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Abstract
Let K be a locally compact hypergroup with left Haar measure
and let L1(K) be the complex Lebesgue space associated with it.
Let L∞(K) be the dual of L1(K). The purpose of this paper is to
present some necessary and sufficient conditions for L∞(K)∗ to
have a topologically left invariant mean. Some characterizations
of amenable hypergroups are given.
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1. Introduction

Hypergroups are locally compact spaces whose bounded Radon measures form an algebra
which has similar properties to the convolution measures algebra of a locally compact group.
Hypergroups arise as generalizations of the measure algebra of a locally compact group wherein
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the product of two points is a probability measure rather than a single point. The abstract study of
hypergroups began in the 1970s with Dunkl [3], Jewett [7], and Spector [15]. A detailed treatment
can be found in the text of Bloom and Heyer [2]. Let K be a locally compact hypergroup with a
fixed left Haar measure λ and modular function ∆ defined by the identity

∆(y)
∫ ∫

f (t)dδx ∗ δy(t)dλ(x) =

∫
f (x)dλ(x),

for continuous functions f vanishing off compact subsets of K. If f is a Borel function on K and
x ∈ K, the left translation x f or Lx f is defined by

Lx f (y) = x f (y) =

∫
f (t)dδx ∗ δy(t) = f (x ∗ y),

if the integral exists. We also consider f ∗(x) = f (x̆) (x̆ is the involution of x). It is still unknown
if an arbitrary hypergroup admits a left Haar measure. It particular, it remains unknown whether
every amenable hypergroup admits a left Haar measure. But all the known examples such as
commutative hypergroups and central hypergroups do. In this case, one can define the convolution
algebra L1(K) with multiplication f ∗ g(x) =

∫
f (x ∗ y)g(y̆)dλ(y) for f , g ∈ L1(K).

Let M(K) be the space of complex-valued, regular Borel measures on K. We denote by M1(K)
the convex set formed by the probability measures on K. Recall that L1(K) is a Banach subalgebra
and an ideal in M(K) with a bounded approximate identity. It should be noted that these algebras
include not only the group algebra L1(G) but also most of the semigroup algebras.

Let L∞(K) be the Banach space of all essentially bounded Borel measurable functions on K
with essential supremum norm. A linear functional M ∈ L∞(K)∗ is called a mean if 〈M, f 〉 ≥ 0
whenever f ≥ 0 and ‖M‖ = 1. We denote byM(L∞(K)) the convex set of all means on L∞(K).
Each probability measure ϕ ∈ L1(K) ⊆ M(K) is a mean. Let P1(K) = {ϕ ∈ L1(K); ϕ ≥ 0 and ‖ϕ‖ =

1}. An application by Hahn-Banach theorem shows that P1(K) is weak∗ dense in the set of means
on L∞(K).

Let Cb(K) denote the Banach space of all bounded continuous complex-valued functions on
K. We say that a continuous function f ∈ Cb(K) is left uniformly continuous if the map x 7→ Lx f
is continuous in norm. We denote the collection of left uniformly continuous functions on K by
LUC(K). Let X be one of the spaces LUC(K) or L∞(K). A mean M on X is called left invariant
mean if 〈M, Lx f 〉 = 〈M, f 〉 for all f ∈ X and x ∈ K. M is topologically left invariant mean if
〈M, ϕ ∗ f 〉 = 〈M, f 〉 for all ϕ ∈ P1(K) and f ∈ X. The convex set of left invariant [topologically
left invariant] means on X is denoted by LIM(X) [T LIM(X)]. A hypergroup K is called amenable
if there is a LIM on L∞(K). We mainly follow [2] in our notation and refer to [13] for basic
functional analysis.

Skantharajah [14] initiated the study of amenable hypergroups, extending the definition from
groups. He discovered that despite the apparent analogy of this topic to groups, there are substan-
tial differences, especially in connection with its relationship with the representation theory. Skan-
tharajah [14] showed that if K is a hypergroup which admits a left Haar measure then the function
spaces of LUC(K), Cb(K) and L∞(K) all either admit a left invariant mean (if K is amenable), or all
do not. Numerous authors continue to study various aspects of hypergroups including amenability
properties [1, 6, 9, 10, 12, 16] and [17].
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In this paper, among the other things, we investigate the structures of amenable hypergroups.
A number of equivalent conditions characterizing amenable hypergroups are given.

