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1. Introduction and preliminary

In 1946, Gabor introduced an interesting approach to signal decomposition [12]. In 1952, Duffin
and Schaeffer abstracted Gabor’s method to introduce the notion of frame in nonharmonic Fourier
analysis [9]. The idea of Duffin and Schaeffer was not continued until 1986 when Daubechies
et al. in [8], applied the theory of frames to wavelets and Gabor transforms. After their work,
the theory of frames began to be studied widely and deeply by many authors (see [3]-[5], for
example). Today, the theory of frames has been applied to signal processing, image processing,
data compressing and sampling theory and so on.

A sequence {xn}n∈Z in a separable Hilbert space H is called a frame for H if there exist con-
stants A, B > 0 such that

A∥x∥2 ≤
∑

n

|⟨x, xn⟩|2 ≤ B∥x∥2, (x ∈ H). (1.1)

If the right inequality holds, then {xn}n∈Z is said to be a Bessel sequence. It is well known that for
any frame {xn}n∈Z there exists another frame {x∗n}n∈Z inH , namely dual frame of {xn}n∈Z, such that
for any x ∈ H

x =
∑

n

⟨x, x∗n⟩xn =
∑

n

⟨x, xn⟩x∗n.

The concept of a multiresolution analysis (MRA) was first introduced by Mallat [21] and Meyer
[22]. It is a general framework for constructing orthonormal wavelet bases for L2(R) of the form
{2 j/2ψ(2 j. − k)} j,k∈Z. The MRA-based compactly supported orthonormal wavelet systems were
constructed by Daubechies [7].

Frame multiresolution analysis (FMRA) as a generalization of MRA, introduced by Benedetto
and Li in [2].

As usual, we define the following operators on L2(R) by

(τb f )(x) = f (x − b), (D f )(x) = 21/2 f (2x).

The parameter b in the first operator can be an arbitrary real number. A frame multiresolution
analysis (FMRA) for L2(R) consists of a sequence of closed linear subspaces {V j} j∈Z of L2(R) and
a function ϕ ∈ V0 such that

1. V j ⊆ V j+1,

2. ∪ jV j = L2(R),∩ jV j = {0},
3. V j = D jV0,

4. f ∈ V0 implies that τk f ∈ V0, for all k ∈ Z,
5. {τkϕ : k ∈ Z} is a frame for V0.

In the above definition, if {τkϕ : k ∈ Z} is an orthonormal basis for V0, then {V j, ϕ} j∈Z forms a
multiresolution analysis (MRA) for L2(R). For more details on FMRA, one can see [1], [4].

Dahlke in [6], generalized the notion of MRA to locally compact abelian groups and proved
an existence theorem based on generalized B-splines. For some groups G different from Rd,
multiresolution analysis were studied in [6], [10], [15] and [16]. In particular, the group analogues
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of the B-spline wavelet bases in L2(R) are defined in [6] and [10]. In [14], conditions under
which a function generates a multiresolution analysis on a locally compact abelian groups were
investigated.

The notion of generalized multiresolution structure (GMS) in L2(R) was introduced in [18].
Basically, the GMS consists of an increasing sequence of closed subspace of L2(R), with a pseud-
oframe of translates at each level. Let {τkϕ}k∈Z and {τkϕ

∗}k∈Z be two sequences in L2(R) and X be
a closed subspace of L2(R). We say {τkϕ}k∈Z forms a pseudoframe of translates for X with respect
to {τkϕ

∗}k∈Z if
x =
∑

k

⟨x, τkϕ
∗⟩τkϕ, (x ∈ X).

In a more general case, letX be a closed subspace of a separable Hilbert spaceH . Let {xn}n∈Z ⊂ H
be a Bessel sequence with respect to X, and let {x∗n}n∈Z ⊂ H be a Bessel sequence in H . We say
{xn}n∈Z is a pseudoframe for the subspace X (PFFS) with respect to {x∗n}n∈Z if

x =
∑

k

⟨x, xk⟩x∗k, (x ∈ X).

{x∗n}n∈Z is called a dual pseudoframe (or PFFS-dual) of {xn}n∈Z for the subspace X, (see [19] and
[20] for more details).

