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Abstract
This article presents an analytic approach to study admissibility
conditions related to classical full wavelet systems over finite
fields using tools from computational harmonic analysis and
theoretical linear algebra. It is shown that for a large class of
non-zero window signals (wavelets), the generated classical full
wavelet systems constitute a frame whose canonical dual is clas-
sical full wavelet frame as well, and hence each vector defined
over a finite field can be represented as a finite coherent sum of
classical wavelet coefficients as well.

c⃝ (2016) Wavelets and Linear Algebra

1. Introduction

Throughout this article, we extend our recent results on classical wavelet systems over prime
fields (finite Abelian groups of prime order) [8, 12, 14] for finite fields [7, 15]. The mathematical
theory of finite fields has significant roles and applications in computer science, information the-
ory, communication engineering, coding theory, cryptography, finite quantum systems and num-
ber theory [16, 22, 23]. Discrete exponentiation can be computed quickly using techniques of fast
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exponentiation such as binary exponentiation within a finite field operations and also in coding
theory, many codes are constructed as subspaces of vector spaces over finite fields, see [17, 19]
and references therein.

Wavelet analysis is a coherent state analysis which employ time-scale representations [9, 10,
11, 13]. The mathematical theory of wavelet analysis is originated from the abstract harmonic
analysis of quasi-regular representations [3, 4, 5]. In a nutshell, wavelet analysis of periodic data
classically rely on embedding the vector space of finite size data in the Hilbert space of all complex
valued sequences with finite ∥.∥2-norm. This method is not on finite dimensional analogous to the
continuous setting as is the case in Gabor analysis [1, 2, 18].

In this article we introduce the abstract notion of classical wavelet group WF associated to the
finite field F, as the group consists of classical dilations and translations. Then we present basic
properties of the classical wavelet systems over the finite field F. It is also shown that for a large
class of non-zero window signals (wavelets), the generated classical full wavelet system constitute
a frame whose canonical dual are classical full wavelet frames as well.

2. Preliminaries and Notations

Let H be a finite dimensional complex Hilbert space and dimH = N. A finite system (se-
quence) A = {y j : 0 ≤ j ≤ M − 1} ⊂ H is called a frame (or finite frame) for H, if there exist
positive constants 0 < A ≤ B < ∞ such that

A∥x∥2 ≤
M−1∑
j=0

|⟨x, y j⟩|2 ≤ B∥x∥2, for all x ∈ H. (2.1)

If A = {y j : 0 ≤ j ≤ M − 1} is a frame for H, the synthesis operator F : CM → H is F{c j}M−1
j=0 =∑M−1

j=0 c jy j for all {c j}M−1
j=0 ∈ CM. The adjoint (analysis) operator F∗ : H→ CM is F∗x = {⟨x, y j⟩}M−1

j=0
for all x ∈ H. By composing F and F∗, we get the positive and invertible frame operator S : H→
H given by

x 7→ S x = FF∗x =
M−1∑
j=0

⟨x, y j⟩y j for all x ∈ H, (2.2)

In terms of the analysis operator we have A∥x∥22 ≤ ∥F∗x∥22 ≤ B∥x∥22 for x ∈ H. If A is a finite frame
for H, the set A spans the complex Hilbert space H which implies M ≥ N, where M = |A|. It
should be mentioned that each finite spanning set in H is a finite frame for H. The ratio between
M and N is called as redundancy of the finite frame A (i.e. redA = M/N), where M = |A|. If
A = {y j : 0 ≤ j ≤ M − 1} is a finite frame for H, each x ∈ H satisfies the following reconstruction
formulas

x =
M−1∑
j=0

⟨x, S −1y j⟩y j =

M−1∑
j=0

⟨x, y j⟩S −1y j. (2.3)

In this case, the complex numbers ⟨x, S −1y j⟩ are called frame coefficients and the finite sequence
A• := {S −1y j : 0 ≤ j ≤ M − 1} which is a frame for H as well, is called the canonical dual
frame of A. A finite frame A = {y j : 0 ≤ j ≤ M − 1} for H is called tight if we have A = B. If
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A = {y j : 0 ≤ j ≤ M − 1} is a tight frame for H with frame bound A, then the canonical dual frame
A• is exactly {A−1y j : 0 ≤ j ≤ M − 1} and for x ∈ H we have

x =
1
A

M−1∑
j=0

⟨x, y j⟩y j. (2.4)

For a finite group G, the finite dimensional complex vector space CG = {x : G → C} is a
|G|-dimensional Hilbert space with complex vector entries indexed by elements in the finite group
G. 1 The inner product of two vectors x, y ∈ CG is ⟨x, y⟩ = ∑

g∈G x(g)y(g), and the induced norm
is the ∥.∥2-norm of x, that is ∥x∥2 =

√
⟨x, x⟩. For CZN , where ZN denotes the cyclic group of N

elements {0, . . . ,N − 1}, we simply write CN at times.
Time-scale analysis and time-frequency analysis on finite Abelian group G as modern com-

putational harmonic analysis tools are based on three basic operations on CG. The translation
operator Tk : CG → CG given by Tkx(g) = x(g − k) with g, k ∈ G. The modulation operator
Mℓ : CG → CG given by Mℓx(g) = ℓ(g)x(g) with g ∈ G and ℓ ∈ Ĝ, where Ĝ is the character/dual
group of G. As the fundamental theorem of finite Abelian groups provides a factorization of G
into cyclic groups, that is, G � ZN1 × ZN2 × . . . × ZNd as groups, which implies Ĝ � G, we can
assume that the action of ℓ = (ℓ1, . . . , ℓd) ∈ Ĝ on g = (g1, ..., gd) ∈ G is given by

