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1. Introduction

When we speak about integrals and derivatives of arbitrary order, we deal with fractional cal-
culus. The first time Leibniz discuss the derivative of order @ = % in a letter to L’ Hopital in 1695
[8]. In recent years, the fractional calculus has been more interesting. They apply in many fields
of science and engineering such as electrical networks, electromagnetic theory, and probability.
There are some numerical method to solve integral equations of fractional order such as Least
Squares Method [9], homotopy analysis [1] Sumudu decomposition method [4] and so on. The
wavelet method is applicable for solving fractional equations; Haar wavelet [11], CAS wavelet
[12], Chebyshev wavelets [7] and B-spline wavelet [6].

In this paper, we use B-spline scaling function of order 4 and 5. Explicit formula of B-spline
and the regularity, symmetric and compact support of B-splines persuade us to use them for frac-
tional equations.

This paper is organized as follows: In section 2 we describe some preliminaries on spline func-
tions and fractional calculus. Fractional integral of quartic and pantic B-spline scaling function
and the operational matrix in the fractional case are given in section 3. In section 4, we presented
a technic for solving partial differential equations of fractional order by splines. We present some
examples in section 5 to show the validity of the method.

2. Preliminaries

2.1. Fractional Integration and Derivatives

The primary objects of classical calculus are derivative and integral of functions. These two
operations are inverse to each other in some sense. The Riemann-Liouville approach is based on
the Cauchy formula for the n-fold integration:

X In—1 11 1 X
nfw= [ [ [ swaancdi = = [Cmorigoa @

Therefore it is a good basis for generalization. We generalize the Cauchy formula (2.1) in a way
that the integer n is substituted by a positive real number « and the Gamma function is employed
rather than the factorial [8]:

1 X
ﬁfu):Fagjqu—wf*ﬂﬂm,a>O, (2.2)
P f(x) = f(x).

where I'(.) is the Gamma function, x € R, and a > 0. The fractional derivatives are described by
using fractional integrals [5]. The Caputo fractional derivatives of order « is identified as:

d
“D*f(x) = I (")
X

X (n)
__ ! ‘f 7O - 1<a<nmneN, (2.3)
'n-a) J, (x

_ t)a/+1 -n

One of the useful and applicable relation between fractional integrals and derivatives in partial
case is:
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Lemma 2.1. [10]Ifl-1<a <[ andn—-1<pB <nwherel,neN, then
801 = k
1¢ o —u(x. 1) = u(x, 1) - ;0— u(0*, r)—

and
n—=1

Iﬁﬁu(x £) = u(x,t) - Z a——e o+)ﬁ.
Lo ’ ok k!

2.2. B-spline functions

A spline is a function that is piecewise defined by polynomial functions, and possesses a high
degree of smoothness at the knots, i.e. the places where the polynomial pieces connect. In this
paper, In this paper we will use quartic and pantic splines to solve fractional partial differential
equations and compare their results.

Definition 2.2. The cardinal B-splines N,,(x) of order m are defined inductively by the following
convolution product:

Ni(x) = x10.11(%), 2.4)
Npy(x) = Ni(x) * Npy_1(x), (m > 2). (2.5)

B-splines of order m satisfy in two-scale relationship:
_ C l-m| M _
N(x) = kZ_; 2 ( h )Nm(Zx k). (2.6)

Hence, these compactly supported functions generate an MRA with the dilation equations [2].