For the reader’s convenience, we report a number of definitions. In this paper, we assume that
G is a locally compact abelian group and Γ is a uniform lattice in G, that is Γ is a discrete subgroup
that G

Γ
is compact. If Γ is a uniform lattice, then Γ⊥ defined by {ξ ∈ Ĝ : ξ(Γ) = 1} is a uniform

lattice in Ĝ, where Ĝ is the dual group of G [13].

Let π : Γ −→ U(L2(G)) be the translation representation which is defined by (πγ f )(x) =
f (xγ−1). Let σ be a (continuous) unitary operator on L2(G) with the property σ−1πγσ = πα(γ),
where α is an injective endomorphism on Γ. Also let δ be a (continuous) topological automorphism
on G such that δ(Γ) ⊂ Γ.

The Fourier transformˆ : L1(G) −→ C0(Ĝ), f 7−→ f̂ , is defined by f̂ (ξ) =
∫

G
f (x)ξ(x)dx. The

Fourier transform can be extended to a unitary isomorphism from L2(G) to L2(Ĝ), known as the
Plancherel transform (see [11]).

In this paper, we generalize the notion of GMS for L2(G). In Section 2, a necessary and
sufficient condition for existence of pseudoframes for Paley-Wiener subspaces is studied. Based
on this concept, a formal definition of a GMS for a locally compact abelian group is given in
Section 3. Consequently, construction methods for GMSs are also explained. Furthermore, a
construction that allows us to obtain affine pseudoframes associated with such a GMS is given in
Section 4.

Our conclusions are mainly generalizations of results of Li in [18].

2. Existence of pseudoframes for subspaces of L2(G)

There are some examples in L2(G) such that {πγϕ}γ∈Γ is neither generates MRA nor FMRA. Nev-
ertheless a stable expansion for elements of a closed subspace of L2(G) exists in term of {πγϕ}γ∈Γ
(see [1, 17, 19, 20]). The following is such an example.
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Example 2.1. Let G = R×R and Γ = Z×Z. Consequently, Γ̂ = Ẑ× Ẑ = T×T. Define a function
ϕ ∈ L2(G) such that

ϕ̂(γ1, γ2) =


1 (γ1, γ2) ∈ [− 1

4 ,
1
4 )2

decaying to zero continuosly (γ1, γ2) ∈ [− 1
2 ,

1
2 )2 − [− 1

4 ,
1
4 )2

0 outside of [− 1
2 ,

1
2 )2

Let ∆ := [− 1
4 ,

1
4 )2 and define V0 := PW∆ that is the Paley-Wiener space, the space of all band-

limited functions with bandwidth in ∆ (see [1]). By Shannon sampling theorem for L2(Rd) [23],
and for all f ∈ PW∆ we have

f (x, y) =
∑

(m,n)∈Z×Z f (m, n)π(m,n)ϕ(x, y).

Since the function Φ(γ1, γ2) =
∑

(m,n)∈Z×Z |ϕ̂(γ1 + m, γ2 + n)|2 is continuous, we are not able to find
the lower frame bound for {π(m,n)ϕ}(m,n)∈Z×Z. So {π(m,n)ϕ}(m,n)∈Z×Z cannot be a frame for the closure
of the span of {π(m,n)ϕ(t1, t2) : (m, n) ∈ Z × Z}.

Also, from the fact that ϕ < PW∆, the sequence {π(m,n)ϕ}(m,n)∈Z×Z is not a frame for PW∆.
Whereas, if we define V j := PW2 j∆, j ∈ Z, we have V j ⊆ V j+1,

∪
jV j = L2(G) and

∩
jV j = {0}.

Example 2.1 leads us to define the concept of pseudoframes on L2(G) for a locally compact
abelian group G. For a uniform lattice Γ in G, let π : Γ −→ U(L2(G)) be the translation represen-
tation which is defined by (πγ f )(x) = f (xγ−1).

Definition 2.2. Let ϕ, ψ ∈ L2(G) and X be a closed subspaces of L2(G). The family {πγϕ}γ∈Γ is
said to be a pseudoframe with respect to {πγψ}γ∈Γ for X, if for every x ∈ X,

x =
∑
γ∈Γ
⟨x, πγψ⟩πγϕ.

