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1. Introduction and preliminary

In 1946, Gabor introduced an interesting approach to signal decomposition [12]. In 1952, Duffin
and Schaeffer abstracted Gabor’s method to introduce the notion of frame in nonharmonic Fourier
analysis [9]. The idea of Duffin and Schaeffer was not continued until 1986 when Daubechies
et al. in [8], applied the theory of frames to wavelets and Gabor transforms. After their work,
the theory of frames began to be studied widely and deeply by many authors (see [3]-[5], for
example). Today, the theory of frames has been applied to signal processing, image processing,
data compressing and sampling theory and so on.

A sequence {x,},cz in a separable Hilbert space H is called a frame for H if there exist con-
stants A, B > 0 such that

Allxl? < Z K, x)” < B, (x € H). (1.1)

If the right inequality holds, then {x,},cz is said to be a Bessel sequence. It is well known that for
any frame {x,},cz there exists another frame {x},cz in H, namely dual frame of {x,},cz, such that

for any x € H
X = Z(x, X)Xy = Z(x, Xu)X,.

The concept of a multiresolution analysis (MRA) was first introduced by Mallat [21] and Meyer
[22]. It is a general framework for constructing orthonormal wavelet bases for L*>(R) of the form
{272y(27. = k)}jxez. The MRA-based compactly supported orthonormal wavelet systems were
constructed by Daubechies [7].

Frame multiresolution analysis (FMRA) as a generalization of MRA, introduced by Benedetto
and Li in [2].

As usual, we define the following operators on L*(R) by

(T f)(x) = f(x = b), (Df)(x) = 22 f(2x).

The parameter b in the first operator can be an arbitrary real number. A frame multiresolution
analysis (FMRA) for L*(R) consists of a sequence of closed linear subspaces {Vi}jez of L*(R) and
a function ¢ € V; such that

L. V; SV,

2. UV, = LA(R),n;V; = {0},

3. V; = D'V,

4. f € V,implies that 7, f € V,, for all k € Z,
5. {Tx¢ : k € Z} is a frame for V.

In the above definition, if {rx¢ : k € Z} is an orthonormal basis for Vy, then {V;, ¢} ez forms a
multiresolution analysis (MRA) for L2(R). For more details on FMRA, one can see [1], [4].
Dahlke in [6], generalized the notion of MRA to locally compact abelian groups and proved
an existence theorem based on generalized B-splines. For some groups G different from R,
multiresolution analysis were studied in [6], [10], [15] and [16]. In particular, the group analogues
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of the B-spline wavelet bases in L*(R) are defined in [6] and [10]. In [14], conditions under
which a function generates a multiresolution analysis on a locally compact abelian groups were
investigated.

The notion of generalized multiresolution structure (GMS) in L*(R) was introduced in [18].
Basically, the GMS consists of an increasing sequence of closed subspace of L?>(R), with a pseud-
oframe of translates at each level. Let {t;¢};cz and {1;¢"};cz be two sequences in L*(R) and X be
a closed subspace of L?>(R). We say {1;¢}ez forms a pseudoframe of translates for X with respect
to {719 fiez 1f

x= ) (6ndme, (xeX).
k

In a more general case, let X be a closed subspace of a separable Hilbert space H. Let {x,},cz € H
be a Bessel sequence with respect to X, and let {x]},ez C H be a Bessel sequence in H. We say
{x1}nez 1s a pseudoframe for the subspace X (PFFS) with respect to {x}},ez if

x= Z(x, XX, (x e X).
3

{x}}nez 1s called a dual pseudoframe (or PFFS-dual) of {x,},cz for the subspace X, (see [19] and
[20] for more details).

For the reader’s convenience, we report a number of definitions. In this paper, we assume that
G is alocally compact abelian group and I" is a uniform lattice in G, that is I is a discrete subgroup
that % is compact. If ' is a uniform lattice, then I'* defined by {£ € G : &) = 1} is a uniform

lattice in G, where G is the dual group of G [13].