ℓ(g) = ((ℓ1, ℓ2, . . . , ℓd), (g1, . . . , gd)) =
d∏

j=1

eℓ j(g j),

where eℓ j(g j) = e2πiℓ jg j/N j for all 1 ≤ j ≤ d. Thus

ℓ(g) = ((ℓ1, ℓ2, . . . , ℓd), (g1, . . . , gd)) = e2πi(ℓ1g1/N1+ℓ2g2/N2+...+ℓdgd/Nd).

The character/dual group Ĝ of any finite Abelian group G is isomorphic with G via the canonical
group isomorphism ℓ 7→ eℓ, where the character eℓ : G → T is given by eℓ(g) = ℓ(g) for all g ∈ G.
The third fundamental operator is the discrete Fourier transform (DFT) FG : CG → CĜ = CG

which allows us to pass from time representations to frequency representations. It is defined as a
function on Ĝ by

FG(x)(ℓ) = x̂(ℓ) =
1
√
|G|

∑
g∈G

x(g)ℓ(g) (2.5)

for all ℓ ∈ Ĝ and x ∈ CG.
That is equivalently

FG(x)(ℓ) = x̂(ℓ) =
1
√
|G|

N1−1∑
g1=0

. . .

Nd−1∑
gd=0

x(g1, . . . , gd)((ℓ1, . . . , ℓd), (g1, . . . , gd)),

1|G| denotes the order of the group G, or, more generally, the cardinality of a set G.
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for all ℓ = (ℓ1, . . . , ℓd) ∈ Ĝ and x ∈ CG. Translation, modulation, and the Fourier transform on the
Hilbert space CG = CĜ are unitary operators with respect to the ∥.∥2-norm. For ℓ, k ∈ G � Ĝ we
have (Tk)∗ = (Tk)−1 = T−k and (Mℓ)∗ = (Mℓ)−1 = M−ℓ. The circular convolution of x, y ∈ CG is
defined by

x ∗ y(k) =
1
√
|G|

∑
g∈G

x(g)y(k − g), for k ∈ G.

In terms of the translation operators we have x∗y(k) = 1√
|G|

∑
g∈G x(g)Tgy(k) for k ∈ G. The circular

involution or circular adjoint of x ∈ CG is given by x∗(k) = x(−k). The complex linear space CG

equipped with the ∥.∥1-norm, that is ∥x∥1 =
∑

g∈G |x(g)|, the circular convolution, and involution is
a Banach ∗-algebra, which means that for all x, y ∈ CG we have

∥x ∗ y∥1 ≤
1
√
|G|
∥x∥1∥y∥1, and ∥x∗∥1 = ∥x∥1.

The unitary DFT (2.5) satisfies

T̂kx = Mk̂x, M̂ℓx = T−ℓ̂x, x̂∗ = x̂, x̂ ∗ y = x̂.̂y,

for x, y ∈ CG, k ∈ G and ℓ ∈ Ĝ. See standard references of harmonic analysis such as [20] and
references therein.

3. Harmonic Analysis over Finite Fields

Throughout this section, we present a summary of basic and classical results concerning har-
monic analysis over finite fields. For proofs we refer readers to see [16, 21, 23] and references
therein.

Let F = Fq be a finite field of order q. Then there is a prime number p and an integer number
d ≥ 1 in which q = pd. Every finite field of order q = pd is isomorphic as a field to every other
field of order q. From now on, when it is necessary we denote any finite field of order q = pd by
Fq otherwise we just denote it by F. The prime number p is called the characteristic of F, which
means that

p.τ =
p∑

k=1

τ = 0 for all τ ∈ F.

The absolute trace map t : F→ Zp is given by τ 7→ t(τ) where

t(τ) =
d−1∑
k=0

τpk
for all τ ∈ F.

The absolute trace map t is a Zp-linear transform from F onto Zp. It should be mentioned that in
the case of prime fields, the trace map is readily the identity map.

There exists an irreducible polynomial P ∈ Zp[t] of degree d and a root θ ∈ F of P such that
the set

Bθ := {θ j : j = 0, ..., d − 1} = {1, θ, θ2, ..., θd−2, θd−1},
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is a linear basis of F over Zp. Then Bθ is called as a polynomial basis of F over Zp and θ is called
as a defining element of F over Zp. Let H = Hθ ∈ Zd×d

p be the d × d matrix with entries in the field
Zp given by H jk := t(θ j+k) for all 0 ≤ j, k ≤ d − 1, which is invertible with the inverse S ∈ Zd×d

p .
Then the dual polynomial basis

B̃θ := {Θk : k = 0, ..., d − 1}, (3.1)

given by

Θk =

d−1∑
j=0

Sk jθ
j, (3.2)

satisfies the following orthogonality relation

t(θkΘ j) = δk, j, (3.3)

for all j, k = 0, ..., d − 1.