2. Main results

Throughout this paper, unless explicitly stated otherwise, K will denote a locally compact
hypergroup with a fixed left Haar measure λ. Recall that L1(K)∗∗, the second conjugate space of
L1(K), is a Banach algebra with the first Arens product. More specifically, let F,G ∈ L1(K)∗∗,
f ∈ L1(K)∗ and ϕ, ψ ∈ L1(K); we define fϕ,G f ∈ L1(K)∗, FG ∈ L1(K)∗∗ by the equations

〈 fϕ, ψ〉 = 〈 f , ϕ ∗ ψ〉, 〈G f , ϕ〉 = 〈G, fϕ〉, 〈GF, f 〉 = 〈G, F f 〉.

In [11] Medghalchi defined L1(K)∗L1(K) = LUC(K) which is a Banach subspace of L1(K)∗, and
showed that LUC(K)∗ is a Banach algebra by an Arens-type product and that L1(K) ⊆ LUC(K)∗.
In the following Theorem, we give conditions on K and L∞(K) that are sufficient to guarantee
amenability of K.

Theorem 2.1. A necessary and sufficient condition for the amenability of a locally compact hy-
pergroup K is given by each of the following properties:

(i) For every f ∈ L∞(K), there exists a mean M f on L∞(G) such that 〈M f , fϕ〉 = 〈M f , fψ〉
whenever ϕ, ψ ∈ P1(K)

(ii) There exists a net {ϕα} in P1(K) such that, for every weakly compact subset S of P1(K),
lim ‖ϕ ∗ ϕα − ϕα‖1 = 0 uniformly for every ϕ ∈ S.

Proof. Let K be amenable, by [14, Theorem 3.2], we consider M ∈ T LIM(L∞(G)). Let f ∈ L∞(K)
and ϕ ∈ P1(K). For every ψ ∈ L1(K),

〈 fϕ, ψ〉 = 〈 f , ϕ ∗ ψ〉 =

∫
f (x)ϕ ∗ ψ(x)dλ(x)

=

∫
f (x)

∫
ψ(y̆ ∗ x)ϕ(y)dλ(y)dλ(x)

=

∫ ∫
ϕ(y) f (y ∗ x)ψ(x)dλ(y)dλ(x)

=

∫
ψ(x)

∫
( fxϕ)∗(y)

∆(y)
dλ(y)dλ(x)

=

∫
ψ(x)

∫
f (y̆ ∗ x)ϕ(y̆)∆(y̆)dλ(y)dλ(x).

We consider ϕ̂(y) = ϕ(y̆)∆(y̆). Obviously ϕ̂ ∈ P1(K). Therefore we have

〈 fϕ, ψ〉 =

∫
ψ(x)

∫
f (y̆ ∗ x)ϕ̂(y)dλ(y)dλ(x)

=

∫
ψ(x)ϕ̂ ∗ f (x)dλ(x) = 〈ϕ̂ ∗ f , ψ〉.
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This shows that fϕ = ϕ̂ ∗ f . By definition of topological left invariant means, 〈M, fϕ〉 =

〈M, ϕ̂ ∗ f 〉 = 〈M, f 〉. Obviously 〈M, fϕ〉 = 〈M, fψ〉 whenever f ∈ L∞(K) and ϕ, ψ ∈ P1(K).
(i) ⇒ (ii) If f ∈ L∞(K), we denote byM f (L∞(K)) the set of all means M on L∞(K) such that

〈M, fϕ〉 = 〈M, fψ〉 whenever ϕ, ψ ∈ P1(K). Let F denote the collection of all finite subsets F of
L∞(K), and for every F ∈ F , let

MF = {m ∈ M(L∞(K)); 〈M, fϕ〉 = 〈M, fψ〉 for all f ∈ F and ϕ, ψ ∈ P1(K)}.

