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Abstract
In this paper we study triangularization of collections of matri-
ces whose entries come from a finite-dimensional division ring.
First, we give a generalization of Guralnick’s theorem to the
case of finite-dimensional division rings and then we show that
in this case the reduced trace function is a suitable alternative for
trace function by presenting two triangularization results. The
first one is a generalization of a result due to Kaplansky and in
the second one a triangularizability condition which is depen-
dent on a single element is presented.

c⃝ (2016) Wavelets and Linear Algebra

1. Introduction

LetV be a finite dimensional right vector space over a division ring D and C be a collection of
linear transformations onV. A subspaceM ofV is said to be invariant under C if for all T ∈ C,
TM ⊆ M. The collection C is said to be reducible if C = {0} or there exists a subspace of V
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which is invariant under C and is different from {0} andV. We say that C is irreducible if it is not
reducible. The collection C is called simultaneously triangularizable or simply triangularizable,
if there exists a maximal chain of subspaces ofV each of which is invariant under C. It is easy to
see that if C is triangularizable then there exists a basis for V such that the matrix representation
of each operator in C with respect to this basis is an upper triangular matrix.
If C is a collection of square matrices over D, triangularizability is defined similarly, viewing C
as a set of operators acting on Dn which is considered as a right vector space over D. Thus, C
is triangularizable if and only if there exists an invertible n × n matrix S with entries in D such
that for all T ∈ C, S TS −1 is an upper triangular matrix. The division ring D is called finite-
dimensional if the dimension of D as a vector space over its center F, is finite. A subfield L of
D is called a maximal subfield of D, if there is no other subfield of D containing L. A field is
called a perfect field if its finite extensions are simple extensions. A semigroup is a collection of
matrices(operators) which is closed under multiplication.
Triangularizability of collections of matrices over fields has been of interest to several authors. In
most cases, they consider certain collections such as semigroups, rings and algebras and look for
conditions which guarantee the triangularizability of the collection. A survey of such results can
be found in [10]. In case of matrices over a general division ring, the problem is harder and results
are very restricted. Walter Sizer in his thesis [11] gathered a useful collection of triangularizability
results over a general division ring but he considered similarities over extensions of the ground
division ring. For more recent results one can refer to [6, 7, 12, 13]. For collections of matrices
over quaternions stronger results are available [1, 7].
In this paper, we show that when D is finite-dimensional over its center F, some well-known results
in case of fields can be extended to the case of division rings. In the next section, imposing a slight
restriction on F, we show that for a semigroup S of matrices over D, if AB − BA is nilpotent
for all A, B ∈ S, then S is triangularizable; generalizing a result due to Guralnick [3]. In the
third section, using the reduced trace function, we generalize a theorem of Kaplansky [4] saying
that a semigroup of matrices with constant trace is triangularizable over the algebraic closure of
the ground field, provided that the characteristics of the field is zero or greater than half the size
of matrices. At the end, we consider the fact that if a triangularizable semigroup S contains a
nilpotent matrix A, then AX is also nilpotent and has reduced trace equal to zero for all X ∈ S. We
show that under some restrictions the converse holds. Now, we fix some notations.
For a division ring D with center F and a natural number n, the algebra of all square matrices
of order n with entries in D will be denoted by Mn(D). We denote the characteristics of D by
Char(D). The dimension of D over F is denoted by dimF D. When D is finite-dimensional, it is
well-known that dimF D is the square of a natural number. We define the degree of D to be the
square root of dimF D and denote it by deg(D). For a collection C of matrices, the term AlgF(C)
will denote the F-algebra generated by C. It is easy to see that if C is a semigroup, AlgF(C) is
equal to the linear span of C over F. The trace of a matrix A in Mn(D) is the summation of the
diagonal entries of A and is denoted by tr(A). The term In represents the identity matrix of size n
and the algebraic closure of a field L is denoted by L̄.
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2. Some generalizations to finite-dimensional division rings

Finite-dimensional division rings are very important in the theory of division rings since they
have many applications and are easier to work with. One of the important properties of this class
of division rings is the existence of a representation for them in the algebra of matrices over a field.
Since we apply this representation several times throughout this paper, we give a brief review of it
here. For a detailed study one can refer to [2].
Let D be a finite-dimensional division ring with center F and let L be any maximal subfield of D.
Then, L contains F and dimF L = deg(D). That is,

dimF D = (dimF L)2.

