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Abstract
Let X be an n−square complex matrix with the Cartesian de-
composition X = A + iB, where A and B are n × n Hermitian
matrices. It is known that ∥X∥2p ≤ 2(∥A∥2p + ∥B∥2p), where p ≥ 2
and ∥.∥p is the Schatten p−norm. In this paper, this inequality
and some of its improvements are studied and investigated for
the joint C−numerical radius, joint spectral radius, and for the
C−spectral norm of matrices.

c⃝ (2016) Wavelets and Linear Algebra

1. Introduction and preliminaries

Let Mn be the algebra of all n × n complex matrices and Un be the group of unitary matrices
in Mn. For every X ∈ Mn with singular values s1 ⩾ s2 ⩾ · · · ≥ sn, and for every 2 ≤ p < ∞,
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let ∥X∥p = (
∑n

j=1 sp
j )

1
p be the Schatten p−norm of X. Also, the spectral norm of X is defined as

∥X∥ = max∥x∥2=1 ∥Xx∥2, where ∥.∥2 is the Euclidean vector norm on Cn. It is known that ∥X∥ = s1

which is usually denoted by ∥X∥∞. Also, it is evident that these norms are unitarily invariant. For
more information, see [8].

Let X,C ∈Mn have eigenvalues α1, . . . , αn and γ1, . . . , γn, respectively. The C−spectral radius,
C−numerical radius and the C−spectral norm of X are defined and denoted, respectively, by:

ρC(X) = max{|
n∑

j=1

α jγσ( j)| : σ is a permutation of {1, 2, . . . , n}},

rC(X) = max{|tr (CUXU∗)| : U ∈ Un} (1.1)

and
∥X∥C = max{|tr (CUXV∗)| : U,V ∈ Un}.

It is known that

ρC(X) ⩽ rC(X) ⩽ ∥X∥C =
n∑

j=1

s j(X)s j(C). (1.2)

For the case C = diag(1, 0, . . . , 0) ∈Mn, the inequality (1.2) reduces to

ρ(X) ⩽ r(X) ⩽ ∥X∥,

where ρ(X) = max{|α j| : j = 1, . . . , n} and r(X) = max{|x∗Xx| : x ∈ Cn, x∗x = 1} are the spectral
radius and the numerical radius of X, respectively. One should note that the C−numerical radius
for the case that C ∈ Mn is a nonscalar matrix, is a norm on Mn which is not necessarily invariant
under unitary transformations. Also, the spectral radius is not a norm on Mn. For more information
about the C−numerical radius, C−spectral radius and the C−spectral norm of matrices and their
applications, see [10, 12] and references therein.

Let C ∈Mn. The joint C−numerical radius of (X1, . . . , Xk) ∈Mk
n is

rC(X1, . . . , Xk) := sup{ℓ2(a1, . . . , ak) : (a1, . . . , ak) ∈ WC(X1, . . . , Xk)},

where ℓ2(a1, . . . , ak) =
(∑k

j=1 |a j|2
)1/2

is the usual Euclidean norm, and

WC(X1, . . . , Xk) = {(tr(CUX1U∗), . . . , tr(CUXkU∗)) : U ∈ Un}

is the joint C−numerical range of (X1, . . . , Xk); for more information, see [1] and its references.
By setting C = diag(1, 0, . . . , 0) ∈ Mn, we see that rC(X1, . . . , Xk) reduces to the joint numerical
radius of (X1, . . . , Xk); i.e.,

rC(X1, . . . , Xk) = r(X1, . . . , Xk)
:= sup{ℓ2(a1, . . . , ak) : (a1, . . . , ak) ∈ W(X1, . . . , Xk)},

where W(X1, . . . , Xk) = {(x∗X1x, . . . , x∗Xkx) : x ∈ Cn, x∗x = 1} is the joint numerical range of
(X1, . . . , Xk). Note that for the case k = 1, this notion reduces to relation (1.1). For other classes
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of norms ν on Ck, we can extend our results to the ν−joint numerical radius of (X1, . . . , Xk) ∈ Mk
n,

which is defined as

rν(X1, . . . , Xk) = sup{ν(a1, . . . , ak) : (a1, . . . , ak) ∈ W(X1, . . . , Xk)}.

