a, s).γ := γ ◦ λ(a,s)−1 = A 1
a
S T

−s
3√

a2

γ

=


1
a 0 0
0 1

3√a
0

0 0 1
3√a




1 0 0
−s1
3√a2

1 0
−s2
3√a2

0 1


γ1

γ2

γ3


=


1
a 0 0
−s1

a
1
3√a

0
−s2

a 0 1
3√a


γ1

γ2

γ3


=


1
aγ1

−s1
a γ1 +

1
3√a
γ2

−s2
a γ1 +

1
3√a
γ3

 .

Therefor


1
aγ1

−s1
a γ1 +

1
3√a
γ2

−s2
a γ1 +

1
3√a
γ3

 =
γ1

γ2

γ3

, yields (a, (s1, s2)) = (1, (0, 0)).

The above mentioned action has 11 orbits as follows:

O(0,0.0) = {(0, 0, 0)},
O(γ1,γ2,γ3) = {(x, y, z) ∈ R3 : x > 0}, γ1 > 0,
O(γ1,γ2,γ3) = {(x, y, z) ∈ R3 : x < 0}, γ1 < 0,
O(0,γ2,γ3) = {(0, y, z) ∈ R3 : y > 0}, γ2 > 0,
O(0,γ2,γ3) = {(0, y, z) ∈ R3 : y < 0}, γ2 < 0,
O(0,γ2,γ3) = {(0, y, z) ∈ R3 : z > 0}, γ3 > 0,
O(0,γ2,γ3) = {(0, y, z) ∈ R3 : z < 0}, γ3 < 0,
O(0,γ2,γ3) = {(0, y, z) ∈ R3 : y > 0, z > 0}, γ2 > 0, γ3 > 0,
O(0,γ2,γ3) = {(0, y, z) ∈ R3 : y > 0, z < 0}, γ2 > 0, γ3 < 0,
O(0,γ2,γ3) = {(0, y, z) ∈ R3 : y < 0, z > 0}, γ2 < 0, γ3 > 0,
O(0,γ2,γ3) = {(0, y, z) ∈ R3 : y < 0, z < 0}, γ2 < 0, γ3 < 0.

All the non-zero measure orbits are classified as two orbits:

O(1,0,0) =
{
(x, y, z) ∈ R3 : x > 0

}
,

and

O(−1,0,0) =
{
(x, y, z) ∈ R3 : x < 0

}
.
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Define A+ := O(1,0,0) and A− := O(−1,0,0). Then σ+ : S → U(H2
A+) and σ− : S → U(H2

A−) defined
by

σ+(a, s, t)ψ(x) = a
1

2n−1ψ
(
A−1

a S −1
s (x − t)

)
= a

−5
6 ψ

( ( 1
a

−s
a

0T
2

1
3√a

I2

)
(x − t)

)
,

and

σ−(a, s, t)ϕ(x) = a
1

2n−1ϕ(A−1
a S −1

s (x − t))

= a
−5
6 ϕ

( ( 1
a

−s
a

0T
2

1
3√a

I2

)
(x − t)

)
,

are precisely the square-integrable subrepresentations of 3-D standard shearletb group, for ψ ∈
H2

A+ and φ ∈ H2
A− . Therefore the standard representation of this group is direct sum of two

irreducible representations, in fact, σ = σ+ ⊕ σ−. Also ψ ∈ H2
A+ (or ∈ H2

A−) is admissible if and

only if
∫
R3
|ψ̂(ξ1,ξ2,ξ3)|2

ξ2
1

dξ1dξ2dξ3 < ∞.
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