The B-spline of order m occupies m segments. Since for any j, the discretization step is 21,, thus
for j > 0, there are 2/ segments in [0, 1]. Therefore, to have one or more inner scaling functions,
we should have:

2/ > m. 2.7

Now for simplicty we assume N, jx(.) = N,,(2/. = k), and x = 2/x. To take the scaling functions
into the interval [0, 1] we consider

©Om, /k(x) m /k(x)/\/[o lj(x) (28)
where the quartic and pantic B-spline scaling functions are as follows:

(x; — k), k<xj<k+1,
L] 3G k=D 3G k= )+ g, k1< x<k+2,
Naju() = ¢ 3(xj— k=20 —6(x;—k-2*+4, k+2<x;<k+3,
(k+4-x))°%, k+3<x;j<k+4,
0, 0.W.
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fork=-3,---,2/ —1,and

() - b, k<xj<k+l,
A0k~ B 4200 — K —30(x; — K2 4+ 20(x; — k) =5, k+1<x<k+2.
Ny L] 6= = 600~ 0 + 2100~ b2 = 300(x; ~ k) + 155, k+2< g <h+3,
5060 = 521 —a(x; — b* + 600x; — k) — 330(x; — k)2 + 780(x; — k) — 655, k+3 < x; <k +4,
(x; —k—5)*, k+4<x;<k+5,
0, 0.W.

fork=—-4,---,2/ —1.

2.3. fractional integration of B-spline

Now we present the fractional integration of B-spline scaling functions. For calculating the
fractional integration of quartic B-spline for k = 0, 1, ,2/ -4, by letting x; = 2/x we can rewrite
¢4,jx(x) by using unit step function as the following:

k+ k+2
@4 k(%) = (xj — k) u(x — —) 4(x; — (k+ 1))3u(x - —) +6(x; — (k + 20 u(x - i

)
2J
2.9
k+ k+4
— 4(xj - (k +3) ulx - T) (= (k+ ) ulx - ; ).
By taking Laplace transform of equation (2.9), we have:
237 & k2 k3 kg
Ly ji(x)} = —(e Y —4e” 7 +6e 2" —4e ¥ ‘te 5 ),
thus, the Laplace transform of /¢y, j,k(x) 1s:
~£{Ia‘;04,j,k(x)} = T )L{ } {§04,j,k(x)}
23] +1 k2 ¢ k+3 k+4
= (e W 4e VT 460 T —de v e 277,
sa+4
Consequently, by taking Laplace inverse on both side of above equation, we have:
23 . k " k+1
I"p4 1k (x) = m[(xj — k) u(x - E) —d(xj = (k + 1) u(x - > )
k+2 k+3
+6(x; — (k +2)"u(x - %) —4(xj - (k +3) P u(x - ; )
4
+ (= (k4 )t = ],
So by putting b = F(a - 4), fork =0,---,2/ — 4, j > 2 the fractional integration of quartic B-spline
is as follows:
0, Xj < k,
(x; — k)**3, k<x;<k+1,
(x; — k)™ = 4(x; — (k + 1)**3, k+1<x;<k+2,

For () = pd =R =40 = e D)™ 460 - (k+2)3, k+2<x;<k+3,
‘104,_/,k(-x) - (xj _ k)ar+3 _ 4(-xj _ (k + 1))a+3 + 6(.Xj _ (k + 2))<z+3

—A(x; — (k + 3))*3, k+3<x;<k+4

(xj — k)™ = 4(x; = (k + 1) + 6(x; — (k +2))**

—4(x; = (k +3)™ + (x; — (k + 4))*, k+4<x;;
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and the boundary fractional integration functions by taking A = W are as follows:
1 @ 1 a+l 1 a+2 _ 1 a+3
61"(1{+1)xj ~ ety T l"(a/l+3)xj e X \ 0<x; <1,
(3 — G’+ (1+ +3
I ‘104,1',—3(’5) =4 6F(a+1)x] 2F((y+2) j + ORI + T(a+4) [—x‘;
+(x; — 1), 1 <xj;
and ), 5
(l + a+
3F(a+1) i~ l"((12+3)x(j1 r(a+4)xj ,2 . 0<x;<1,
(l 0/+ + a+
4 ;2(x) = A e * j T Tary) X - * r(a+4)[3xa X —4(x; = 1) 3]’ I <x;<2,
Vo + + a+
3F((l+l)xj - r(a+3)xa r(a+4) [396(; —4(x; =1
+(xj — 2)3], 2 < xj;
and ., g
Poa a+ X
6F(a+l)x ;T 2F(a+2) j L, r(al+3 x;’ r(a+4)3x \ 0<x;<l,
03 (I+ a+.
Dy T 2F(a+2) | r(a+3)x(; + Farp 3x
+6(x; — 1)*3], 1<x;<2,
17 _ 1 @ 1 a+l a/+2 a+3
Fyj1(0) =AY Gon X + sra )+ r(ms) ;T F(a+4)[ 3x5
+6()Cj _ 1)a+3 ) 4(xj ) 2)a+31] . 1 . 2< X; < 3,
Q ﬂ(+ a+ a+.
e T ey T et el 3
+6(x; — 1)73 — 4(x; — 273 + (x; — 3)03], 3<xj;