We show thatMF , ∅ for each F ∈ F . We achieve this by induction on the number of elements
in F. When n = 1, this is clear. Let F = { f1, ..., fn+1} be a finite subset of L∞(K). Let M1 ∈⋂n

i=1M fi(L
∞(K)). By hypothesis, there exists M2 ∈ MM1 fn+1(L

∞(K)). Let M = M2M1. For
1 ≤ i ≤ n and ϕ, ψ ∈ P1(K), we have

〈M2M1, fiϕ〉 = 〈M2,M1 fiϕ〉 = 〈M2,M1 fiψ〉 = 〈M2M1, fiψ〉.

On the other hand,

〈M2M1, fn+1ϕ〉 = 〈M2,M1 fn+1ϕ〉 = 〈M2,M1 fn+1ψ〉 = 〈M2M1, fn+1ψ〉.

This shows thatMF , ∅. Choose N ∈
⋂
{MF; F ∈ F }. As P1(K) is weak∗-dense inM(L∞(K)),

there exists a net {ϕα} in P1(K) such that ϕα → N in the weak∗-topology. If f ∈ L∞(K) and
ϕ ∈ P1(K), we have

〈NN, fϕ〉 = 〈N,N fϕ〉 = lim
α
〈ϕα,N fϕ〉 = lim

α
〈N, fϕ ∗ ϕα〉

= lim
α
〈N, fϕα〉 = lim

α
〈ϕα,N f 〉 = 〈NN, f 〉.

Obviously 〈NN, f 〉 ≥ 0 whenever f ∈ L∞(K)+, also

〈NN, 1〉 = 〈N,N1〉 = 〈N, 1〉 = 1.

Therefore we have NN ∈ T LIM(L∞(K). By [17, Remark 1.4], there exists a net {ϕα} in P1(K) such
that, for every compact subset C of K, limα ‖δx ∗ ϕα − ϕα‖1 = 0 uniformly for every x ∈ C. Let C
be a compact subset of K and ε > 0 be given. Let ϕ ∈ P1(K) ⊆ M(K) with {x ∈ K;ϕ(x) , 0} ⊆ C.
There exists α0 such that for α � α0, ‖δx ∗ ϕα − ϕα‖1 < ε whenever x ∈ C. Since x 7→ δx ∗ ϕα is
continuous from K to L1(K), by [13] we have∣∣∣∣〈 f , ϕ ∗ ϕα − ϕα〉∣∣∣∣ =

∣∣∣∣ ∫ 〈 f , δx ∗ ϕα − ϕα〉dϕ(x)
∣∣∣∣

≤ ‖ f ‖ ‖δx ∗ ϕα − ϕα‖1 < ε‖ f ‖,

whenever f ∈ L∞(K) and α � α0. This shows that for every compact subset C of K, limα ‖ϕ ∗ ϕα −
ϕα‖1 = 0 uniformly for every ϕ ∈ P1(K) with ϕ(Cc) = 0. Now, let S be a weakly compact subset
of P1(K) and ε > 0 be given. By [4, Theorem 4.21.2], there exists a compact subset C in K such
that

∫
K\C

ϕ(x)dλ(x) < ε
4 for all ϕ ∈ S. There exists α0 ∈ I such that, for every α ∈ I with α � α0



Ghaffari, Sahabi/ Wavelets and Linear Algebra 4(1) (2017) 1 - 9 5

and every ϕ ∈ P1(K) with ϕ(Cc) = 0, ‖ϕ ∗ ϕα − ϕα‖1 < ε
4 . Hence for all α ∈ I with α � α0 and

ϕ ∈ S,

‖ϕ ∗ ϕα − ϕα‖1 = ‖ϕχC ∗ ϕα + ϕχK\C ∗ ϕα − ‖ϕχC‖1ϕα − ‖ϕχK\C‖1ϕα‖1

≤ ‖ϕχC ∗ ϕα − ‖ϕχC‖1ϕα‖1 + ‖ϕχK\C ∗ ϕα − ‖ϕχK\C‖1ϕα‖1

≤ ‖ϕχC‖1

∥∥∥∥ϕχC ∗ ϕα
‖ϕχC‖1

− ϕα

∥∥∥∥
1

+
ε

2
< ε.

By [14, Theorem 4.1], (ii) characterizes amenability of K. This completes our proof.

Corollary 2.2. A locally compact hypergroup K is amenable if and only if the following condition
holds for every f ∈ L∞(K):

inf
{

sup{|〈 f , ϕ ∗ µ − ψ ∗ µ〉|; ϕ, ψ ∈ P1(K)}, µ ∈ M1(K)
}

= 0.