It is important to note that πγϕ and πγψ need not be contained in X. Also they are not generally
commutable, this means there exists x ∈ X such that the following is not true,

x =
∑
γ∈Γ⟨x, πγϕ⟩πγψ.

In the following theorem, we are going to find a sufficient and necessary condition for the
functions ϕ and ψ such that their translations forms a pseudoframe.

Theorem 2.3. Let ϕ ∈ L2(G) be such that |ϕ̂| > 0, a.e. and ϕ̂ be zero outside of Γ̂. For a fixed c > 0,
let ∆ := {γ ∈ Ĝ : |ϕ̂(γ)| ≥ c} be closed and let V0 := { f ∈ L2(G) : supp f̂ ⊆ ∆}. For a ψ ∈ L2(G),
{πγϕ}γ∈Γ forms a pseudoframe for V0 with respect to {πγψ}γ∈Γ if and only if

ϕ̂ψ̂χ∆ = χ∆, a.e.

Moreover, if ψ satisfies |ψ̂| > 0 on Γ̂, and the above equality holds, then πγϕ and πγψ commute, in
the sense that for any x ∈ X,

x =
∑
γ∈Γ
⟨x, πγψ⟩πγϕ =

∑
γ∈Γ
⟨x, πγϕ⟩πγψ.
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Proof. If f ∈ V0, then supp f̂ ⊆ ∆. By the assumptions, suppϕ̂ ⊆ Γ̂. Now compactness of Γ̂
implies that suppϕ̂ is compact. On the other hand ∆ is closed and so the fact that ∆ ⊆ suppϕ̂
implies that ∆ is compact. Hence supp f̂ is compact.

By Weyl’s formula we have

(
∑
η∈Γ
⟨ f , πηψ⟩πηϕ)̂(γ) =

∑
η∈Γ
⟨ f , πηψ⟩ϕ̂(γ)γ(η)

=
∑
η∈Γ
⟨ f̂ , ˆπηψ⟩ϕ̂(γ)γ(η)

=
∑
η∈Γ

∫
Ĝ

f̂ (λ)ψ̂(λ)λ(η)dλϕ̂(γ)γ(η)

=
∑
η∈Γ

∫
Ĝ/Γ⊥

∑
ξ∈Γ⊥

f̂ (ξλ)ϕ̂(ξλ)(ξλ)(η)dµ(λΓ⊥)ϕ̂(γ)γ(η)

= ϕ̂(γ)
∑
η∈Γ

(
∑
ξ∈Γ⊥

f̂ (ξλ)ψ̂(ξλ))∨(η)γ(η)

= ϕ̂(γ)((
∑
ξ∈Γ⊥

f̂ (ξλ)ψ̂(ξλ))∨)̂(γ)

= ϕ̂(γ)
∑
ξ∈Γ⊥

f̂ (ξγ)ψ̂(ξγ).

The facts that ϕ̂ and f̂ are zero outside of Γ̂ imply that the only nonzero term in the last summation
is ϕ̂(γ) f̂ (γ)ψ̂(γ). So

ϕ̂ψ̂χ∆ = χ∆, a.e.

For two Bessel families {πγϕ}γ∈Γ and {πγψ}γ∈Γ in L2(G), define U,V : L2(G) −→ l2(Γ) by U( f ) =
{⟨ f , πγϕ⟩}γ∈Γ and V( f ) = {⟨ f , πγψ⟩}γ∈Γ. From [19], we know that {πγϕ}γ∈Γ forms a pseudoframe
with respect to {πγψ} for X if and only if

V∗UP = P,

where P is the orthogonal projection on X and also {πγϕ}γ∈Γ and {πγψ}γ∈Γ commute if and only if
V∗UP = P = PU∗V , where V∗ and U∗ are the adjoints of U and V , respectively. Indeed, we have

⟨ f , PU∗Vg⟩ = ⟨P f ,U∗Vg⟩
= ⟨U∗Vg, P f ⟩
=
∑
γ∈Γ
⟨g, πγψ⟩⟨πγϕ, P f ⟩

=
∑
γ∈Γ
⟨P f , πγϕ⟩⟨πγψ, g⟩

= ⟨P f ,
∑
γ∈Γ
⟨g, πγψ⟩πγϕ

= ⟨P f , g⟩ = ⟨ f , Pg⟩
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which implies that PU∗V = P. Thus {πγϕ}γ∈Γ and {πγψ}γ∈Γ commute.