Proposition 3.1. Let F be a finite field of order q = pd with trace map t : F→ Zp. Then

1. For τ ∈ F we have the following decompositions

τ =

d−1∑
k=0

τ(k)θ
k =

d−1∑
k=0

τ[k]Θk,

where for all k = 0, ..., d − 1 we have

τ(k) := t(τΘk), τ[k] := t(τθk).

2. For τ ∈ F the coefficients (components) {τ(k) : k = 0, ..., d − 1} and {τ[k] : k = 0, ..., d − 1}
satisfy

τ(k) =

d−1∑
j=0

Sk jτ[ j], τ[k] =

d−1∑
j=0

Hk jτ( j),

for all k = 0, ..., d − 1.

Let θ ∈ F be a defining element of F over Zp. Then θ defines a Zp-linear isomorphism Jθ :
F→ Zd

p by
γ 7→ Jθ(τ) := τθ = (τ(k))d

k=1, for all τ ∈ F. (3.4)

Then the additive group of the finite field F, F+, is isomorphic with the finite elementary group Zd
p

via Jθ. Thus, using classical dual theory on the ring Zd
p we get

eτθ(τ
′
θ) = e1,p

(
τθ.τ

′
θ

)
= e1,p

 d∑
k=1

τ(k)τ
′
(k)

 , for all τ, τ′ ∈ F.
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Remark 3.2. The dual (character) group of the finite elementary group Zd
p, that is Ẑd

p, is precisely{
eℓ : ℓ = (ℓ1, ..., ℓd) ∈ Zd

p

}
,

where the additive character eℓ : Zd
p → T is given by

eℓ(g) = e1,p(ℓ · g) = exp
(
2πi ℓ · g

p

)
=

d∏
k=1

eℓk,p(gk) for all g = (g1, ..., gd) ∈ Zd
p,

with ℓ · g = ∑d
k=1 ℓkgk.

Let χ : F→ T be given by

χ(τ) := exp
(
2πit(τ)

p

)
= e1,p(t(τ)), for all τ ∈ F.

Since the trace map is Zp-linear, we deduce that χ is a character on the additive group of F (i.e
χ ∈ F̂+).

Proposition 3.3. Let F be a finite field of order q = pd with trace map t : F→ Zp. Then

1. For τ, τ′ ∈ F we have

t(ττ′) =
d−1∑
j=0

d−1∑
k=0

H jkτ( j)τ
′
(k) =

d−1∑
j=0

d−1∑
k=0

S jkτ[ j]τ
′
[k] =

d−1∑
k=0

τ(k)τ
′
[k] =

d−1∑
k=0

τ[k]τ
′
(k).

2. For τ, τ′ ∈ F we have

χ(ττ′) = e1,p

 d∑
k=1

τ(k)τ
′
[k]

 = e1,p

 d∑
k=1

τ[k]τ
′
(k)

 .
For γ ∈ F, let χγ : F→ T be given by

χγ(τ) := χ(γτ) = exp
(
2πit(γτ)

p

)
= e1,p(t(γτ)), for all τ ∈ F.

Then χγ is a character on the additive group of F (i.e χγ ∈ F̂+). For γ = 1 we get χ = χ1.
If α ∈ F∗ the character χα is called as a non-principal character. The interesting property

of non-principal characters is that any non-principal character can parametrize the full character
group of the additive group of F. In details, if α ∈ F∗, then we have

F̂+ =
{
χαγ : γ ∈ F

}
.

Thus, the mapping γ 7→ χαγ is group isomorphism of F onto F̂+. Then for α = 1 we get

F̂+ =
{
χγ : γ ∈ F

}
. (3.5)
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Remark 3.4. The characterization (3.5) for the character group of finite fields is a consequence of
applying the trace map in duality theory over finite fields. This characterization plays significant
role in structure of dual action and hence wave packet groups over finite fields, see Section 4.

Then the Fourier transform of a vector x ∈ CF at γ ≍ χγ ∈ F̂+ is

x̂(χγ) =
1√
pd

∑
τ∈F

x(τ)χγ(τ) =
1√
pd

∑
τ∈F

x(τ)F(γ, τ),

where the matrix F : F × F→ C is given by

F(γ, τ) := χ(γτ) = exp
(
2πit(γτ)

p

)
, for all γ, τ ∈ F.

Remark 3.5. (i) For β ∈ F, the translation operator Tβ : CF → CF is

Tβx(τ) := x(τ − β), for all τ ∈ F and x ∈ CF.

(ii) For γ ≍ χγ ∈ F̂+, the modulation operator Mγ : CF → CF is

Mγx(τ) := χγ(τ)x(τ), for all τ ∈ F and x ∈ CF.