Proof. Assume K to be amenable. Let M ∈ T LIM(L∞(K)). It is known that, there exists a net
{ϕα} in P1(K) such that ϕα → M in the weak∗-topology. If f ∈ L∞(K) and ϕ, ψ ∈ P1(K), we have

lim
α
〈 f , ϕ ∗ ϕα − ψ ∗ ϕα〉 = lim

α
〈ϕα, fϕ − fψ〉

= 〈M, fϕ − fψ〉 = 0.

We conclude that

inf
{

sup{|〈 f , ϕ ∗ µ − ψ ∗ µ〉|; ϕ, ψ ∈ P1(K)}, µ ∈ M1(K)
}

= 0.

To prove the converse, we assume that the condition holds. Let f ∈ L∞(K) and ε > 0 be given. By
hypothesis, there exists µε ∈ M1(K) such that |〈 f , ϕ ∗ µε − ψ ∗ µε〉| < ε

2 whenever ϕ, ψ ∈ P1(K).
Consider a fixed element ϕ0 ∈ P1(K). Since L1(K) is an ideal in M(K), we have ϕ0 ∗ µε ∈ P1(K).
AsM(L∞(K)) is weak∗-compact, without loss of generality we can assume that the net {ϕ0 ∗ µε}
converging to a mean M f in the weak∗-topology of L∞(K). Given ε > 0 and ϕ, ψ ∈ P1(K), there
exists ε0 ≤ ε such that |〈M f − φ0 ∗ µε0 , fϕ − fψ〉| < ε

2 . Therefore we have∣∣∣∣〈M f , fϕ − fψ〉
∣∣∣∣ ≤ ∣∣∣∣〈M f − φ0 ∗ µε0 , fϕ − fψ〉

∣∣∣∣ +
∣∣∣∣〈φ0 ∗ µε0 , fϕ − fψ〉

∣∣∣∣
≤

ε

2
+

∣∣∣∣〈 f , ϕ ∗ φ0 ∗ µε0 − ψ ∗ φ0 ∗ µε0〉

∣∣∣∣ < ε.
As ε > 0 is arbitrary, we conclude that 〈M f , fϕ〉 = 〈M f , fψ〉 whenever ϕ, ψ ∈ P1(K). By Theorem
2.1, K is amenable.

For each member f of L∞(K), define λ f : L1(K) → L∞(K) by λ f (ϕ) = fϕ. Then L∞(K) can
be embedded into B(L1(K), L∞(K)) by a linear map Λ so that Λ( f ) = λ f . Since B(L1(K), L∞(K))
carries naturally the strong and the weak operator topology, Λ allows us to consider their in-
duced topologies on L∞(K), which we denote by τc and τw, respectively. By [14, Lemma 3.1],
T LIM(L∞(K)) ⊆ LIM(L∞(K)). Granirer in [5] has shown that for a non-discrete abelian locally
compact group G, there is an M ∈ LIM(L∞(G)) \ T LIM(L∞(G)). In the following Proposition,
we compare the sets of means admitting the different types of invariance properties and consider
relations existing between these sets.
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Proposition 2.3. Let K be an amenable hypergroup. The following properties hold:

(i) If M ∈ P1(K) ∩ LIM(L∞(K)), then also M ∈ T LIM(L∞(K)).
(ii) If M ∈ LIM(L∞(K)) is weak∗-continuous, then M ∈ T LIM(L∞(K)).

(iii) If M ∈ LIM(L∞(K)) is τc-continuous, then M ∈ T LIM(L∞(K)).

Proof. Suppose that f ∈ L∞(K)) and ϕ ∈ P1(K). By density we may suppose that ϕ ∈ P1(K) ⊆
M(K) has compact support. By hypothesis M ∈ P1(K), and so x 7→ 〈δx ∗ M, f 〉 is continuous. By
[13, Theorem 3.27], the integral

∫
〈δx ∗ M, f 〉ϕ(x)dλ(x) exists in the sense [13, Definition 3.26].

By hypothesis M ∈ LIM(L∞(K)), and so

〈M, fϕ〉 =

∫
〈δx ∗ M, f 〉ϕ(x)dλ(x) = 〈M, f 〉.

