Vali-e-Asr University

Some results on functionally convex sets in real Banach spaces

Madjid Eshaghi ${ }^{\text {a }}$, Hamidreza Reisi Dezaki ${ }^{\text {a,*, }}$, Alireza
Moazzen ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Semnan University, Semnan, Islamic Republic of Iran
${ }^{b}$ Department of Mathematics, Kosar University of Bojnord, Bojnord, Islamic Republic of Iran

Article Info

Article history:

Received 1 February 2016
Accepted 17 May 2016
Available online June 2016
Communicated by H. R. Afshin

Keywords:

F-convex set
convex set,
2000 MSC:
65F05, 46L05, 11Y50

Abstract

We use of two notions functionally convex (briefly, F-convex) and functionally closed (briefly, F-closed) in functional analysis and obtain more results. We show that if $\left\{A_{\alpha}\right\}_{\alpha \in I}$ is a family $F-$ convex subsets with non empty intersection of a Banach space X, then $\bigcup_{\alpha \in I} A_{\alpha}$ is F-convex. Moreover, we introduce new definition of notion F -convexiy.

© (2016) Wavelets and Linear Algebra

1. Introduction

In [5], M. Eshahgi, H. R. Reisi and A. R. Moazzen introduced two new notions in functional analysis. By defining functionally convex (briefly, F-convex) and functionally closed (briefly, F-

[^0]© (2016) Wavelets and Linear Algebra
closed) sets, they improved some basic theorems in functional analysis. Among other things, the Krein-Milman theorem has been generalized on finite dimensional Banach spaces. Hence, they have proved that, the set of extreme points of every bounded, F-convex and F-closed subset of a finite dimensional space is nonempty. Additionally, they partially proved the famous Chebyshev open problem (which asks whether or not every Chebyshev set in a Hilbert space is convex?). Hence, they have shown that, if A is a Chebyshev subset of a Hilbert space and the metric projection P_{A} is continuous, then A is F-convex

From now on, we suppose that all normed spaces and Banach spaces are real.

Definition 1.1. [5] In a normed space X, we say that $K(\subseteq X)$ is functionally convex (briefly, Fconvex) if for every bounded linear transformation $T \in B(X, \mathbb{R})$, the subset $T(K)$ of \mathbb{R} is convex.
Proposition 1.2. [5] If T is a bounded linear mapping from a normed space X into a normed space Y, and K is F-convex in X, then $T(K)$ is F-convex in Y.
Corollary 1.3. [5] Let A, B be two F-convex subsets of a normed space X and λ be a real number, then

$$
A+B=\{a+b: a \in A, b \in B\}, \text { and } \lambda A=\{\lambda \cdot a: a \in A\}
$$

are F-convex.
Proposition 1.4. [5] Let A and B be F-convex subsets of a linear space X, which have nonempty intersection. Then $A \cup B$ is F-convex.
Definition 1.5. [5] Let X be a normed space and let $A \subseteq X$. A is functionally closed (briefly, F-closed), if $f(A)$ is closed for all $f \in X^{*}$.

Note that every compact set is F -closed. Also, every closed subset of real numbers \mathbb{R} is F closed. In $X=\mathbb{R}^{2}$, the set $A=\{(x, y): x, y \geq 0\}$ is (non-compact) F-closed whereas, the set $A=\mathbb{Z} \times \mathbb{Z}$ is closed but it is not F -closed (by taking $f(x, y)=x+\sqrt{2} y$, the set $f(A)$ is not closed in $\mathbb{R})$. By taking $A=\left\{(x, y): 1 \leq x^{2}+y^{2} \leq 4\right\}$ a nonconvex F -closed and F - convex set is obtained. Also, the set $B=\left\{(x, y): x \in\left[0, \frac{\pi}{2}\right), y \geq \tan (x)\right\}$ is a closed convex set which is not F -closed. On the other hand, $A=\left\{(x, y): 1<x^{2}+y^{2} \leq 4\right\}$ is a non-compact and F -closed set. The two last examples show that weakly closed (weakly compact) and F -closed sets are different.