So, rℓ2(X1, . . . , Xk) = r(X1, . . . , Xk).
Let (X1, . . . , Xk) ∈ Mk

n. The joint spectrum σ(X1, . . . , Xk) is the set of all points (λ1, . . . , λk) ∈
Ck for which there exists a nonzero vector x ∈ Cn such that

X jx = λ jx, j = 1, . . . , k.

The joint spectrum of matrices may be an empty set; for an example, see [13, p. 226]. It can
be a nonempty set; see [2, Proposition 2.3(iii)]. So, we assume, to avoid of trivial cases, that
X1, . . . , Xk are the matrices such that σ(X1, . . . , Xk) is a nonempty set. In this sense, the geometric
joint spectral radius of (X1, . . . , Xk) is defined, e.g., see [4], as

ρ(X1, . . . , Xk) = max{ℓ2(λ1, . . . , λk) : (λ1, . . . , λk) ∈ σ(X1, . . . , Xk)}.

Let X ∈ Mn be a matrix with the Cartesian decomposition X = Re X + iIm X, where Re X =
1
2 (X+X∗) and Im X = 1

2i (X−X∗). Corollary 1 in [5] is an improvement of the following inequality:

∥X∥2p ≤ 2(∥Re X∥2p + ∥Im X∥2p), (1.3)

where p ≥ 2. In the two last decades, some interesting norm inequalities involving the Cartesian
decomposition of matrices have been obtained; see for example [9] and its references. These kinds
of inequalities have applications in the analysis of operators [3], and in mathematical physics [14].
In the next section of this paper, we study the inequality (1.3) and some of its improvements for
the joint C−numerical radius, joint spectral radius, and for the C−spectral norm of matrices.

2. Main results

At first, we investigate the inequality (1.3) for the joint C−numerical radius of matrices.

Theorem 2.1. Let (X1, . . . , Xk) ∈Mk
n, and C ∈Mn. Then

r2
C(X1, . . . , Xk) ⩽ 2

(
r2

C(Re X1, . . . ,Re Xk) + r2
C(Im X1, . . . , Im Xk)

)
.
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Proof. For every U ∈ Un, we have

2
(
r2

C(Re X1, . . . ,Re Xk) + r2
C(Im X1, . . . , Im Xk)

)
⩾ 2ℓ22(tr(CU(Re X1)U∗), . . . , tr(CU(Re Xk)U∗))

+ 2ℓ22(tr(CU(Im X1)U∗), . . . , tr(CU(Im Xk)U∗))

= 2
k∑

i=1

(|tr(CU(Re Xi)U∗)|2 + |tr(CU(Im Xi)U∗)|2)

=
1
2

k∑
i=1

(|tr(CU(Xi + X∗i )U∗)|2 + |tr(CU(Xi − X∗i )U∗)|2)

⩾ 1
4

k∑
i=1

(|tr(CU(Xi + X∗i )U∗)| + |tr(CU(Xi − X∗i )U∗)|)2

⩾ 1
4

k∑
i=1

|tr(CU(Xi + X∗i )U∗) + tr(CU(Xi − X∗i )U∗)|2

=

k∑
i=1

|tr(CUXiU∗)|2

= ℓ22(tr(CUX1U∗), . . . , tr(CUXkU∗)).

Taking now the maximum over all U ∈ Un, we obtain the result.

By setting k = 1 in Theorem 2.1, we obtain the following result.

Corollary 2.2. Let X,C ∈Mn. Then

r2
C(X) ⩽ 2

(
r2

C(Re X) + r2
C(Im X)

)
.

Now, we state one of the interesting improvements of Theorem 2.1.

Theorem 2.3. Let (X1, . . . , Xk) ∈Mk
n, and C ∈Mn be a multiple of a Hermitian matrix. Then

r2
C(X1, . . . , Xk) ⩽ r2

C(Re X1, . . . ,Re Xk) + r2
C(Im X1, . . . , Im Xk).