and for k = 2/ — 3 we have:

0, xj < k,
@ ) _ (xj_k)a+3a kS)Cj<k+l,
I ‘P4,J,k(X) =b (-xj _ k)a+3 _ 4(xj _ (k + 1))a+3, k+1< xj < k+ 2’

() — K™ = 4(xj — (k+ D)7 +6(x; — (k+2)*3, k+2<x;<k+3,

and for k = 2/ — 2 is obtained:

0, Xj < k,
1“4 j1(x) = b{ (x; — k)**3, k<xj<k+1,
(x; — k)3 —4(x; - (k+1))°"3, k+1<x;<k+2,

and for k = 2/ — 1 we have:

0 x; <k
@ . — ) J ’
1764 jk(x) h{ (x;—k)™3, k<xj<k+]l,

The fractional integration of pantic B-spline scaling functions for j > 3 and taking y = r(i;ZS) and
A= 27 is obtained:
241"(1a+1) é+ 61"((t+2) x‘ ot 2F(w+3)x( . Ha;wx(j%
Ia¢5,j,—4(X) =4 r(iHj));{z ' xa+l xa+2 1L ja+3 0= s b
24T (a+1)7j 6F(a+2) 2F(a+'§) F((t+4) J
i X = (g = D, 1< xj;
and 11 @ 1 +1 1 +2 3 a+3
24r(c51+1)xé'+: 2F(a+2)x(; - 2F(w+3)x(; * e
T (HS)X{Y ' x(l’+1 xa+2 3 a+3 0= g < 1’
](190531,!_3()6) =2 24F(a+l)[ixa+if(082()x 1)0314;(]04-3) T(a+4) xj l<x <2
FE(HS) 1 +1 _ xa+2 xa+3 - ’
24F((1/+1) j 2F((1/+2) J 2F((1/+3) T‘(a/+4) J
r(g+5)[ xa+4 S(X )a+4 + (X )(y+4] 2< xj;
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and
11 1 a+l _ (HZ 3 a+3
24T+ XF + s X zr(a+3> j T )
+4
F(a+5)x(; L , s X 0<x;<1,
( + ( + +
24F(a+1)x 5t ir(wz) f 2r(f+3) ; Tard x;?
) F gy [0 — 100x; — 1)), 1<x <2,
s jo(x)=2a3 " +5) 0y 1 _jatl _ 1 a2 _3 a4 !
Wr@+DY; T Tey®; ~ ey TardXj
T @+5) [6xa+4 - 1O(x l)a+4 + S(X 2)(”4]’ 2< xj < 3,
X 4+ a+1 1 a+2 3 xq+3
24F(a+1) j 2F(zy+2) j 2F(ry+3) j T(a+4)7"j
F s [6x7 = 10(x; — D™ + 50x; = 2 = (x; = 3], 3 <
and 2 1 3
v+1 Y+ a+.
24F(a+1)x] + 6F(a+2)x( 2F(a+3)x( * T
a+d
F(a+5)xl B l 2 1 \ OSXj< 1,
X + + +
2TasT) xi+ 6l"(a+2)x(; 21"(a+3)x( T e X
P[4t + 10(x1 1o, o 1<x <2,
X + + a+
24r(a+1) j 61}a+2)xl; 2r(aza)xl; T
a+ a+ a+ )
s j-1(0) = 2 r“”s)[ M i?z(xj IR
A T 6F(ry+2)x] T e X T et
I‘((y+i)[ 4xa+4 + 10(X )a+4 IO(X_,' _ 2)<1+4
+5(x; — 3)“+4] 3<xj <4,
1 l 2 _ 1 _a+3
AT Y] 6F(a+2) X 2r(a+3)x(; T X f+
F e (400 + 100 - 1D - 10(x; - 27+
+5(x; - )“+4 (x; — 4)*4], 4 < xj;
and fork =0,---,2/ — 5 we have:
0, Xj < k,
(x; — k)™, k<x;<k+1,
(6 — k) = 5(x; — (k + 1)**4, k+1<x;<k+2,
(x; — k)(”: = 5(x; — (k+ 1))“;‘ +10(x; — (k + 2))M:, k+2<xj<k+3,
oG =T 50— (K 1) 4 10(x; — (k +2)
1 @S,J,k(x)_y —lO()Cj—(k+3))a+4, k+3 ij<k+4,
(xj — )7 = 5(x; = (k + 1)@ + 10(x; — (k + 2))**
—10Cx; = (k + 3)™ + 5(x; — (k + 4)+, k+4<x;<k+s,
(x; = k) = 5(x; — (k + 1))*™ + 10(x; — (k + 2))**-
10(x; — (k + 3))(”r4 +5(x; = (k+ 4))‘”4 —(xj—(k+ 5))‘”4, k+5<x;;
and for k = 2/ — 4 we have:
0, xj < k,
(x; = k)**4, k<x;<k+1,
P () = ] 7707 =50 = e Dy, k+1<x;<k+2,
G =V () = )2 = 5(xj — (k+ D)™™ + 10(x; — (k +2)***, k+2<x; <k+3,
(xj — )T = 5(x; — (k + 1) + 10(x; — (k + 2))**
—10(x; — (k + 3))**™, k+3<xj<k+4
and for k = 2/ — 3 we have:
O, Xj < k,
P NGRS K<xj<k+1,
ST =V () — k)™ = 5(x; — (k + 1)*+, k+1<xj<k+2,
() — )T = 5(x; — (k+ D)7+ 10(x; — (k+2)™, k+2<x; <k+3;