The following result of Li (Theorem 1, [18]) is a consequence of Theorem 2.3.

Corollary 2.4. Let ϕ ∈ L2(R) be such that |ϕ̂| > 0 a.e. on a connected neighborhood of 0 in [−1
2 ,

1
2 )

and |ϕ̂| = 0, a.e. otherwise. Define Ω = {γ ∈ R̂ : |ϕ̂| ≥ c > 0}, and let V0 := PWΩ = { f ∈ L2(R) :
supp( f̂ ) ⊆ Ω}. Then, for a ψ ∈ L2(R) and {πkϕ}k∈Z is a pseudoframe of translates for V0 with
respect to {πkψ}k∈Z if and only if ϕ̂ψ̂.χΩ = χΩ a.e. Moreover, if ψ is also such that |ψ̂| > 0 a.e. on
a connected neighborhood of 0 in [− 1

2 ,
1
2 ), and |ψ̂| = 0 a.e. otherwise, and ϕ̂ψ̂.χΩ = χΩ a.e. holds,

then {πkϕ}k∈Z and {πkψ}k∈Z are commutative pair of pseudoframe for X.

3. Generalized Multiresolution Structure

In this section, by applying Theorem 2.3, we are going to construct a generalized multiresolution
structure for locally compact abelian groups. First, we define the concept of generalized multires-
olution structure (GMS) for L2(G), where G is a locally compact abelian group.

Let π : Γ −→ U(L2(G)) be the translation representation and also, let σ be a unitary operator
on L2(G) with the property σ−1πγσ = πα(γ), where α is an injective endomorphism on Γ. Also let
δ be an automorphism on G such that δ(Γ) ⊂ Γ.

Definition 3.1. A generalized multiresolution structure (GMS), {V j, ϕ, ψ} j∈Z of L2(G) is an in-
creasing sequence of the closed subspaces V j ⊆ L2(G) and two elements ϕ, ψ ∈ L2(G) such that
the following conditions hold

1. ∪ jV j = L2(G),∩ jV j = {0},
2. f ∈ V j if and only if σ f ∈ V j+1,

3. f ∈ V0 implies that πγ f ∈ V0, for all γ ∈ Γ,
4. {πγϕ : γ ∈ Γ} is a pseudoframe for V0 with respect to {πγψ : γ ∈ Γ}.

Remark 3.2. If {πγϕ}γ∈Γ and {πγψ}γ∈Γ are dual frames, then GMS is a frame multiresolution analy-
sis. Also, if {πγϕ}γ∈Γ is an exact frame for V0 and ψ ∈ V0, then GMS is an multiresolution analysis.

Theorem 3.3. Suppose that {πγϕ}γ∈Γ is a pseudoframe for V0 with respect to {πγψ}γ∈Γ and V j :=
{ f ∈ L2(G) : σ− j f ∈ V0}, then {σ jπγϕ}γ∈Γ is a pseudoframe for V j with respect to {σ jπγψ}γ∈Γ.

Proof. For f ∈ V j, we have σ− j f ∈ V0. So σ− j f =
∑
γ∈Γ⟨σ− j f , πγψ⟩πγϕ. We have σ∗ = σ−1, since

σ is unitary. Thus
f =
∑
γ∈Γ
⟨σ− j f , πγψ⟩σ jπγϕ =

∑
γ∈Γ
⟨ f , σ jπγψ⟩σ jπγϕ.

Corollary 3.4. Let ϕ, ψ ∈ L2(G) and V0 has the properties specified in Theorem 2.3 and V j is
similar to Theorem 3.3, then {V j, ϕ, ψ} j forms a GMS for L2(G).
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Proof. The inclusion V j ⊆ V j+1 follows from the fact that V j defined by Theorem 3.3 is equivalent
to PW∆(δ j) and PW∆ ⊆ PW∆(δ). Since δ(Γ) ⊂ Γ we have Γ̂(δ) ⊂ Γ̂. Now let f < PW∆. Then
supp f̂ is not a subset of ∆, so supp f̂ is not a subset of ∆(δ), consequently, f < PW∆(δ). Therefore,
PW∆ ⊆ PW∆(δ).