Consequently,

r2(X1, . . . , Xk) ⩽ r2(Re X1, . . . ,Re Xk) + r2(Im X1, . . . , Im Xk).
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Proof. We assume, without loss of generality, that C is Hermitian. For every U ∈ Un, we have

r2
C(Re X1, . . . ,Re Xk) + r2

C(Im X1, . . . , Im Xk)

⩾ ℓ22(tr(CU(Re X1)U∗), . . . , tr(CU(Re Xk)U∗))

+ ℓ22(tr(CU(Im X1)U∗), . . . , tr(CU(Im Xk)U∗))

=

k∑
i=1

(|tr(CU(Re Xi)U∗)|2 + |tr(CU(Im Xi)U∗)|2)

=
1
4

k∑
i=1

(|tr(CU(Xi + X∗i )U∗)|2 + |tr(CU(Xi − X∗i )U∗)|2)

⩾ 1
4

k∑
i=1

|[tr(CU(Xi + X∗i )U∗)]2 − [tr(CU(Xi − X∗i )U∗)]2|

=

k∑
i=1

|tr(CUXiU∗)||tr(CUX∗i U∗)|

=

k∑
i=1

|tr(CUXiU∗)||tr((UXiU∗C)∗)|

=

k∑
i=1

|tr(CUXiU∗)||tr(CUXiU∗)|

=

k∑
i=1

|tr(CUXiU∗)|2

= ℓ22(tr(CUX1U∗), . . . , tr(CUXkU∗)).

Taking now the maximum over all U ∈ Un,we obtain the result. By setting C = diag(1, 0, . . . , 0) ∈
Mn, the second assertion also holds. So, the proof is complete.

By setting k = 1 in Theorem 2.3, we obtain the following result.

Corollary 2.4. Let X,C ∈Mn and let C be a multiple of a Hermitian matrix. Then

r2
C(X) ⩽ r2

C(Re X) + r2
C(Im X).

Consequently,
r2(X) ⩽ r2(Re X) + r2(Im X).

Next, we are going to investigate an improvement of the inequality (1.3) for the C−spectral
radius of matrices. For this, we need the following lemma.

Lemma 2.5. [12, Theorem 4.1] Let C ∈Mn. Then C is normal if and only if ρC(X) = rC(X) for all
normal matrices X ∈Mn.
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Theorem 2.6. Let X,C ∈Mn and let C be a multiple of a Hermitian matrix. Then

ρ2
C(X) ⩽ ρ2

C(Re X) + ρ2
C(Im X).

Consequently,
ρ2(X) ⩽ ρ2(Re X) + ρ2(Im X).

Proof. Since ReX and ImX are Hermitian, the result follows from (1.2), Corollary 2.4 and Lemma
2.5. By setting C = diag(1, 0, . . . , 0) ∈ Mn, the second assertion also holds. So, the proof is
complete.

The following example shows that if C is an arbitrary normal matrix, then the results in Corol-
lary 2.4 and Theorem 2.6 are not true.

Example 2.7. Let C = X = diag(1, 1 + i) ∈M2. Then by Lemma 2.5, we have:

r2
C(X) = ρ2

C(X) = 8, r2
C(Re X) = ρ2

C(Re X) = 5, and r2
C(Im X) = ρ2

C(Im X) = 2.

Hence,
r2

C(X) = ρ2
C(X) = 8 > 7 = r2

C(Re X) + r2
C(Im X) = ρ2

C(Re X) + ρ2
C(Im X).

By the same manner as in the proof of Theorem 2.1, we have the following result in which we
investigate the inequality (1.3) for the C−spectral norm.

Proposition 2.8. Let X,C ∈Mn. Then

∥X∥2C ⩽ 2
(
∥Re X∥2C + ∥Im X∥2C

)
.

Consequently,
∥X∥2 ⩽ 2

(
∥Re X∥2 + ∥Im X∥2

)
.

Now, we state an improvement of Proposition 2.8. For this, we need the following lemma.

Lemma 2.9. [12, Theorem 5.11] Let X ∈Mn have singular values a1 ⩾ · · · ⩾ an and eigenvalues
α1, . . . , αn, where |α1| ⩾ · · · ⩾ |αn|. Moreover, let C = diag(γ1, . . . , γm, 0, . . . , 0) ∈ Mn, where
γ1 ⩾ · · · ⩾ γm > 0. Then ∥X∥C = rC(X) if and only if there exists θ ∈ R such that α j = a jeiθ for all
j = 1, . . . ,m.