60
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and for k = 2/ — 2 we have:

0’ .x] < k,
s ju(x) = y{ (=)™, k<x;j<k+]1,
(xj—k)a+4—5(xj—(k+1))‘”4, k+1<x;<k+2;

and for k = 2/ — 1 we have:
Xj < k,

Pesum=y]
@s.jk(x) =y (=)™ k<xj<k+1;

3. Function Approximation

We can expanded any function f defined on [0, 1] by spline scaling functions as the following:

2/-1

F) % D cupm ju(0) = CT (). (3.1)

k=r

Since suppN,, € [0,m), to have inner scaling functions we should have suppe,, ;. € [0,m). So
we can transmit only m — 1 times. In other words we have r = —m + 1. For example we have for
quartic and pantic splines r = =3 and r = —4, respectively. The vectors C and ®,,(x) in (3.1) are
(27 - r)-vectors given by:

C = [Cr, Crels " s CZ-/—I]T’ (32)
(Dm(x) = [(Pm,j,r(x), ‘Pm,j,r+1(x)’ Y me,j,Z-/—l(x)]T’ (33)
where

1
Cx = f FXO)@p, jx(x)dx,
0

the functions &,, j(x) are dual functions of ¢, ;x fork =r,r +1,---, 2/—1and j€Z. Let ®,, be
the vector of dual functions of ®,, as:

(i)m(x) = [Qbm,j,r(x)’ ‘;bm,j,r+l(x)’ T, Qbm,j,Z-/—l(x)]T’
so we have by duality principle:
1
f ®,,(0)D,,(x) dx = 1, (3.4)
0
where [ is the identity matrix.

3.1. operational matrices

Now we want to calculate the operational matrix of fractional integration of B-spline scaling
functions.