We conclude that M ∈ T LIM(L∞(K)).
(ii) We can show that M ∈ Zt(L1(K)∗∗) (recall that the topological center of L1(K)∗∗ consists of

all the functionals F ∈ L1(K)∗∗ such that left multiplication by F is weak∗-weak∗ continuous on
L1(K)∗∗. The topological center of L1(K)∗∗ is denoted by Zt(L1(K)∗∗)). Indeed, if {Fα} is a net in
L1(K)∗∗ and Fα → F in the weak∗-weak∗ topology, then

〈MFα, f 〉 = 〈M, Fα f 〉 → 〈M, F f 〉

whenever f ∈ L∞(K). Hence MFα → MF in the weak∗-topology. Therefore M ∈ Zt(L1(K)∗∗) =

L1(K), see [8]. By hypothesis, M ∈ P1(K) ∩ LIM(L∞(K)) and so M ∈ T LIM(L∞(K)).
(iii) Let f ∈ L∞(K) and ϕ ∈ P1(K). We claim that

fϕ ∈
{ n∑

i=1

αi xi f ; xi ∈ K, αi ≥ 0, n ∈ N,
n∑

i=1

αi = 1
}
,

where closure is taken in τc-topology. Indeed, let ε > 0 be given. Choose δ > 0 such that
δ(2‖ f ‖ + 1) = ε. There exists a compact subset C in K such that

∫
K\C

ϕ̂(x)dλ(x) < δ. Let y ∈ K.
As the mapping x 7→ x f is τc-continuous, there exists a symmetric open neighborhood Vy of y in
K such that ‖x f − y f ‖ < δ whenever x ∈ Vy. We may determine a subset {x1, ..., xn} in K such that
C ⊆

⋃n
i=1 Vxi and ‖x f − xi f ‖ < δ whenever x ∈ Vxi

⋂
K; i = 1, ..., n. Now, we consider x0 = e,

C0 = K \ C, C1 = Vx1 ∩ C, Ci = Vxi ∩ (C \
⋃i−1

k=1 Vxk) and αi =
∫

Ci
ϕ̂(x)dλ(x) for i = 0, 1, ..., n.

Obviously,
∑n

i=0 αi = 1. For ψ ∈ L1(K),∣∣∣∣〈 fϕ − n∑
i=0

αi xi f , ψ〉
∣∣∣∣ =

∣∣∣∣ ∫
K

f (y̆ ∗ x)ϕ̂(y) −
n∑

i=0

αi xi f (x)ψ(x)dλ(x)
∣∣∣∣

≤

n∑
i=0

∫
Ci

(
f (y̆ ∗ x) − xi f (x)

)
ϕ̂(y)ψ(x)dλ(y)dλ(x)

≤
ε

2
‖ψ‖1 +

n∑
i=1

∫
Ci

‖y f − xi f ‖ ‖ψ‖1ϕ̂(y)dλ(y) < ε‖ψ‖1.

The statement follows from τc-continuity of M.
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Theorem 2.4. If K is a locally compact hypergroup, the following properties are equivalent:

(i) K is amenable.
(ii) For every ψ ∈ L1(K);

Dψ = inf
{
‖ψ ∗ ϕ‖1; ϕ ∈ P1(K)

}
≤

∣∣∣∣ ∫ ψ(x)dλ(x)
∣∣∣∣.

Proof. Suppose that K is amenable. We assume first that
∫
ψ(x)dλ(x) = 0. Assume that inf{‖ψ ∗

ϕ‖1; ϕ ∈ P1(K)} > 0. Let n ∈ N. Separating {φ ∈ L1(K); ‖φ‖1 < n
n+1 Dψ and {ψ ∗ ϕ; ϕ ∈ P1(K)},

we can find f ∈ L∞(K) and α ∈ R such that

Re〈 f , φ〉 ≤ α < Re〈 f , ψ ∗ ϕ〉 (1)

for all ϕ ∈ P1(K) and φ ∈ L1(K) with ‖φ‖1 < n
n+1 Dψ. Without loss of generality, we can assume

that ‖ f ‖ = 1. Thus sup{Re〈 f , φ〉; ‖φ‖1 < n
n+1 Dψ} = n

n+1 Dψ, and so we can take α = n
n+1 Dψ in (1).