Let 7 : I — U(L*(G)) be the translation representation which is defined by (m, )x) =
f(xy™"). Let o be a (continuous) unitary operator on L*(G) with the property o 'm,0 = 7o),
where « is an injective endomorphism on I'. Also let ¢ be a (continuous) topological automorphism
on G such that 6(I') C T'.

The Fourier transform”: L'(G) — Co(G),  f +— f, is defined by f(£) = [ f(x)é(x)dx. The
Fourier transform can be extended to a unitary isomorphism from L*(G) to L*(G), known as the
Plancherel transform (see [11]).

In this paper, we generalize the notion of GMS for L?*(G). In Section 2, a necessary and
sufficient condition for existence of pseudoframes for Paley-Wiener subspaces is studied. Based
on this concept, a formal definition of a GMS for a locally compact abelian group is given in
Section 3. Consequently, construction methods for GMSs are also explained. Furthermore, a
construction that allows us to obtain affine pseudoframes associated with such a GMS is given in
Section 4.

Our conclusions are mainly generalizations of results of Li in [18].

2. Existence of pseudoframes for subspaces of L*(G)

There are some examples in L>(G) such that {m,®},er 18 neither generates MRA nor FMRA. Nev-
ertheless a stable expansion for elements of a closed subspace of L*(G) exists in term of {my@}yer
(see [1, 17, 19, 20]). The following is such an example.
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Example 2.1. Let G = RxR and I' = Z x Z. Consequently, [' = Z x Z = T x T. Define a function
¢ € L*(G) such that

. 1 ()/177/2) € [_4_117 %)2
¢(y1,y2) = { decaying to zero continuosly (y1,72) € [-3,3)* — [-1. 1)*
0 outside of [—%,% 2

Let A := [—;11, %)2 and define V,, := PW, that is the Paley-Wiener space, the space of all band-
limited functions with bandwidth in A (see [1]). By Shannon sampling theorem for L*(R%) [23],

and for all f € PW, we have

f(-x’ )7) = Z(m,n)EZXZ f(m7 n)ﬂ(rn,n)¢(x’ }’)

Since the function @(y1,¥2) = X onmezxz |¢(y1 + m,y, + n)? is continuous, we are not able to find
the lower frame bound for {7, 1@} mnezxz- SO AT onn@}mmezxz cannot be a frame for the closure
of the span of {,, n¢(t1,12) : (m,n) € Z X Z}.

Also, from the fact that ¢ ¢ PW,, the sequence {7(,,@}mmezxz 1s not a frame for PW,.
Whereas, if we define V; := PW,ia, j € Z, we have V; C V;.y, U;V; = L*(G) and ;V; = {0}.

Example 2.1 leads us to define the concept of pseudoframes on L*(G) for a locally compact
abelian group G. For a uniform lattice I' in G, let 7 : ' — U(L*(G)) be the translation represen-
tation which is defined by (7, f)(x) = f(xy™).

Definition 2.2. Let ¢, € L*(G) and X be a closed subspaces of L*(G). The family {r,¢},er is
said to be a pseudoframe with respect to {m,/},r for X, if for every x € X,

X = Z(x, T TP
yel

It is important to note that ,¢ and 7,1 need not be contained in X. Also they are not generally
commutable, this means there exists x € X such that the following is not true,

X = Zyef(x’ Ty .

In the following theorem, we are going to find a sufficient and necessary condition for the
functions ¢ and ¢ such that their translations forms a pseudoframe.

Theorem 2.3. Let ¢ € L*(G) be such that |@| > 0, a.e. and $ be zero outside of T. For a fixed ¢ > 0,
let A :={y € G : l6()| > ¢} be closed and let Vyy := {f € L*(G) : suppf C A}). Fora W € LX(G),
{my@}yer forms a pseudoframe for Vi with respect to {m,\},er if and only if

PUxa = xa ace.

Moreover, if yr satisfies [y > 0 on ', and the above equality holds, then ¢ and 7,y commute, in
the sense that for any x € X,

X = Z(x, TG = Z(x, T, .

yell yell
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Proof. If f € V,, then suppf C A. By the assumptions, suppg C [. Now compactness of I
implies that supp¢ is compact. On the other hand A is closed and so the fact that A C suppd
implies that A is compact. Hence suppf is compact.