Trivially the set of all band-limited functions, that their Fourier transform has a bounded sup-
port, is dense in L2(G). On the other hand, the intersection of all band-limited function is the trivial
function.

For proving condition 3. of Definition 3.1, note that if f ∈ V0, then f =
∑
η∈Γ⟨ f , πηψ⟩πηϕ.

Therefore,
πγ f =

∑
η∈Γ
⟨ f , πηψ⟩πγπηϕ =

∑
η∈Γ
⟨ f , πηγ−1ψ⟩πηϕ =

∑
η∈Γ
⟨πγ f , πηψ⟩πηϕ.

Thus πγ f ∈ V0. Other conditions of Definition 3.1 are valid, obviously.

Example 3.5. Let G = R × R and Γ = Z × Z. Let ϕ ∈ L2(G) be such that

ϕ̂(γ1, γ2) =


1 0 ≤ γ2

1 + γ
2
2 ≤ 1

16 , a.e.

2 − 4
√
γ2

1 + γ
2
2

1
16 ≤ γ2

1 + γ
2
2 ≤ 1

4 a.e.
0 otherwise.

Put ∆ := {(γ1, γ2) ∈ R × R : |ϕ̂(γ1, γ2)| ≥ 1} = {(γ2
1, γ

2
2) : 0 ≤ γ2

1 + γ
2
2 ≤ 1

16 } and define V0 := PW∆.
Now select ψ ∈ L2(G) such that

ψ̂(γ1, γ2) =


1 0 ≤ γ2

1 + γ
2
2 ≤ 1

16 a.e.

3 − 8
√
γ2

1 + γ
2
2

1
16 ≤ γ2

1 + γ
2
2 ≤ 9

64 a.e.
0 otherwise.

On ∆, we have ϕ̂.ψ̂ = 1, thus {V j, ϕ, ψ} forms a GMS for the space of L2(G).

Note that for the Haar measure dt on G, and an endomorphism δ, the formation d(δ(t)) induces
a Haar measure. Thus there is a positive number |δ| such that d(δ(t)) = |δ|dt. It is obvious that
d(δ−1(t)) = |δ|−1dt. Now we define a suitable dilation by σ f (t) := |δ|− 1

2 f (δ(t)).
Let two complex families {h0(η)}η∈Γ, {h∗0(η)}η∈Γ, (h0, h∗0 : Γ −→ C are two functions) be such

that the following summations are convergent,

H0(ξ) :=
∑
η∈Γ

h0(η)ξ(η),H∗0(ξ) :=
∑
η∈Γ

h∗0(η)ξ(η), (ξ ∈ Ĝ).

Proposition 3.6. Suppose H0 and H∗0 generate ϕ and ψ, respectively, as

ϕ(t) =
∑
γ∈Γ

h0(γ)σπγϕ(t), ψ(t) =
∑
γ∈Γ

h∗0(γ)σπγϕ(t)

and ϕ, ψ ∈ L2(G) have the properties specified in Theorem 2.3. Then {πγϕ}γ∈Γ forms a pseudoframe
for V0 with respect to {πγψ}γ∈Γ if and only if
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H0.H∗0χ∆(δ−1) = |δ|χ∆(δ−1).

Where ∆(δ−1) := {γδ−1 : γ ∈ ∆}.

Proof. Taking the Fourier transform of ϕ, we get

ϕ̂(ξ) =
∑
γ∈Γ

h0(γ)(σπγϕ)̂(ξ)

=
∑
γ∈Γ

h0(γ)
∫

Ĝ
|δ|− 1

2ϕ(γ−1δ(t))ξ(t)dt

=
∑
γ∈Γ

h0(γ)
∫

Ĝ
|δ|− 1

2ϕ(t)ξ(δ−1(γt)d(γ−1δ(t))

=
∑
γ∈Γ

h0(γ)
∫

Ĝ
|δ|− 1

2ϕ(t)ξ(δ−1(γ))ξ(δ−1(t))|δ|dt

= |δ| 12 H0(ξδ−1)ϕ̂(ξδ−1).

So, ϕ̂(ξδ) = |δ| 12 H0(ξ)ϕ̂(ξ). Consequently H0.H∗0χ∆(δ−1) = |δ|χ∆(δ−1).