For every n ∈ N, let

An =
{
g ∈ L∞(K); ‖g‖ = 1,Re〈g, φ〉 ≥

n
n + 1

Dψ for all φ ∈ {ψ ∗ ϕ; ϕ ∈ P1(K)}
}
.

The sets An are obviously relatively weak∗-compact. Since each An is nonempty and since An

is relatively weak∗-compact, it follows that the weak∗-closures of the sets An have on point g in
common. It follows that Re〈g, ψ ∗ ϕ〉 ≥ Dψ for all ϕ ∈ P1(K). Now let M be a topologically left
invariant mean on L∞(K). Let {ϕα} be a net in P1(K) such that ϕα → M in the weak∗-topology. We
get that

|〈M, gψ〉| = lim
α
|〈ϕα, gψ〉| = lim

α
|〈g, ψ ∗ ϕα〉|

≥ lim
α

Re〈g, ψ ∗ ϕα〉 ≥ Dψ.

Write ψ = (ψ+
1 − ψ

−
1 ) + i(ψ+

2 − ψ
−
2 ) where ψ1, ψ2 are respectively the real and imaginary parts of ψ,

and for i = 1, 2, ψ+
i and ψ−i are respectively the positive and negative parts of ψi. It is easy to see

that
〈M, gψ〉 = 〈M, gψ+

1 〉 − 〈M, gψ
−
1 〉 + i〈M, gψ+

2 〉 − i〈M, gψ−2 〉 =

∫
ψ(x)dλ(x) = 0.

Thus Dψ = 0 giving a contradiction.
Now suppose ψ ∈ L1(K) is general, and let ϕ0 ∈ P1(K), c =

∫
ψ(x)dλ(x). Applying the

preceding result to ψ − cϕ0, we have inf{‖ψ ∗ ϕ − cϕ0 ∗ ϕ‖1; ϕ ∈ P1(K)} = 0. For every ϕ ∈ P1(K),

‖ψ ∗ ϕ − cϕ0 ∗ ϕ‖1 ≥ ‖ψ ∗ ϕ‖1 − |c|‖ϕ0 ∗ ϕ‖1

= ‖ψ ∗ ϕ‖1 − |c|.

It follows that inf{‖ψ ∗ ϕ‖1; ϕ ∈ P1(K)} ≤ |c|.
Conversely, assume that the condition holds for all ψ ∈ L1(K). We claim that for every finite

subset F of P1(K) and ε > 0, there exists ϕF,ε ∈ P1(K) such that ‖ϕF,ε ∗ϕ−ϕF,ε‖1 < ε for all ϕ ∈ F.
Let φ0 ∈ P1(K) be fixed. Let F = {ϕ1, ..., ϕn} and ε > 0. Obviously

∫
ϕ1 ∗ φ0 − φ0(x)dλ(x) = 0. By
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hypothesis, there exists φ1 ∈ P1(K) such that ‖(ϕ1 ∗ φ0 − φ0) ∗ φ1‖1 < ε. Since
∫
ϕ2 ∗ φ0 ∗ φ1 − φ0 ∗

φ1(x)dλ(x) = 0, we can find φ2 ∈ P1(K) such that

‖(ϕ2 ∗ φ0 ∗ φ1 − φ0 ∗ φ1) ∗ φ2‖1 < ε.

Proceeding in this way we can find φ ∈ P1(K) such that ‖ϕi ∗ φ − φ‖1 < ε whenever i ∈ {1, ..., n}.
This shows that K is amenable.

Let E be a linear space. A representation π of P1(K) is a homomorphism ϕ 7→ πϕ into the
algebra of operators on E. That is, for each ϕ ∈ P1(K), πϕ is an operator on E, and for ϕ, ψ ∈ P1(K),
we have πϕ∗ψ = πϕπψ. π is called weakly continuous provided, for each x ∈ E and x∗ ∈ E∗, the
function ϕ 7→ 〈x∗, πϕ(x)〉 is continuous on P1(K). In the next Theorem FP denotes the set of fixed
points of {πϕ; ϕ ∈ P1(K)}, i.e.,

FP =
{
x ∈ E; πϕ(x) = x for all ϕ ∈ P1(K)

}
.