If deg(D) = m, then we have an F-algebra isomorphism

φ : Mn(D) ⊗F L −→ Mnm(L). (2.1)

The isomorphism φ sends λIn ⊗ 1 to λInm for all λ ∈ F. If we identify the subset Mn(D) ⊗ 1 of the
left hand side by Mn(D), then 2.1 shows that Mn(D) can be embedded in Mnm(L). In particular,
when n = 1, 2.1 takes the form

φ : D ⊗F L −→ Mm(L). (2.2)

The main result of this section is the generalization of a theorem due to Guralnick which asserts
that a semigroup S of triangularizable matrices over a field is triangularizable, if and only if AB −
BA is nilpotent for all A, B ∈ S [3]. Another generalization can be found in [12]. We assume
that either F is a perfect field or Char(F) = p > nm/2. This is a slight restriction since when
Char(F) = 0, F is a perfect field. To prove the main result of this section, we first consider
algebras of matrices.

Lemma 2.1. Let n,m ∈ N and let D be a finite-dimensional division ring with center F and
deg(D) = m such that either F is perfect or Char(F) = p > nm/2. Let A be an F-algebra of
triangularizable matrices in Mn(D) such that AB − BA is nilpotent for all A, B ∈ A. Then, A is
triangularizable.

Proof. Clearly, all properties ofA stated in the statement of the theorem are inherited by quotients.
Thus, using the Triangularization Lemma [11], we need only to prove thatA is reducible, if n > 1.
By contradiction, if A is irreducible it contains the identity matrix and it follows from Density
Theorem [5, P. 192] that A ≃ Ms(E) for some s ∈ N and some division F-algebra E. Now, the
condition that AB − BA is nilpotent for all A, B ∈ A immediately implies that s = 1 and E is a
field. Thus, A is a finite field extension of F = FIn. We show that A is a simple extension of
F. Let K be the separable closure of F in A . If A = K, we are done. If not, F is not perfect,
Char(F) = p > nm/2 and A is purely inseparable over K. So, p divides dimKA which implies
that it divides dimFA as well. Now, A is contained in a maximal subfield of Mn(D) and hence
dimFA ≤ nm < 2p [2, P. 45, Theorem 3]. So, dimFA = p andA is a simple extension of F. Thus,
A = F[A] for some A ∈ A. Since A is triangularizable,A is reducible; a contradiction.

Now, we can prove the theorem for semigroups of matrices.
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Theorem 2.2. Let n,m ∈ N and let D be a finite-dimensional division ring with center F and
deg(D) = m such that either F is perfect or Char(F) = p > nm/2. Let S be a semigroup of
triangularizable matrices in Mn(D) such that AB − BA is nilpotent for all A, B ∈ S. Then, S is
triangularizable.

Proof. Let L, φ, and m be as in 2.1. Thus, AB − BA is nilpotent for any pair of matrices A and
B in φ(S). By Guralnick’s theorem [3], φ(S) is triangularizable over L̄. So, AlgF(φ(S)) is also
triangularizable over L̄. Again AB−BA is nilpotent for any pair of matrices A and B in AlgF(φ(S))
which means that AB − BA is nilpotent for any pair of matrices A and B in AlgF(S) in Mn(D).
Now, by Lemma 2.1, AlgF(S) is triangularizable. This completes the proof.

Corollary 2.3. Let n,m ∈ N and let D be a finite-dimensional division ring with center F and
deg(D) = m such that either F is perfect or Char(F) = p > nm/2. Then, any commutative
semigroup of triangularizable matrices in Mn(D) is triangularizable.