Theorem 2.10. Let X ∈Mn have singular values a1 ⩾ · · · ⩾ an and eigenvalues α1, . . . , αn, where
|α1| ⩾ · · · ⩾ |αn|. If C = diag(γ1, . . . , γm, 0, . . . , 0) ∈ Mn, where γ1 ⩾ · · · ⩾ γm > 0, and there
exists a θ ∈ R such that α j = a jeiθ for all j = 1, . . . ,m, then

∥X∥2C ⩽ ∥Re X∥2C + ∥Im X∥2C.

Proof. By Lemma 2.9, we have ∥X∥C = rC(X). So, by Corollary 2.4 and relation (1.2), we have:

∥X∥2C = r2
C(X) ⩽ r2

C(Re X) + r2
C(Im X)

⩽ ∥Re X∥2C + ∥Im X∥2C.

So, the proof is complete.
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Corollary 2.11. Let X ∈ Mn be a normal matrix with eigenvalues α1, . . . , αn, where |α1| ⩾
· · · ⩾ |αn|. If 1 ≤ m ≤ n and α1, . . . , αm lie on a line passing through the origin, and C =
diag(γ1, . . . , γm, 0, . . . , 0), where γ1 ⩾ · · · ⩾ γm > 0, then

∥X∥2C ⩽ ∥Re X∥2C + ∥Im X∥2C.

Consequently, if X ∈Mn is a normal matrix, then

∥X∥2 ⩽ ∥Re X∥2 + ∥Im X∥2.

The following example shows that in Theorem 2.10, we can not remove the condition α j =

a jeiθ for all j = 1, . . . ,m.

Example 2.12. If X =
[

0 1
0 0

]
and C = diag(1, 0), then a1 = 1 and α1 = 0. So, there is no θ ∈ R

such that α1 = a1eiθ. A simple calculation shows that:

∥Re X∥2C + ∥Im X∥2C =
1
2
< 1 = ∥X∥2C.

Since σ(X1, . . . , Xk) ⊆ W(X1, . . . , Xk),

ρ(X1, . . . , Xk) ⩽ r(X1, . . . , Xk). (2.1)

Also, it is known, e.g., see [2, Proposition 2.3(iii)], that if (X1, X2, . . . , Xk) is a family of commuting
normal matrices, then

W(X1, . . . , Xk) = conv(σ(X1, . . . , Xk)), (2.2)

where conv(.) denotes the convex hull. Now, we state the following proposition which follows
from relations (2.1) and (2.2), and Corollary 2.4. It is an improvement of the inequality (1.3) for
the joint spectral radius of matrices.

Proposition 2.13. Let X1, X2, . . . , Xk ∈ Mn be such that {Re Xi : i = 1, . . . , k} and {Im Xi : i =
1, . . . , k} are two commuting families. Then

ρ2(X1, . . . , Xk) ⩽ ρ2(Re X1, . . . ,Re Xk) + ρ2(Im X1, . . . , Im Xk).

Finally, we present some ν−joint numerical radius inequalities. See [6, 7, 11] for related in-
equalities. For any vectors x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ Ck, we define |x| = (|x1|, . . . , |xk|),
and we say that |x| ⩽ |y| if |xi| ⩽ |yi| for all i = 1, . . . , k. A vector norm ν on Ck is said to be:
(a) monotone if the inequality |x| ⩽ |y| implies that ν(x) ⩽ ν(y) for all x, y ∈ Ck;
(b) absolute if ν(x) = ν(|x|) for all x ∈ Ck.
It is known, e.g., see [8], that the monotonicity of a norm on Ck is equivalent to its absolutivity.
For example, the familiar ℓp−vector norms on Ck which are defined as

ℓp(x1, . . . , xk) =

 k∑
j=1

|x j|p


1/p

and ℓ∞(x1, . . . , xk) = max
1⩽i⩽k

|xi|,

where 1 ⩽ p < ∞, are absolute, and consequently are monotone. Next, we state the following
proposition.
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Proposition 2.14. If ν is an absolute norm on Ck, then for all X1, X2, . . . , Xk ∈Mn,

rν(X1, . . . , Xk) ⩽ ν(r(X1), . . . , r(Xk)).

Consequently,
r(X1, . . . , Xk) ⩽ ℓ2(r(X1), . . . , r(Xk)).