Theorem 3.1. If the matrix P,, = [p;,] is defined as:

1
P, = f ®,,(x)®! (x)dx, (3.5)
0

then we get:
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a)

1 16
41472 41435
16 143

41435 18144
39

249
7 11601 2 1%3685
115659 1 0295 1
1 1

3903040 109876
_ 1 .
b) Ps=55

-1 43 1 1
27 T80 B4 5040 0 0 0
EH G- Fs WS H S
1680 630 280 42 5040
1 39 5% 397 4 1 0
84 280 1260 1680 42 5040
1 1 397 150 397 1 1
5040 42 1680 315 1680 42 5040
0 1 1 397 151 397
5040 42 1680 315 1680
0 o L L 3 39
5040 42 1680 1260
0 0 o L L 3
5040 A2 20
| 0 0 0 0 5040 84
where for j > 2, Pyis a (27 + 3) X (2! + 3) symmetric matrix.
39 10 1
71612 115659 2903040 0 0 0
249 46 19 1 0 0
16385 10251 109876 2903040
94" 40 85 19 1 0
% % lg%%Z lOg§76 290]39040 1
]g%S ]4{13679 lélliZS 1 32 10 25376 290139040
16892 14378 3327 14378 16892 109876
1 19 85 437 179 437
290(3) 040 1 091876 1 618992 1 483578 333277 1473_978
2903040 109876 16892 14378 1469
0 1 19 85 40°
2903040 1091876 1618992 13%3
0 0 2903040 1 091876 1 01205 1
0 0 0 0 o Tises

forj23; Psisa (2/ +

4) x (27 + 4) symmetric matrix.

c) The vector of dual functions is as:

d)m = (Pm)_lq)m

Proof. The theorem can be easily proved by using the following formula:

S o OO

50]40

1680
252

1
pi,k = f QDm,j,i(x)‘;Dm,j,k(x)d-xaj 2 m; lak =Fr-- 92] - l’r = _3$ _4
0

el lNe e Ne)

1
2903040
10
113659
39
71612
s
4141135
41472

, where

Definition 3.2. Suppose that ®,,(x) is the vector of B-spline scaling functions and /“®,,(x) is
expanded by B-spline functions as follows:

(I Dy)(x) = F ().

The matrix F;, is called B-spline operational matrix of fractional integration.

We calculate F, as follows:

1 1
Fi= [ roswdlou= [ roor, o, o
0 0

1
= ( f I(’(Dm(t)cb,ﬂ(t)d(t)) P, =E,P,,
0

(3.6)
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where E,, = [e;x],

1
ek = f 1" @, ji (D, ji(B)dE.
0

The following theorem determines the matrix E,, for m = 4, 5.

Theorem 3.3. Suppose E,, is the matrix in the equation (3.6), then:

a) The (27 + 3) X (2/ + 3) matrix E4 for quartic B-spline is obtained as bellow:

63

Yi Y2 V3 V4 Y2i Yoivl Y2ie2  Y2i43
m m2 13 14 M M2iv1 M2iv2 Y2ig2
01 02 03 04 02 O2it1 Mot Yaisl
| 1 & & & &i 6y M Y
Efj=————|: = o : : :
2J(a+1)r(a + 8) . . . . . 9
0 0 0 & & 04 ma s
0 0 O & & 03 oY
0 0 O I & 6 mn Y2
[0 0 O 0 1 6 m Y1
b) For pantic B-spline, Es is an (2/ + 4) X (2/ + 4) matrix as bellow:
Yi Y2 Y3 Vs Vs Y2 Y2iel Y2ix2 Y2i43
m m 13 nNa 15 M M2iv1 M2 Y2is2
0, 6y O3 04 Os 02 Oois1 Mais1 Yoisl
Vi Vo V3 V4 Vjs Voi 0oj i Y2i
E 1 1 & & & & &1 O M Yaic
5= . .. ) . . . .
2@ N+ 10) | ¢ ¢ P : : o
0 0 O & &G oo 04 N4 Ya
0 0 O & & s 03 3 Y3
0 0 O I & n ) m Y2
[0 0 O 0 1 g m 7
As an example for j = 3 and @ = 1 we have:
-1 41 44 47 1 1 1 1 23 1 1
7372 1682 7464 722 1 1 1 1 I 072 I
328 5203 1649 235 336 156 1556 556 3686 372 366
256825 512 13530 8942 20097 128 128 128 3072 256 3072
6 28 145 | 2 51 73 Pk} 239 3 23
17396 207 202 37 17274 06 1536 1536 16655 072 6864
P65 [ % 5303 pkr 30 3 B 302 36
2580480 62431 15461 128 311 9917 20321 64 1536 128 1536
0 1 6 80 T 57 154 630 23 1 I
2580480 62431 15461 128 111 9917 20321 1536 128 1536
E, = 0 0 1 6 80 T 57 154 51 1 I
4 2580430 62431 15461 128 1101 9917 3406 128 1536
0 0 0 1 6 ) T 57 257 157 I
2580430 62431 15461 128 31101 17274 20007 1336
0 0 0 0 1 6 80 1 71 47
2580430 62431 15461 8 537 8942 72235
0 0 0 0 [ 6 80 i 3 v
2580430 62431 15461 20209 13330 74649
0 0 0 0 0 1 6 28 1 41
2580480 62431 20703 52 168203
0 0 0 0 0 0 2580430 173965 256825 73728

and also we have:




Askari Hemmat, Ismaeelpour, Saeedi/ Wavelets and Linear Algebra 3(2) (2016) 55 - 68 64

1 5 9 5 4 1 1 1 13 31 3 1
BP0 23396 10321 39221 30721 7630 7680 7680 100679 307200 102400 921600
1 g 3 7 105 317 Y v 121 4 i 3
20271 96079 2605 3319 31043 90169 2360 2360 307 TgesT  T000 10400
i 87 176 393 74 7 31 31 193 9 10 31
3 3
89290 126149 10441 9308 300 53] 260 269 16072 103400  TAEST 307300
609562 100082 19407 17051 1501 11057 16139 7680 17031 16072 34707 100679
i 3 17 33 R 207 79 36 113 3 9 1
23243200 687110 80815 15205 28 15385 5125 3585 7680 2360 2360 7680
o e s Al S G | AN A o o i
Ee = 232243200 687110 80815 15205 128 15385 5125 16130 2560 2560 7680
5 0 0 1 3 I 53 1 207 169 77 317 I
232243200 687110 80§15 15205 28 15385 11057 6361 9019 7680
0 0 1 § A 53 1 0] % o 1
232243200 687110 80315 15205 28 10T &9 3igs 3070
0 0 1 3 i 3 131 3 78 S
232243200 687110 80815 15205 177051 39508 23519 39221
0 0 0 B S S (A I A ' s
732243200 687110 80815 407 T0l4T 22605 00321
0 0 0 0 0 1 17 87 38 S
04300 68710 T00082 126149 96070 238296
0 0 0 0 0 0 232243200 609562 89290 120271 1843200 -

4. Applying B-spline Operational Matrices

In this section, we want to apply the mentioned operational matrices for solving partial differ-
ential equations. Consider the following equation:

0u

a 8 P

Pu
+ b% = f(x, t), (41)
with the boundary conditions
u(0,1) = go(1),
u(x,0) = g1(x),

where a and b are constant, u(x, ) € L*([0,1] x[0,1]),0 <@ < 1and 0 < B < 1. We approximate
u(x,t) with B-spline functions for a fixed j,

u(x, 1) = Z P ji(X)Cispm (1) = @ (X)CD, (1), (4.2)
ik

where C is a (2/ — r) X (2/ — r) unknown matrix where r = —m + 1. Now we apply first /¢ and then
If on both sides of the equation (4.1), and using Lemma (2.1) we obtain:

allu(x,t) — al’ go(t) + bI%u(x, 1) — bI%g1(x) = I f(x, ). (4.3)
By assuming
21(x) ~ B (VAD,,(1) , go(1) = Dy, (X)BD,,(1), (4.4)

and substituting (4.2) and (4.4) in (4.3) we have:

a®’ (x)CFE®,,(t) — a®! (x)(P," BP, FE®,,(t) + bD! (x)(F®)' CD,(1)