4. Affine pseudoframes of L2(G)

We shall denote by W0 the orthogonal complement of V0 in V1, as usual, in order to split a function
f of V1 into two functions in V0 and W0, respectively.

Definition 4.1. Let {V j, ϕ, ψ} j∈Z be a given GMS and ϕ∗, ψ∗ be two functions in L2(G). We say
{πγϕ, πγϕ∗}γ∈Γ is an affine pseudoframe for V1 with respect to {πγψ, πγψ∗}γ∈Γ, if and only if

f =
∑
γ∈Γ
⟨ f , πγψ⟩πγϕ +

∑
γ∈Γ
⟨ f , πγψ∗⟩πγϕ∗, ( f ∈ V0).

In this case {πγψ, πγψ∗}γ∈Γ is called a dual pseudoframe of {πγϕ, πγϕ∗}γ∈Γ.

We are going to characterize conditions for which {πγϕ, πγϕ∗}γ∈Γ is an affine pseudoframe for
V1 with respect to {πγψ, πγψ∗}γ∈Γ. First we have the following.

Proposition 4.2. Let {h1(γ)}γ∈Γ be such that H1(ξ) =
∑
η∈Γ h1(η)ξ(η) is convergent, H1(0) = 0 and

H1 ∈ L∞(Γ̂). Suppose that ϕ ∈ L2(G) and ϕ(t) = |δ| 12 ∑γ∈Γ h0(γ)ϕ(δ(t)γ−1), for the family {h0(η)}η∈Γ
such that H0(ξ) =

∑
η∈Γ h0(η)ξ(η) is convergent. Then there exists ψ ∈ L2(G) such that

ψ(t) = |δ| 12
∑
γ∈Γ

h1(γ)ϕ(δ(t)γ−1). (4.1)

Proof. Define

ψ̂(ω) = |δ| 12 H1(ωδ)
∞∏
j=2

|δ| 12 H0(ωδ− j).
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By the equality ϕ̂(ξ) = H0(ξδ−1)ϕ̂(ξδ−1), we have

ψ̂(ω) = |δ| 12 H1(ωδ−1)ϕ̂(ωδ−1) (4.2)

Hence ψ ∈ L2(G), since ϕ ∈ L2(G) and H1 ∈ L∞(Γ̂). It is now sufficient to use Parsval’s Theorem
and inverse Fourier transform of (4.2). to obtain (4.1).

Suppose A is a subset of Ĝ. For the next theorem we need the following Γ⊥-periodic function

ΛA(γ) =
∑
η∈Γ⊥

χA(γη).

Theorem 4.3. Let ∆ be the bandwidth of the subspace V0 defined by Theorem 2.3. The family
{πγϕ, πγϕ∗}γ∈Γ forms a pseudoframe for V1 with respect to {πγψ, πγψ∗}γ∈Γ if and only if there are
two functions G0,G1 in L2(Γ̂) such that

G0(ξ)H∗0(ξ)Λ∆(ξ) +G1(ξ)H∗1(ξ)Λ∆(ξ) = 2Λ∆(ξ), a.e.

G0(ξ)H∗0(ξ1Γ̂δ−1)Λ∆(ξ) +G1(ξ)H∗1(ξ1Γ̂δ−1)Λ∆(ξ) = 0, a.e.

Proof. The fact that {ψ1,η}η∈Γ generates the elements of V1, implies that for any f ∈ V1,

⟨ f , ψ1,η⟩ =
∑
γ∈Γ
⟨ f , πγψ⟩⟨πγϕ, ψ1,η⟩ +

∑
γ∈Γ
⟨ f , πγψ∗⟩⟨πγϕ∗, ψ1,η⟩, (η ∈ Γ).

Now define

c0(γ) = ⟨ f , πγψ⟩,
c1(γ) = ⟨ f , ψ1,γ⟩,
d0(γ) = ⟨ f , πγψ∗⟩,

and also let
g0(η(δ(γ))−1) = ⟨πγϕ, ψ1,η⟩, g1(η(δ(γ))−1) = ⟨πγϕ∗, ψ1,η⟩.