By Weyl’s formula we have

O (fmmdly) = > (fmudd)ym)
nell nel’
= D (fomwdan
nel’

= fG FOROAMAAS)Y ()

nel

nell

= ). f > FEDGEDED RT3y Yy )
G/T* gert

= b Y O FEDHED) v

nel &ert

= d(Q . FENIED) T

e+

= ) Y. fEnien.

&elt

The facts that ¢ and f are zero outside of I imply that the only nonzero term in the last summation

is ) fI). So

Bdxn = xa ae.
For two Bessel families {7r,¢},er and {7, y},er in L*(G), define U,V : L*(G) — () by U(f) =
{f, myd)lyer and V(f) = {(f,m,¥)}yer. From [19], we know that {m,¢},cr forms a pseudoframe

with respect to {m,y} for X if and only if

V*UP =P,

where P is the orthogonal projection on X and also {r,¢},cr and {m,/},cr commute if and only if
V*UP = P = PU"V, where V* and U" are the adjoints of U and V, respectively. Indeed, we have

(f,PUVg)

(Pf,UVg)

(U*Vg,Pf)

D (& m W)y, PF)

yel

D (Pfm, )i, @)

yell

(Pf, > (g mmy

yell

<}{f’g> ::<j:IDg>
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which implies that PU*V = P. Thus {r,¢},cr and {7,¥},cr commute. L]
The following result of Li (Theorem 1, [18]) is a consequence of Theorem 2.3.

Corollary 2.4. Let ¢ € L*(R) be such that || > 0 a.e. on a connected neighborhood of 0 in [—%, %)

and |¢| = 0, a.e. otherwise. Define Q = {y € R : || > ¢ > 0}, and let Vy := PWq = {f € L*(R) :

supp(f) C Q). Then, for a ¢ € L*(R) and {nd}iez is a pseudoframe of translates for Vy with

respect to {m}ey if and only if (251@)(9 = Xaq a.e. Moreover, if Y is also Sucﬁ that || > 0 a.e. on
11

a connected neighborhood of 0 in [-3, 3), and | = 0 a.e. otherwise, and ¢y = yq a.e. holds,

then {my P}z, and {mlez, are commutative pair of pseudoframe for X.

3. Generalized Multiresolution Structure

In this section, by applying Theorem 2.3, we are going to construct a generalized multiresolution
structure for locally compact abelian groups. First, we define the concept of generalized multires-
olution structure (GMS) for L?(G), where G is a locally compact abelian group.

Let 7 : T — U(L?*(G)) be the translation representation and also, let o be a unitary operator
on L*(G) with the property o' 7,07 = 7a(y), Where « is an injective endomorphism on I'. Also let
¢ be an automorphism on G such that 6(I') c T.

Definition 3.1. A generalized multiresolution structure (GMS), {V;, ¢, Y} ez of L*(G) is an in-
creasing sequence of the closed subspaces V; C L*(G) and two elements ¢,y € L*(G) such that
the following conditions hold

1. U;V; = LX(G),n;V, = {0},

2. feV;ifandonlyif of € V},,

3. f € Vyimplies thatm, f € Vo, forall y € T,

4. {m,¢ : y € T'} is a pseudoframe for V, with respect to {m,y : y € T'}.

Remark 3.2. If {r,¢},er and {7,i},cr are dual frames, then GMS is a frame multiresolution analy-
sis. Also, if {m,¢},er is an exact frame for V,, and i € V,, then GMS is an multiresolution analysis.

Theorem 3.3. Suppose that {7, ¢},cr is a pseudoframe for Vi with respect to {m}yer and V; :=
{f € LXG) : 07/ f € Vy}, then {0/ rtyd}yer is a pseudoframe for V; with respect to {0/, }yer.