Remark 1.6. Note that we can not reduce definition of F-convexity to a basis of X^{*}, in the sence that a set in X is F-convex whenever its image under elements of a basis is convex. For instance, by taking the Euclidean space \mathbb{R}^{2} and the set

$$
\begin{aligned}
A & =\{(0, \alpha): \alpha \in \mathbb{R}-\mathbb{Q} \cap[-\sqrt{2}, 1]\} \cup\{(\beta, 1): \beta \in \mathbb{R}-\mathbb{Q} \cap[0, \sqrt{2}]\} \\
& \cup\{(r,-\sqrt{2}): r \in \mathbb{Q} \cap[0, \sqrt{2}]\} \cup\{(\sqrt{2}, s): s \in \mathbb{Q} \cap\{[-\sqrt{2}, 1]\} \\
& \cup\{(0,1),(0, \sqrt{2}),(\sqrt{2},-\sqrt{2}),(\sqrt{2}, 1)\}
\end{aligned}
$$

$p_{x}(x, y)=x$ and $p_{y}(x, y)=y$, projections on axis, is a base for $X=\mathbb{R}^{2}$ and $P_{x}(A)=[0,1]$ also, $p_{y}(A)=[-\sqrt{2}, 1]$ but $f(x, y)=x+y$ is an element of X^{*} and $f(A)$ is not convex.

In [5], we prove the following theorem, which help us to find a big class of F-convex sets.
Theorem 1.7. Every arcwise connected subset of a normed space X is F-convex.
Remark 1.8. The converse of the above theorem is not valid. Hence, by taking $S=\left\{\left(x, \sin \left(\frac{1}{x}\right)\right.\right.$: $0<x \leq 1\}$, the set \bar{S} which is called the sine's curve of topologist is connected and so for any linear functional $f \in(\mathbb{R} \times \mathbb{R})^{*}$, the set $f(\bar{S})$ is an interval. Thus, \bar{S} is an F -convex set which is not arcwise connected.

2. Main Results

In this section, we show, how construct new subset F-convex one of given ones.
Proposition 2.1. Let A, B be subsets of Banach space X. If A is F-convex and $A \subset B \subset \bar{A}$ then, B is F-convex.

Proof. For every $f \in X^{*}$, we have $f(A) \subseteq f(B) \subseteq f(\bar{A}) \subseteq \overline{f(A)}$. Hence, by assumption, $f(\bar{A})$ is an interval. This completes the proof.

Remark 2.2. In contrary the case of convex sets, interior of an F-convex set, necessarily is not F-convex. For instance, take $X=\mathbb{R} \times \mathbb{R}$ and let $B=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$. Then if A is all elements surrounded by B and $B+\frac{1}{2}$ is F-convex, but the interior of A is not F -convex. Since, by taking f as projection on x-axis we have $f\left(A^{\circ}\right)=\left(-\frac{1}{2}, \frac{1}{2}\right) \cup\left(\frac{1}{2}, \frac{3}{2}\right)$, which is not convex.
Theorem 2.3. Let $\left\{A_{\alpha}\right\}_{\alpha \in I}$ be collection of F-convex subsets in Banach space X. If $\bigcap_{\alpha \in I} A_{\alpha} \neq \phi$ then, $\bigcup_{\alpha \in I} A_{\alpha}$ is F-convex.

Proof. For each $f \in X^{*}$ and $\alpha \in I$, we know, $f\left(A_{\alpha}\right)$ is an interval and $\bigcap_{\alpha \in I} f\left(A_{\alpha}\right) \neq \phi$. Thus, $f\left(\bigcup_{\alpha \in I} A_{\alpha}\right)=\bigcup_{\alpha \in I} f\left(A_{\alpha}\right)$ is convex.

We know that, if $\left\{A_{\alpha}\right\}_{\alpha \in I}$ be a collection of connected subsets in X, A is connected and $A \bigcap A_{\alpha} \neq \phi$ for all $\alpha \in I$, then $A \bigcup\left(\bigcup_{\alpha \in I} A_{\alpha}\right)$ is connected. Now, we have the following theorem;

Theorem 2.4. Let $\left\{A_{\alpha}\right\}_{\alpha \in I}$ be a collection of F-convex subsets in Banach space X. If A is F-convex and $A \bigcap A_{\alpha} \neq \phi$ for evrey $\alpha \in I$, then $A \bigcup\left(\bigcup_{\alpha \in I} A_{\alpha}\right)$ is F-convex.

Proof. For evrey $f \in X^{*}$ and all $\alpha \in I, f\left(A_{\alpha}\right)$ and $f(A)$ are intervals such that $f(A) \cap f\left(A_{\alpha}\right) \neq \phi$. Therefore, $f\left(A \cup\left(\bigcup_{\alpha \in I} A_{\alpha}\right)\right)=\bigcup_{\alpha \in I} f\left(A_{\alpha}\right) \bigcup f(A)$ is interval for evrey $f \in X^{*}$. So, $A \cup\left(\bigcup_{\alpha \in I} A_{\alpha}\right)$ is F-convex.