We have
c1(η) =

∑
γ∈Γ

c0(γ)g0(η(δ(γ))−1) +
∑
γ∈Γ

d0(γ)g1(η(δ(γ))−1)
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By takeing the Fourier series, we have

C1(ξ) =
∑
η∈Γ

∑
γ∈Γ

c0(γ)g0(η(δ(γ))−1)ξ(η)

+
∑
η∈Γ

∑
γ∈Γ

d0(γ)g1(η(δ(γ))−1)ξ(η)

=
∑
η∈Γ

∑
γ∈Γ

c0(γ)g0(η)ξ(ηδ(γ))

+
∑
η∈Γ

∑
γ∈Γ

d0(γ)g1(η)ξ(ηδ(γ))

=
∑
η∈Γ

∑
γ∈Γ

c0(γ)g0(η)ξ(η)ξ(δ(γ))

+
∑
η∈Γ

∑
γ∈Γ

d0(γ)g1(η)ξ(η)ξ(δ(γ))

=
∑
γ∈Γ

c0(γ)ξ(δ(γ))
∑
η∈Γ

g0(η)ξ(η)

+
∑
γ∈Γ

d0(γ)ξ(δ(γ))
∑
η∈Γ

g1(η)ξ(η)

= C0(ξδ)G0(ξ) + D0(ξδ)G1(ξ).

On the other hand, we know

c0(γ) =
∫

G
f (t)πγψ(t)dt =

∫
G

f (tγ)ψ(t)dt

=

∫
G

f (tγ)
∑
η∈Γ
|δ| 12 h∗0(η)ψ(η−1δ(t))dt

=
∑
η∈Γ
|δ| 12 h∗0(η)

∫
G

f (t)ψ(δ(t)η−1(δ(γ))−1)dt

=
∑
η∈Γ
|δ| 12 h∗0(η(δ(γ))−1)

∫
G

f (t)ψ(δ(t)η−1)dt

=
∑
η∈Γ

h∗0(η(δ(γ))−1)c1(η).

Similarly,
d0(γ) =

∑
η∈Γ

h∗1(η(δ(γ))−1)c1(η).
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Now, their Fourier series are

C0(ξδ) =
∑
γ∈Γ

c0(γ)ξ(δ(γ)) =
∑
γ∈Γ

∑
η∈Γ

h∗0(η(δ(γ))−1)c1(η)ξ(δ(γ))

=
∑
η∈Γ

∑
γ∈Γ

c1(η)h∗0(γ)ξ(ηγ−1)

=
∑
η∈Γ

c1(η)ξ(η)
∑
γ∈Γ

h∗0(γ)ξ(γ)

=
1
2

[
∑
η∈Γ

c1(η)ξ(η)
∑
γ∈Γ

h∗0(γ)ξ(γ)

+
∑
η∈Γ

c1(η)ξ(η)1Γ̂(δ−1(η))
∑
γ∈Γ

h∗0(γ)ξ(γ)1Γ̂(δ
−1(γ))]

=
1
2

[C1(ξ)H∗0(ξ) +C1(ξ1Γ̂δ
−1)H∗0(ξ1Γ̂δ−1)].

Similarly,

D0(ξδ) =
1
2

[C1(ξ)H∗1(ξ) +C1(ξ1Γ̂δ
−1)H∗1(ξ1Γ̂δ−1)].

Combining the above relations, we find that

2C1(ξ) = G0(ξ)][C1(ξ)H∗0(ξ) +C1(ξ1Γ̂δ
−1)H∗0(ξ1Γ̂δ−1)]

+ G1(ξ)[C1(ξ)H∗1(ξ) +C1(ξ1Γ̂δ
−1)H∗1(ξ1Γ̂δ−1)]

= [G0(ξ)H∗0(ξ) +G1(ξ)H∗1(ξ)]C1(ξ)

+ [G0(ξ)H∗0(ξ1Γ̂δ−1) +G1(ξ)H∗1(ξ1Γ̂δ−1)]C1(ξ1Γ̂δ
−1).

Consequently,

G0(ξ)H∗0(ξ)Λ∆(ξ) +G1(ξ)H∗1(ξ)Λ∆(ξ) = 2Λ∆(ξ), a.e.

G0(ξ)H∗0(ξ1Γ̂δ−1)Λ∆(ξ) +G1(ξ)H∗1(ξ1Γ̂δ−1)Λ∆(ξ) = 0, a.e.
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