Proof. For f € V;, wehave o/ f € Vo. So o™/ f = 3 (o f, m)m, . We have o* = o', since
o is unitary. Thus
f= Z<O-_]f’ m)oin,g = Z<f’ o'myoin,g.
yell yel

]

Corollary 3.4. Let ¢,y € L*(G) and V, has the properties specified in Theorem 2.3 and V; is
similar to Theorem 3.3, then {V;, ¢, ¥} ; forms a GMS for L*(G).
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Proof. The inclusion V; C V;,; follows from the fact that V; defined by Theorem 3.3 is equivalent
to PWyiy and PWy C PWyg). Since o(I) € I we have f(é) c I. Now let f ¢ PW,. Then
suppf is not a subset of A, so suppf is not a subset of A(S), consequently, ' ¢ PWy. Therefore,
PWa C PWys).

Trivially the set of all band-limited functions, that their Fourier transform has a bounded sup-
port, is dense in L*(G). On the other hand, the intersection of all band-limited function is the trivial
function.

For proving condition 3. of Definition 3.1, note that if f € Vy, then [ = X, (f, m)m,6.
Therefore,

myf = Z(f S TN T = Z( oy = Z<ﬂ7 fr ), 0.

nel’ nel’ nel

Thus n, f € Vj. Other conditions of Definition 3.1 are valid, obviously. O]

Example 3.5. Let G = R xR andI' = Z x Z. Let ¢ € L*(G) be such that

1 0<y +7; <1, ae.
¢y, ¥2) =1 2-4 v’ +3 T <yi+y; <1 ae
0 otherwise.

Put A := {(y1,72) € RXR : [d(y1,72)| = 1} = {(37.73) : 0 < ¥} +¥; < 1} and define Vy := PW,.
Now select ¢ € L*(G) such that

1
1 0<yi+y; <1 ae.

Yy, y2) =4 3-8 [yi+7; E<Yi+ys<g ae
0 otherwise.

On A, we have ./ = 1, thus {V}, ¢, } forms a GMS for the space of L*(G).

Note that for the Haar measure df on G, and an endomorphism 6, the formation d(d(¢)) induces
a Haar measure. Thus there is a positive number |0 such that d(6(¢)) = |0|dt. It is obvious that
d(67'(t)) = |6|"'dt. Now we define a suitable dilation by o () := |6|‘%f(6(t)).

Let two complex families {ho(1)}er, {hy(1)}yers (ho, hy : T' — C are two functions) be such
that the following summations are convergent,

Ho(©) := ) hom&m), Hy(©) := ) hsmém, (€€ G).

nel’ nel

Proposition 3.6. Suppose Hy and H;, generate ¢ and i, respectively, as

(1) = > ho(Nom(t), Y(t) = ) Iy()om, (1)

yel yell

and ¢, € L*(G) have the properties specified in Theorem 2.3. Then {m,@}yer forms a pseudoframe
for Vo with respect to {m,r},er if and only if
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H().HSXA((;—I) = |5L\/A(6’1)'
Where A(67") := {ys~! : y € A}.

Proof. Taking the Fourier transform of ¢, we get

3O = ) hoomeNe)

yell

> ) [ 1o sonemar

yell

Zho()’) fG 6172 (&G (ynd(y™' (1))

yell

Zho()/) fc 16172 (DEG (YEG (D)loldr

yell

= |61 Ho(é5 " )d(&s™).

So, $(£8) = |61 Hy(€)d(£). Consequently Ho.Hix a1y = 10lY a1y O

4. Affine pseudoframes of L*(G)

We shall denote by W, the orthogonal complement of Vj, in V|, as usual, in order to split a function
f of V; into two functions in V,; and W, respectively.

Definition 4.1. Let {V}, ¢, ¢} ez be a given GMS and ¢*,y* be two functions in L*(G). We say
{m,¢,m,¢"},er 1s an affine pseudoframe for V; with respect to {m, ¢, m,¢"},cr, if and only if

F= ) fmmng+ Y (fompmd',  (f € Vy).
yell yel

In this case {m, m, /" },er 1s called a dual pseudoframe of {7, ¢, 7, ¢*},er.