3. Reduced trace; a suitable alternative

The trace function plays an important role in the theory of triangularization over fields. In case
of division rings, trace is not very useful since it is not preserved under similarities. In the theory of
finite-dimensional division rings the reduced trace function is well-known as an alternative for the
trace function. In this section we use the reduced trace as a tool in the theory of triangularization
over division rings. First, we give a brief review of reduced trace and its properties adopted from
[2].
Let L, φ, and m be as in 2.1. For A ∈ Mn(D), the reduced trace of A is defined as

RTrMn(D)/F(A) = tr(φ(A ⊗ 1)). (3.1)

Surprisingly, for all A ∈ Mn(D), RTrMn(D)/F(A) belongs to F and does not depend on the chosen
maximal subfield L and the isomorphism φ. It is immediate from the definition that the reduced
trace has the following properties.
(i) RTrMn(D)/F is F-linear.
(ii) RTrMn(D)/F(aIn) = nma if a ∈ F.
(iii) RTrMn(D)/F(AB) = RTrMn(D)/F(BA) for all A, B ∈ Mn(D).
It is worth mentioning that, in case n = 1, RTrD/F : D −→ F is of special importance. Moreover,
when D = F, the reduced trace is just the trace function.

The following theorem, reveals the relation between the reduced trace and the usual trace func-
tion. Note that, unlike the trace function, reduced trace is preserved under similarity.

Theorem A. Let D be a finite-dimensional division ring with center F and n ∈ N. Then,

RTrMn(D)/F(A) = RTrD/F(tr(A))

for all A ∈ Mn(D).
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Let F be a field with Char(F) = 0 or Char(F) > n/2 and letS be a semigroup in Mn(F). A well-
known theorem due to Kaplansky states that if trace is constant on S, then S is triangularizable
over F̄ [4]. Here, we generalize this result.

Theorem 3.1. Let n, m ∈ N, and let D be a finite-dimensional division ring with center F and
deg(D) = m. Assume that Char(D) = 0 or Char(D) > nm/2. Let S be a semigroup of triangulariz-
able matrices in Mn(D) with constant reduced trace. Then, S is triangularizable.

Proof. Let L, φ, and m be defined as in 2.1. According to the assumption, the semigroup φ(S) in
Mnm(L) has constant trace. Thus, it is triangularizable over L̄ in view of Kaplansky’s theorem. So,
AB − BA is nilpotent for all A and B in φ(S); which in turn implies that AB − BA is nilpotent for
all A and B in S. Now the proof is complete using Theorem 2.2.

Using Theorem A, we have the following corollary of the above theorem.

Corollary 3.2. Let n, m ∈ N, and let D be a finite-dimensional division ring with deg(D) = m.
Assume that Char(D) = 0 or Char(D) > nm/2. Let S be a semigroup of triangularizable matrices
in Mn(D) with constant trace. Then, S is triangularizable.

Let F be a field andA be an F-algebra of triangularizable matrices in Mn(F). It is well-known
thatA is triangularizable if and only if for A, B ∈ A, AB is nilpotent, whenever A or B is nilpotent
[10]. When A is triangularizable and A is a fixed nilpotent matrix in A, again AB is nilpotent for
all B ∈ A. The converse is not true unless An−1 , 0. In fact, we have the following generalization
to semigroups of matrices over division rings.

Theorem 3.3. Let n, m ∈ N, and let D be a finite-dimensional division ring with center F where
Char(D) = 0 or Char(D) > nm/2. Assume that S is a semigroup of triangularizable matrices in
Mn(D) containing a nilpotent matrix A such that An−1 , 0. Then, S is triangularizable if and only
if RTrMn(D)/F(AX) = 0 for all X ∈ S.

Proof. Again let L, φ, and m be as in 2.1. If S is triangularizable, the result follows from Theorem
A. For the converse, note that similar to the case of fields A is similar to an elementary Jordan
block [7] and it is easy to see that it has a unique triangularizing chain obtained by the standard
basis of Dn. So, it suffices to prove that for any B ∈ S, the pair {A, B} is triangularizable. Let T
be the semigroup generated by A and B. It is straight to see that the trace function is permutable
on φ(T ). By Radjavi’s trace theorem [9], φ(T ) is triangularizable over L̄ and by Theorem 2.2 T
is triangularizable.

Remark 3.4. The original proof of Theorem 3.3 is rather longer. The presented proof is adopted
from a proof provided by the referee in case of fields(Corollary 3.5).

Corollary 3.5. Let n ∈ N, and let F be a field with Char(F) = 0 or Char(F) > n/2. Assume that
S is a semigroup of triangularizable matrices in Mn(F) containing a nilpotent matrix A such that
An−1 , 0. Then, S is triangularizable if and only if tr(AX) = 0 for all X ∈ S.
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