4. Classical Wavelet Groups over Finite Fields

The abstract notion of wave packet groups over prime fields (finite Abelian groups of prime
order) introduced in [8, 12, 14].

Let F = Fq be a finite field of order q = pd. The finite multiplicative group

F∗ := F − {0} = {α ∈ F : α , 0}, (4.1)

of nonzero elements of F is a finite cyclic group of order q − 1 = pd − 1. Any generator of the
finite cyclic group F∗ is called a primitive element or primitive root of F over Zp.

For α ∈ F∗, define the dilation operator Dα : CF → CF by

Dαx(τ) := x(α−1τ),

for all τ ∈ F and x ∈ CF.
Hence we state basic algebraic properties of dilation operators.

Proposition 4.1. Let F be a finite field. Then

1. For (α, β) ∈ F∗ × F we have DαTβ = TαβDα.
2. For α, α′ ∈ F∗ we have Dαα′ = DαDα′ .
3. For (α, β), (α′, β′) ∈ F∗ × F we have Tβ+αβ′Dαα′ = TβDαTβ′Dα′ .
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Proof. Let F be a finite field and x ∈ CF. Then
(1) For (α, β) ∈ F∗ × F and τ ∈ F, we can write

DαTβx(τ) = Tβx(α−1τ)

= x(α−1τ − β)
= x(α−1τ − α−1αβ)

= x(α−1(τ − αβ))
= Dαx(τ − αβ) = TαβDαx(τ).

(2) For α, α′ ∈ F∗ and τ ∈ F, we can write

Dαα′x(τ) = x((αα′)−1τ)

= x(α′−1α−1τ)

= Dα′x(α−1τ) = DαDα′x(τ).

(3) It is straightforward from (1) and (2).

Next proposition summarizes analytic properties of dilation operators.

Proposition 4.2. Let F be a finite field and α ∈ F∗. Then

1. Dα : CF → CF is a ∗-isometric isomorphism of the Banach ∗-algebra CF

2. Dα : CF → CF is unitary in ∥.∥2-norm and satisfies (Dα)∗ = (Dα)−1 = Dα−1 .

Proof. (1) Let x, y ∈ CF and τ ∈ F. Then we have

Dα(x ∗ y)(τ) = x ∗ y(α−1τ) =
1
√

q

∑
τ′∈F

x(τ′)y(α−1τ − τ′).

Replacing τ′ with α−1τ′ we get

1
√

q

∑
τ′∈F

x(τ′)y(α−1τ − τ′) = 1
√

q

∑
τ′∈F

x(α−1τ′)y(α−1τ − α−1τ′)

=
1
√

q

∑
τ′∈F

x(α−1τ′)y(α−1(τ − τ′))

=
1
√

q

∑
τ′∈F

Dαx(τ′)Dαy(τ − τ′) = (Dαx) ∗ (Dαy)(τ),

which implies that Dα(x ∗ y) = (Dαx) ∗ (Dαy).
We can also write

(Dαx)∗(τ) = Dαx(−τ)
= x(−α−1τ))

= x∗(α−1τ) = Dαx∗(τ),
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which guarantees (Dαx)∗ = Dαx∗.
(2) Let x ∈ CF. Then we can write

∥Dαx∥22 =
∑
τ∈F
|Dαx(τ)|2

=
∑
τ∈F
|x(α−1τ)|2

=
∑
τ∈F
|x(τ)|2 = ∥x∥22,

which implies that Dα : CF → CF is unitary in ∥.∥2-norm and satisfies

(Dα)∗ = (Dα)−1 = Dα−1 .

In the remainder of this article, we use the explicit characterization of the character group
given by (3.5). Using (3.5), which can be considered as a consequence of analytic and alge-
braic properties of the trace map, the finite field F parametrizes the full character group F̂+. This
parametrization implies a unified labeling on the character group F̂+ with F.

Then we can present the following proposition.

Proposition 4.3. Let F be a finite field and γ ≍ χγ ∈ F̂+. Then
1. Mγ : CF → CF is a unitary operator in ∥.∥2-norm and satisfies (Mγ)∗ = (Mγ)−1 = M−γ.
2. For α ∈ F∗ we have DαMγ = Mα−1γDα.
3. For β ∈ F we have TβMγ = χγ(β)MγTβ.

Proof. (1) This statement is evident invoking definition of modulation operators.
(2) Let α ∈ F∗. Let x ∈ CF and τ ∈ F. Then we can write

DαMγx(τ) = Mγx(α−1τ)

= χγ(α−1τ)x(α−1τ)

= χ(γα−1τ)x(α−1τ)

= χ(α−1γτ)x(α−1τ)

= χα−1γ(τ)x(α−1τ)

= χα−1γ(τ)Dαx(τ) = Mα−1γDαx(τ),

which implies DαMγ = Mα−1γDα.
(3) Let β ∈ F. Let x ∈ CF and τ ∈ F. Then we have

TβMγx(τ) = Mγx(τ − β)
= χγ(τ − β)x(τ − β)
= χγ(−β)χγ(τ)x(τ − β)
= χγ(−β)χγ(τ)Tβx(τ) = χγ(β)MγTβx(τ),

which implies TβMγ = χγ(β)MγTβ.
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For α ∈ F∗, let D̂α : CF̂+ → CF̂+ be given by

D̂αx(χγ) := x(χα−1γ),

for all γ ≍ χγ ∈ F̂+ and x ∈ CF̂. Since F and F̂+ are isomorphic as finite Abelian groups, we may
use Dα instead of D̂α at times.