Theorem 2.5. For a locally compact hypergroup K, the following are equivalent:

(i) K is amenable.
(ii) Whenever π is a weakly continuous representation of P1(K) by weakly continuous operators

on E such that {πϕ(x); ϕ ∈ P1(K)} is relatively weakly compact for every x ∈ E, then{
πϕ(x); ϕ ∈ P1(K)

}
∩ FP , ∅.

Proof. Assume that L∞(K) has a topological left invariant mean. By [14, Theorem 4.1], there is a
net ϕα ∈ P1(K) such that ϕ ∗ ϕα − ϕα → 0 in the weak topology. Consider the net πϕα(x) where
x ∈ E is arbitrary but fixed. By compactness of {πϕ(x);ϕ ∈ P1(K)}, without loss of generality, we
can assume that πϕα(x) → x0 in the weak topology. We claim that x0 is the required fixed point.
For it ϕ ∈ P1(K), we have

πϕ(x0) = πϕ
(

lim
α
πϕα(x)

)
= lim

α
πϕ

(
πϕα(x)

)
= lim

α
πϕ

(
πϕα(x)

)
= lim

α
πϕ∗ϕα(x) = lim

α
πϕα(x) = x0.

Conversely, let E = LUC(K)∗ with weak∗-topology. For each ϕ ∈ P1(K), define a map πϕ :
LUC(K)∗ → LUC(K)∗ by πϕ(F) = ϕF. Recall that weak∗-topology of LUC(K)∗ is a locally
convex vector topology on LUC(K)∗ and that every linear functional on LUC(K)∗ that is weak∗-
continuous has the form F 7→ 〈F, f 〉 for some f ∈ LUC(K). Therefore (LUC(K)∗)∗ = LUC(K).
We claim that πϕ is weak-weak continuous. For if Fα → F in the weak topology, then for any
f ∈ LUC(K), 〈Fα, f 〉 → 〈F, f 〉. Obviously, 〈ϕFα, f 〉 → 〈ϕF, f 〉. Hence πϕ(Fα) → πϕ(F) weakly
in LUC(K)∗. It is easy to see that πϕ∗ψ = πϕπψ for all ϕ, ψ ∈ P1(K). By the Banach-Alaoglu
theorem {πϕ(F);ϕ ∈ P1(K)} is relatively weakly compact in LUC(K)∗ for every F ∈ LUC(K)∗. It
follows from the compactness of the product space

∏
{πϕ(F); F ∈ LUC(K)∗} that {πϕ; ϕ ∈ P1(K)}

is a compact subset of L(LUC(K)∗) in the weak operator topology. By hypothesis,

C(F) =
{
T ∈ {πϕ; ϕ ∈ P1(K)}; T (F) ∈ F , ∅

}
;
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andC(F) is a compact subset of {πϕ;ϕ ∈ P1(K)}. We showing that the family {C(F); F ∈ LUC(K)∗}
has the finite intersection property. We prove that if, for F1, ..., Fn+1 ∈ LUC(K)∗,

⋂
{C(Fi); 1 ≤ i ≤

n} , ∅, then also
⋂
{C(Fi); 1 ≤ i ≤ n+1} , ∅. If T1 ∈

⋂
{C(Fi); 1 ≤ i ≤ n} and if T2 ∈ C(T1(Fn+1)),

then for every i = 1, ..., n and every T ∈ {πϕ;ϕ ∈ P1(K)},

T (T2T1(Fi)) = TT2(T1(Fi)) = T1(Fi) = T2T1(Fi).

Moreover T (T2T1(Fn+1)) = T2T1(Fn+1). Hence T2T1 ∈
⋂
{C(Fi); 1 ≤ i ≤ n + 1}. Since

{πϕ; ϕ ∈ P1(K)} is compact, it follows that
⋂
{C(F); F ∈ LUC(K)∗} , ∅. If P is any member

of this intersection, then there is an operator P ∈ L(LUC(K)∗) and a net {Tα} in {πϕ; ϕ ∈ P1(K)}
such that Tα(F) → P(F) for all F ∈ LUC(K)∗ and πϕP = P for all ϕ ∈ P1(K). If M is any mean
on LUC(K), it is easy to see that MP ∈ T LIM(LUC(K)∗).
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