We are going to characterize conditions for which {r,¢, 7,¢"},er is an affine pseudoframe for
V1 with respect to {m,y, m,)"},er. First we have the following.

Proposition 4.2. Let {h(y)}yer be such that H\(§) = X er hl(n)ng) is convergent, H{(0) = 0 and
Hy € L™(F). Suppose that ¢ € L(G) and §(t) = 161* 5er hoM(@(tyy™), for the family tho@m)er
such that Hy(§) = X.,er ho(mé&(n) is convergent. Then there exists € L*(G) such that

w(t) =161 ) m(g@ny ™). (4.1)
yell

Proof. Define
J() = 161 Hy(d) | | 1617 Ho(ws™).

j=2
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By the equality ¢(¢) = Hy(£6™)p(£57"), we have
(w) = 16 Hy (w5 )d(wo™") (4.2)

Hence ¢ € L*(G), since ¢ € L*(G) and H, € L“(f). It is now sufficient to use Parsval’s Theorem
and inverse Fourier transform of (4.2). to obtain (4.1). O

Suppose A is a subset of G. For the next theorem we need the following I'-periodic function

Aaly) = Z Xalyn).

nelt

Theorem 4.3. Let A be the bandwidth of the subspace V defined by Theorem 2.3. The family
{my@,m,¢"}yer forms a pseudoframe for V| with respect to {m\, m "} er if and only if there are
two functions Gy, Gy in Lz(f) such that

Go(§)H(OAAE) + G1(EH[(E)AAE) 2An(é), ae.
Go(&H(E1p67DANE) + GIOH[(E1p67DAAE) = 0,a.e.

Proof. The fact that {; ,},er generates the elements of Vy, implies that for any f € Vi,
fotig) = D (FmXmd vig) + D (oW X' g, (€ D).

yel yel
Now define
coly) = (fimp),

C1(7) = <f’w1,y>a
dOCY) <f;764ﬂ*X

and also let
20 = (18,010, @) = (8" Y ).
We have
cim) = ) cogo@EN ™) + D dsMi @) ™)

yell yell
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By takeing the Fourier series, we have

On the other hand, we know

Similarly,

co(y)

Ci(&)

Il Il Il
S5

D 0o HEm)

nel’ yell

+ ) dgi () HEm

nel’ yel’

= D 2, 008mEm)

nel’ yel’

+ Z Z do(y)g1(EmS(y))

nel’ yel’

- Z Z co(Y)go(MEMEDS(Y))

nell yel’

£ doy)g1 EMEG)

nel’ yel’

= Y aMEGH)) Y gomEm)

yell nell

+ ) doEGH)) ) &1Em

yell nel

= Co(£0)Go(&) + Do(£6)G1(8).

FOmwds = fG Fyudi

Fiay) Y0 Hsmw o)

nell

> ettnien [ st 60 s
G

nell

D I8N ™) f FOw@@On N
G

nel

> @) Mei(n).

nel’

do(y) = Y B (@) er(m).

nell

52
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Now, their Fourier series are

Co(£6)

D WEGCH) = D > Iym6() Heined)

yel yell nel’

= > > ahmEmy™)

nel’ yel’

= D cEm ) hmEw)

nel yell

1 - _
= 5[ aEm Y HmEy)

nell yel

+ L amEMTEm) ) HMENHE )]

nel’ yell
1 -
= SICOH© + Ci(é136- HH (€167 D).

Similarly,

1 -
Dy(£6) = SIC1(OH; () + Ci(£1:6 HH (€167 D).

Combining the above relations, we find that

Go@OIICIEHE) + C1(€1p6™HH(E1:67D)]
GI®IC1EH; () + C1(&1:67)H; (E1¢67D)]
[Go(&H(é) + GI(OHE)]IC1(€)
[Go(©)H(€1:67") + Gi(EH;(E1:5-DIC (E1p6 ™).

2C,(8)

—+

+

Consequently,

Go(OHGEOAAE) + GIEOH[(EALNE) = 2Ax(E),a.e.

Go(H[ (10 )ANE) + Gi(OH[(E1307)AN(E) 0,a.e.
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