The following proposition presents some analytic properties of dilation operators on the fre-
quency domain.

Proposition 4.4. Let F be a finite field and α ∈ F∗. Then

1. Dα : CF̂+ → CF̂+ is a ∗-isometric isomorphism of the Banach ∗-algebra CF̂+

2. Dα : CF̂+ → CF̂+ is unitary in ∥.∥2-norm and satisfies (Dα)∗ = (Dα)−1 = Dα−1 .

Next result states analytic properties of dilation operators and also connections with the Fourier
transform.

Proposition 4.5. Let F be a finite field of order q. Then

1. For β ∈ F we have FFTβ = MβFF.
2. For γ ≍ χγ ∈ F̂+ we have FFMγ = T−γFF.
3. For α ∈ F∗ we have FFDα = D̂α−1FF.

Proof. (1) Let β ∈ F and x ∈ CF. Then for γ ≍ χγ ∈ F̂+ we have

FF(Tβx)(χγ) =
1
√

q

∑
τ∈F

Tβx(τ)χγ(τ) =
1
√

q

∑
τ∈F

x(τ − β)χγ(τ).

Replacing τ with τ + β we get

1
√

q

∑
τ∈F

x(τ − β)χγ(τ) =
1
√

q

∑
τ∈F

x(τ)χγ(τ + β) =
χγ(β)√

q

∑
τ∈F

x(τ)χγ(τ).

Then we can write

FF(Tβx)(χγ) = χγ(β)FF(x)(χγ)

= χγ(β)FF(x)(χγ) = χβ(γ)FF(x)(χγ),

implying FFTβ = MβFF.
(2) Let γ ≍ χγ ∈ F̂+ and x ∈ CF. Then for all γ′ ≍ χγ′ ∈ F̂+ we have

FF(Mγx)(γ′) =
1
√

q

∑
τ∈F

Mγx(τ)χγ(τ)

=
1
√

q

∑
τ∈F
χγ(τ)x(τ)χγ′(τ)

=
1
√

q

∑
τ∈F

x(τ)χγ+γ′(τ)

= FF(x)(γ + γ′) = T−γFF(x)(γ′).
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(3) Let x ∈ CF and γ ≍ χγ ∈ F̂+. Then we have

FF(Dαx)(γ) =
1
√

q

∑
τ∈F

Dαx(τ)χγ(τ) =
1
√

q

∑
τ∈F

x(α−1τ)χγ(τ).

Replacing τ with ατ we achieve

1
√

q

∑
τ∈F

x(α−1τ)χγ(τ) =
1
√

q

∑
τ∈F

x(τ)χγ(ατ)

=
1
√

q

∑
τ∈F

x(τ)χαγ(τ) = FF(x)(αγ),

which implies FF(Dαx) = D̂α−1(FFx).

The underlying set F∗ × F equipped with group operations given by

(α, β) ⋊ (α′, β′) := (αα′, β + αβ′) (4.2)

(α, β)−1 := (α−1, α−1.(−β)) (4.3)

for all (α, β), (α′, β′) ∈ F∗ × F, is a finite non-Abelian group of order q · (q − 1) which is denoted
by F∗ ⋊ F. The group F∗ ⋊ F is called as classical wavelet group over the finite field F. Since
any two field of order q = pd are isomorphic as finite field, we deduce that the notion of F∗ ⋊ F
just depends on q. In details, if F and K are two finite field of order q, then the groups F∗ ⋊ F and
K∗ ⋊K are isomorphic as finite groups of order q · (q − 1).

Next theorem guarantees that the group structure of the wave packet group F∗⋊F is canonically
connected with a group representation.

Theorem 4.6. Let F be a finite field of order q > 2. Then

1. F∗ ⋊ F is a non-Abelian group of order q · (q − 1) which contains F as a normal Abelian
subgroup and F∗ as a non-normal cyclic subgroup.

2. The map ρ : F∗ ⋊ F→U(CF) � Uq×q(C) defined by

(α, β) 7→ ρ(α, β) := TβDα for (α, β) ∈ F∗ ⋊ F, (4.4)

is a group representation of the finite classical wavelet group F∗⋊F on the finite dimensional
Hilbert space CF.