— bO! () (F) (PN AP, ®,,(t) = OL(x)(F) (P, ZP, FE®,(1), ()

where f(x,1) = ®F(x)Zd,,(t). Multiplying (4.5) by ®,,(x) from the left and @ (¢) from the right
and then integrating from O to 1, we have:
aCFf —a(P,YTBP,'FE + b(F®)"C — b(F)T(P,")TAP;!

4.6
=(Fo'(p,h'zp,'FE. (*0)
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Equation (4.6) gives a system of 2/ — r, (r = —m + 1) unknown equations, which can be solved to
find C and then u(x, ¢) can be calculated by (4.2).
For convergence analysis we refer readers to the following theorem from [13].

Theorem 4.1. If {¢,, ji}jrez are B-spline functions, then for an arbitrary function u we have:

llu — u,ll < C27™ £,

where uj(x) = Yzl f> @m.jj)Pm ji(x) and C,, = /% and B,,, is Bernouilli’s number of order
2m.

5. Numerical Examples

In this section, we show the efficiency of the mentioned method on some partial differential
equations. Note that L, error is obtained as:

| 12 L& 172
||e,»||2=( f9 e§<x>dx) E(NZei(xa) : (5.1)

i=0

where e;(x;) = u(x;) —uj(x;), i = 0,1,--- ,N(N € N). u(x) is the exact solution and u;(x) is the
approximate solution which is obtained by equation (4.2).

Example 5.1. We consider the boundary conditions for this example as given in [14]:

fx,t)=0;a=b=1,
go() =1, g1(x)=x".

In this example the exact solution is u(x,?) = [t — x — (t — x)*]U(t — x) + (t — x)*> where U is unit
step function. Table 1 shows a comparison between the results of splines of order 2,3,4 and 5.
We studied splines of order 2 and 3 in [3], and presented the result here. The figures of ||es]|, for
m =2,3,4,5 are given in the figures 1.

L,-error m=2[3] m=3 [3] m=4 m=5
j=3 6.7462e-03  4.5540e-03 4.4520e-03 3.8894e-03
j=4 2.9740e-03 2.1866e-03 2.1225e¢-03 1.9792e-03
j=5 1.4583e-03 1.0820e-03 1.0589e-03 9.9558e-04

Table 1: L,-error of Example 5.1.

Example 5.2. We consider the boundary conditions for this example as given in [6]:

flx,1) = i(x% +)a=b=1,

3n

go(t) = £, g1(x) = X
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(a) (b)

0 0

(© (d)

Figure 1: ||es||, of example 5.1 for (a) m =2 (b)m =3 (¢c)m =4 and (d) m = 5.

The exact solution of this problem is given as u(x,t) = x* + t>. Table 2 shows a comparison
between the results of splines of order 2, 3,4 and 5. We studied splines of order 2 and 3 in [3], and
presented the result here. Also we show the |le4||, for m = 2,3,4,5 in the figures 2.

Lr-error | m=2 [3] m=3 [3] m=4 m=5 Ref. [6]
J=3 2.2409e-03 1.2590e-05 4.0128e-06 3.3318e-06 1.4e-03
j=4 5.6041e-04 2.9704e-06 9.95995e-07 2.7034e-06 5.4e-03
J=5 1.4150e-04 6.8505e-07 3.5661e-07 4.4447e-05 2.0e-03

Table 2: L,-error of Example 5.2.
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0D p : 00

(©) (d)
Figure 2: ||e4||, of example 5.2 for (a) m =2 (b)ym =3 (c)m =4 and (d) m = 5.
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