Proof. Let X1, X2, . . . , Xk ∈ Mn. For any arbitrary (a1, . . . , ak) ∈ W(X1, . . . , Xk), we have that
|ai| ⩽ r(Xi) for all i = 1, . . . , k. So, the absolutivity, and hence, the monotonicity of ν implies that

ν(a1, . . . , ak) = ν(|a1|, . . . , |ak|) ⩽ ν(r(X1), . . . , r(Xk)).

Taking now the maximum over all (a1, . . . , ak) ∈ W(X1, . . . , Xk), we obtain the result. By setting
ν = ℓ2, the second assertion also holds. So, the proof is complete.

The following example shows that the absolutivity of the norm in the Proposition 2.14 is es-
sential.

Example 2.15. Define ν(x1, x2) = |x1 − x2| + |x2|, which is not absolute. Now, by considering
X1 = diag(−1,−2) and X2 = diag(1, 0), it is clear that

rν(X1, X2) = max{ν(a1, a2) : (a1, a2) ∈ W(X1, X2)} = 3.

But, ν(r(X1), r(X2)) = ν(2, 1) = 2. Hence, ν(r(X1), r(X2)) < rν(X1, X2).

The following definition is related to the study of the converse of Proposition 2.14.

Definition 2.16. A vector norm ν on Ck is said to be weakly absolute if ν(x) ⩽ ν(|x|) for all x ∈ Ck.

Proposition 2.17. Let ν be a vector norm on Ck such that for all X1, . . . , Xk ∈Mn,

rν(X1, . . . , Xk) ⩽ ν(r(X1), . . . , r(Xk)).

Then ν is a weakly absolute norm on Ck.

Proof. Let γ1, . . . , γk ∈ C. By setting Xi = γiIn, where i = 1, . . . , k, and using Proposition 2.14,
we have that |γi| = r(Xi), and

ν(γ1, . . . , γk) = ν(e∗1X1e1, . . . , e∗1Xke1)
⩽ sup{ν(x∗X1x, . . . , x∗Xkx) : x ∈ Cn, x∗x = 1}
= rν(X1, . . . , Xk)
⩽ ν(r(X1), . . . , r(Xk))
= ν(|γ1|, . . . , |γk|).

Therefore, the proof is complete.

In the final result, we state some inequalities about the joint numerical radius of the direct sum
of matrices.
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Theorem 2.18. Let X1, X2, . . . , Xk ∈Mn and 1 ⩽ p ⩽ ∞. Then

rℓ∞(X1, . . . , Xk) ⩽ ℓ∞(r(X1), . . . , r(Xk)) = r(X1 ⊕ · · · ⊕ Xk)
⩽ rℓp(X1, . . . , Xk)
⩽ ℓp(r(X1), . . . , r(Xk)).

Moreover, if Xi , 0 for all i = 1, . . . , k, then

r(X1 ⊕ · · · ⊕ Xk) = ℓp(r(X1), . . . , r(Xk))⇐⇒ k = 1.

Proof. The first and last inequalities follow from Proposition 2.14. It is clear that there exist
j ∈ {1, 2, . . . , k} and a unit vector x ∈ Cn such that

ℓ∞(r(X1), . . . , r(Xk)) = r(X1 ⊕ · · · ⊕ Xk)
= max

1⩽i⩽k
r(Xi)

= |x∗X jx|
⩽ ℓp(x∗X1x, . . . , x∗Xkx)
⩽ rℓp(X1, . . . , Xk).

So, the proof of the first assertion is complete. Now, to prove the second assertion, we assume that
Xi , 0 for all i = 1, . . . , k, and p < ∞, r(X1 ⊕ · · · ⊕ Xk) = ℓp(r(X1), . . . , r(Xk)) and it is possible that
k ⩾ 2. Let j ∈ {1, . . . , k} be such that

max
1⩽i⩽k

r(Xi) = r(X j).

Therefore, we have

r(X j) =

(r(X j))p +

k∑
i=1,i, j

(r(Xi))p


1/p

.

Hence, Xi = 0 for all i , j, which is a contradiction. The converse of the second assertion, i.e.,
the result for the case k = 1, is easy to investigate. Also, the result is trivial for the case p = ∞.
So, the proof is complete.
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