Proof. Let F be a finite field of order q > 2. Then
(1) It is straightforward from the group structure given in (4.2) that F is a normal Abelian subgroup
and F∗ is a non-normal Abelian subgroup of F∗ ⋊ F.
(2) It is evident to check that ρ(1, 0) = I and ρ(α, β) : CF → CF is a unitary operator for all
(α, β) ∈ F∗ ⋊ F. Now let (α, β), (α′, β′) ∈ F∗ ⋊ F. Then using Proposition 4.1, we can write

Tβ+αβ′Dαα′ = TβTαβ′DαDα′ = TβDαTβ′Dα′ .
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Thus, we get

ρ
(
(α, β) ⋊ (α′, β′)

)
= ρ(αα′, β + αβ′)
= Tβ+αβ′Dαα′

= TβDαTβ′Dα′ = ρ(α, β)ρ(α′, β′),

which implies that ρ is a group representation of the finite classical wavelet group F∗ ⋊ F on the
finite dimensional Hilbert space CF.

Remark 4.7. In terms of abstract wavelet transforms over locally compact groups, the represen-
tation ρ mentioned in Theorem 4.6 is precisely the quasi regular representation generated by the
action of the multiplicative group H = F∗ on the finite additive group K = F on the Hilbert space
CF, see [3, 4, 5] and references therein.

5. Classical Wavelet Systems over Finite Fields

In this section we present abstract theory of classical wavelet systems over finite fields and we
study analytic properties of these finite systems. Throughout this section, it is still assumed that F
is a finite field of order q = pd.

A classical wavelet system for the complex Hilbert space CF is a family or system of the form

W(y,∆) :=
{
ρ(α, β)y = TβDαy : (α, β) ∈ ∆ ⊆ F∗ ⋊ F

}
, (5.1)

for some window signal y ∈ CF and a subset ∆ of F∗ ⋊ F. If ∆ = F∗ ⋊ F we put W(y) :=
W(y,F∗ ⋊ F), and it is called a full classical wavelet system. A classical wavelet system which
spans CF is a frame and is referred to as a classical wavelet frame.

Also, invoking properties of the dilation and translation operators we get

⟨x, ρ(α, β)y⟩ = ⟨x,TβDαy⟩ = ⟨T−βx,Dαy⟩, for (α, β) ∈ F∗ ⋊ F. (5.2)

The following proposition gives us a Fourier (resp. convolution) representation for the wavelet
matrix.

Proposition 5.1. Let F be a finite field of order q. Let x, y ∈ CF and (α, β) ∈ F∗ ⋊ F. Then,

1. ⟨x, ρ(α, β)y⟩ = √qFq(̂x.D̂αy)(β).
2. ⟨x, ρ(α, β)y⟩ = x ∗ Dαy∗(β).
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Proof. Let x, y ∈ CF and (α, β) ∈ F∗ ⋊ F. (1) Using the Plancherel formula we have

⟨x, ρ(α, β)y⟩ = ⟨x,TβDαy⟩
= ⟨̂x, T̂βDαy⟩

=
∑
γ∈F̂+

x̂(γ)T̂βDαy(γ)

=
∑
γ∈F̂+

x̂(γ)MβD̂αy(γ)

=
∑
γ∈F̂+

x̂(γ)D̂αy(γ)χβ(γ)

=
∑
γ∈F̂+

(̂
x.D̂αy

)
(γ)χγ(−β) =

√
qFq(̂x.D̂αy)(−β).

(2) Similarly using the Plancherel formula we can write

⟨x, ρ(α, β)y⟩ =
∑
γ∈F̂+

x̂(γ)D̂αy(γ)χβ(γ)

=
∑
γ∈F̂+

x̂(γ)(̂Dαy)∗(γ)χβ(γ)

=
∑
γ∈F̂+

x̂(γ)(̂Dαy∗)(γ)χβ(γ)

=
∑
γ∈F̂+

̂x ∗ Dαy∗(γ)χβ(γ) = x ∗ Dαy∗(β).

The following theorem presents a formula for computational aspects of the wavelet coefficients
over finite fields.

Theorem 5.2. Let F be a finite field of order q. Let y ∈ CF be a window vector and x ∈ CF. Then,∑
α∈F∗

∑
β∈F
|⟨x, ρ(α, β)y⟩|2 = q

(q − 1)|̂x(0)|2 |̂y(0)|2 +
∑
γ∈F∗
|̂x(χγ)|2


∑
α∈F∗
|̂y(χα)|2


 . (5.3)

Proof. Let y ∈ CF be a window function, x ∈ CF, and α ∈ F∗. Using Proposition 5.1 we have∑
β∈F
|⟨x, ρ(α, β)y⟩|2 = q

∑
β∈F

∣∣∣∣∣Fq(̂x.D̂αy)(−β)
∣∣∣∣∣2

= q
∑
β∈F

∣∣∣∣∣Fq(̂x.D̂αy)(β)
∣∣∣∣∣2

= q
∑
γ∈F

∣∣∣∣∣(̂x.D̂αy)(χγ)
∣∣∣∣∣2 = q

∑
γ∈F

∣∣∣∣∣̂x(χγ).D̂αy(χγ)
∣∣∣∣∣2 .
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Therefore, we can write∑
α∈F∗

∑
β∈F
|⟨x, ρ(α, β)y⟩|2 = q

∑
α∈F∗

∑
γ∈F

∣∣∣∣∣̂x(χγ).D̂αy(χγ)
∣∣∣∣∣2

= q
∑
α∈F∗

∑
γ∈F

∣∣∣∣∣̂x(χγ)|2 · |D̂αy(χγ)
∣∣∣∣∣2

= q
∑
γ∈F

∑
α∈F∗

∣∣∣∣∣̂x(χγ)|2 · |D̂αy(χγ)
∣∣∣∣∣2

= q
∑
γ∈F
|̂x(χγ)|2 ·

∑
α∈F∗
|D̂αy(χγ)|2


= q

∑
γ∈F
|̂x(χγ)|2 ·

∑
α∈F∗
|D̂αy(χγ)|2

 .
Now we can write∑

γ∈F
|̂x(χγ)|2 ·

∑
α∈F∗
|D̂αy(χγ)|2

 = |̂x(0)|2
∑
α∈F∗
|̂y(0)|2

 +∑
γ∈F∗
|̂x(χγ)|2

∑
α∈F∗
|̂y(χαγ)|2

 . (5.4)

Replacing α with γ−1α we have ∑
α∈F∗
|̂y(χαγ)|2 =

∑
α∈F∗
|̂y(χα)|2,

which implies

∑
γ∈F
|̂x(χγ)|2 ·

∑
α∈F∗
|D̂αy(χγ)|2

 = |̂x(0)|2
∑
α∈F∗
|̂y(0)|2

 +∑
γ∈F∗
|̂x(χγ)|2

∑
α∈F∗
|̂y(χαγ)|2


= (q − 1)|̂x(0)|2 |̂y(0)|2 +

∑
γ∈F∗
|̂x(χγ)|2

∑
α∈F∗
|̂y(χαγ)|2


= (q − 1)|̂x(0)|2 |̂y(0)|2 +

∑
γ∈F∗
|̂x(χγ)|2


∑
α∈F∗
|̂y(χα)|2

 .
Hence using (5.4) we get

∑
α∈F∗

∑
β∈F
|⟨x, ρ(α, β)y⟩|2 = q

(q − 1)|̂x(0)|2 |̂y(0)|2 +
∑
γ∈F∗
|̂x(χγ)|2


∑
α∈F∗
|̂y(χα)|2


 .
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Then we can present following results concerning a unified characterization for classical full
wavelet systems over finite fields. The following theorem shows that for a large class of non-zero
window signals the classical full wavelet systemW(y) is a frame for the finite dimensional Hilbert
space CF with redundancy q − 1.

Theorem 5.3. Let y ∈ CF be a non-zero window signal. The full wavelet systemW(y) constitutes
a frame for CF with the redundancy q − 1 if and only if ŷ(0) , 0 and ∥̂y∥0 ≥ 2.

Proof. Let y be a non-zero window signal with ŷ(0) , 0 and ∥̂y∥0 ≥ 2. Let 0 < A ≤ B < ∞ be
given by

A := min

(q − 1)

∣∣∣∣∣∣∣∑
τ∈F

y(τ)

∣∣∣∣∣∣∣
2

, q
∑
α∈F∗
|̂y(χα)|2

 ,
B := max

(p − 1)

∣∣∣∣∣∣∣∑
τ∈F

y(τ)

∣∣∣∣∣∣∣
2

, q
∑
α∈F∗
|̂y(χα)|2

 .
Then A, B are readily non-zero. If x ∈ CF, using (5.3) we can write∑

α∈F∗

∑
β∈F
|⟨x, TβDαy⟩|2 = q

(q − 1)|̂x(0)|2 |̂y(0)|2 +
∑
γ∈F∗
|̂x(χγ)|2


∑
α∈F∗
|̂y(χα)|2


 .

Thus we achieve∑
α∈F∗

∑
β∈F
|⟨x,TβDαy⟩|2 = (q − 1)|̂x(0)|2

∣∣∣∣∣∣∣∑
τ∈F

y(τ)

∣∣∣∣∣∣∣
2

+ q

∑
γ∈F∗
|̂x(χγ)|2


∑
α∈F∗
|̂y(χα)|2

 . (5.5)

Now by (5.5) we get

∑
α∈F∗

∑
β∈F
|⟨x,TβDαy⟩|2 = (q − 1)|̂x(0)|2

∣∣∣∣∣∣∣∑
τ∈F

y(τ)

∣∣∣∣∣∣∣
2

+ q

∑
γ∈F∗
|̂x(χγ)|2


∑
α∈F∗
|̂y(χα)|2


≤ max

(q − 1)

∣∣∣∣∣∣∣∑
τ∈F

y(τ)

∣∣∣∣∣∣∣
2

, q
∑
α∈F∗
|̂y(χα)|2


∑
γ∈F
|̂x(χγ)|2


= B∥x∥22.

Similarly, by (5.5) we also have

∑
α∈F∗

∑
β∈F
|⟨x,TβDαy⟩|2 = (q − 1)|̂x(0)|2

∣∣∣∣∣∣∣∑
τ∈F

y(τ)

∣∣∣∣∣∣∣
2

+ q

∑
γ∈F∗
|̂x(χγ)|2


∑
α∈F∗
|̂y(χα)|2


≥ min

(q − 1)

∣∣∣∣∣∣∣∑
τ∈F

y(τ)

∣∣∣∣∣∣∣
2

, q
∑
α∈F∗
|̂y(χα)|2


∑
γ∈F
|̂x(χγ)|2


= A∥x∥22.
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Conversely, let y ∈ CF be a non-zero window signal such that the full cyclic wavelet systemW(y)
be a frame for CF. Then, using (5.5) we get ŷ(0) , 0 and

∑
α∈F∗ |̂y(χα)|2 , 0, which implies that

ŷ(0) , 0 and ∥̂y∥0 ≥ 2.

Then we conclude the following result.

Corollary 5.4. Let y ∈ CF be a window signal with ŷ(0) , 0 and ∥̂y∥0 ≥ 2. The full cyclic wavelet
systemW(y) is a tight frame for CF if and only if y satisfies ∥y∥Fr =

√
q|̂y(0)|. In this case,

Ay := (q − 1)

∣∣∣∣∣∣∣∑
τ∈F

y(τ)

∣∣∣∣∣∣∣
2

= q · (q − 1) · |̂y(0)|2 = q
∑
α∈F∗
|̂y(χα)|2, (5.6)

is the frame bound.

In the abstract theory of frames, a dual (canonical dual) pair of coherent frames gives an ex-
pansion of any function/signal as a superposition of wavelet frame (coherent frame) elements or
dictionary. The following interesting property of cyclic wavelet frames shows that the canonical
dual frame of any full cyclic wavelet frame is again a full cyclic wavelet frame.

Theorem 5.5. The canonical dual of any full wavelet frame for CF is a full wavelet frame.

Proof. Let y ∈ CF be a non-zero window signal such that the full cyclic wavelet systemW(y) be
a frame for CF. Let S be the frame operator of A :=W(y). We claim that

A• =W(y•) = {TβDαy• : (α, β) ∈ F∗ ⋊ F}, (5.7)

where y• := S −1y. Invoking the group structure of F∗ ⋊ F and since ρ is a unitary representation
of F∗ ⋊ F we have TβDαS = S TβDα for all (α, β) ∈ F∗ ⋊ F. Then we get S −1TβDα = TβDαS −1 for
all (α, β) ∈ F∗ ⋊ F which implies (5.7).

Corollary 5.6. The canonical dual of any full wavelet frameW(y) with the frame operator S is
the full wavelet frameW(S −1y) with the frame operator S −1.

Remark 5.7. The above property of full wavelet frames (Theorem 5.5) assures that canonical dual
of the wavelet systems is again a wavelet system. It should be mentioned that a similar property
does not hold for traditional wavelet structured frames, for example, canonical dual frames of
infinite dimensional wavelet frames are not in general wavelet frame, see [6] and classical list of
references therein.

Then as a consequence of the formula (5.3) we can present an irreducible decomposition for
the unitary representation ρ.

Let Bq be the complex linear subspace in CF of dimension q − 1 which is given by

Bq :=

x ∈ CF : x̂(0) =
∑
τ∈F

x(τ) = 0

 . (5.8)
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Proposition 5.8. Let F be a finite field of order q. Then the linear subspace Bq is an irreducible
subspace of the unitary representation ρ : F∗ ⋊ F→U(CF).

Proof. It is straightforward to see that Bq is an invariant subspace of CF. Let H be a nontrivial
subspace of Bq. It is enough to show that H⊥ = {0}. Let x ∈ H⊥ be arbitrary and pick a nonzero
vector y ∈ H . Using the assumption thatH is an invariant subspace of Bq we have ⟨x,TβDαy⟩ = 0
for all (α, β) ∈ F∗×F. Since y is a non-zero vector and ŷ(0) = 0 we achieve that

∑
α∈F∗ |̂y(χα)|2 , 0.

Invoking (5.3) we can write∑
α∈F∗
|̂y(χα)|2

 ∥x∥22 =
 p−1∑
ℓ=1

|̂y(ℓ)|2
 ∥̂x∥22

=

∑
γ∈F∗
|̂x(χγ)|2


∑
α∈F∗
|̂y(χα)|2


=

∑
γ∈F∗

∑
α∈F∗
|⟨x,TβDαy⟩|2 = 0,

which implies that x = 0. Since x was arbitrary, we deduce that H⊥ = {0}. Thus, H = Bq, which
implies that Bq is an irreducible subspace of the unitary representation ρ.

Finally, we present the following corollary.

Corollary 5.9. Let y ∈ CF be a window signal with ŷ(0) , 0 and ∥̂y∥0 ≥ 2.The full wavelet system
W(y) is a tight frame for the Hilbert space Bq with the frame bound By, where

By := q
∑
α∈F∗
|̂y(χα)|2 = q

(
∥y∥22 − |̂y(0)|2

)
= q∥y∥22 −

∣∣∣∣∣∣∣∑
τ∈F

y(τ)

∣∣∣∣∣∣∣
2

. (5.9)
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