We know that, if $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ be a collection of connected subsets in X such that $A_{n} \cap A_{n+1} \neq \phi$ for all $n \in \mathbb{N}$, then $\bigcup_{n \in \mathbb{N}} A_{n}$ is connected. Now, we have the following theorem;

Theorem 2.5. Let $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ be a collection of F-convex subsets in Banach space X. If $A_{n} \cap A_{n+1} \neq \phi$ for evrey $n \in \mathbb{N}$, then $\bigcup_{n \in \mathbb{N}} A_{n}$ is F-convex.

Proof. For evrey $f \in X^{*}$ and all $n \in \mathbb{N}, f\left(A_{n}\right)$ is interval and $f\left(A_{n}\right) \cap f\left(A_{n+1}\right) \neq \phi$. Therefore, $f\left(\bigcup_{n \in \mathbb{N}} A_{n}\right)=\bigcup_{n \in \mathbb{N}} f\left(A_{n}\right)$ is interval for evrey $f \in X^{*}$. So, $\bigcup_{n \in \mathbb{N}} A_{n}$ is F-convex.

Let A be a subset of linear space X. We define an equivalence relation on A as: $x \sim y$ if and only if both lie in a F-convex subset of A. The relation \sim actually is an equivalence relation. For transitivity, note that if $x \sim y$ and $y \sim z$ then there are weakly convex subsets A and B such that $x, y \in A$ and $y, z \in B$. Proposition 1.4 asserts that $A \cup B$ is F-convex subset of X and so $x \sim z$.

Theorem 2.6. Let $\left(X_{i},\|.\| \|_{i}\right)$ be norm linear spaces, then $A_{i} \subset X_{i}$ are F-convex if and only if, $\prod_{i=1}^{n} A_{i}$ is F-convex in $\prod_{i=1}^{n} X_{i}$ equepted by the norm

$$
\left\|\left(x_{1}, x_{2}, \cdots, x_{n}\right)\right\|=\left\{\sum_{i=1}^{n}\left\|x_{i}\right\|_{i}^{2}\right\}^{\frac{1}{2}} .
$$

Proof. We Know that

$$
\left(\prod_{i=1}^{n} X_{i}\right)^{*}=\oplus_{i=1}^{n} X_{i}^{*} .
$$

So, for every $g \in\left(\prod_{i=1}^{n} X_{i}\right)^{*}$ there are uniqe $f_{i} \in X_{i}^{*}, i=1,2, \cdots, n$ such that, $g=\sum_{i=1}^{n} f_{i}$. Now we have

$$
g\left(\prod_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} f_{i}\left(A_{i}\right) .
$$

Since, every A_{i} is F-convex so, $f_{i}\left(A_{i}\right)$ and their sum is an interval. Conversly, for every $f_{i} \in X_{i}^{*}$, taking $g=0+0+\cdots+f_{i}+\cdots+0$, we have $f\left(A_{i}\right)=g\left(\prod_{i=1}^{n} A_{i}\right)$ so, A_{i} is F-convex.

Theorem 2.7. Let Y be a subspace of the norm linear space X. If $A \subset Y$ is F-convex then, A is F-convex in X.

Proof. Let Y be a subspace of X. There exists subspace Y^{\perp} of X such that $X=Y \oplus Y^{\perp}$. Thus, for evrey $f \in X^{*}$ we have, $\left.f\right|_{Y} \in Y^{*}$. Now, if A is F-convex in Y, Therefore, $f(A)=\left.f\right|_{Y}(A)+f\left(Y^{\perp}\right)$. By assumption, $\left.f\right|_{Y}(A)$ is F -convex also, since Y^{\perp} is a subspace, so Y^{\perp} is F -convex in X. Thus, By using $1.3 f(A)$ is F-convex in X.

Definition 2.8. Let A be a subset of linear space X. Let $\underset{\sim}{A}=\left\{A_{\alpha}\right\}_{\alpha \in I}$ be the set of all equivalence classes. For each $\alpha \in I, A_{\alpha}$ is called F -convex component of A.

Theorem 2.9. Let A be a subset of linear space X. The F-convex components of A are disjoint F-convex subsets of A whose their union is A, such that any non empty F-convex subset of A contains only one of them.

Proof. Being equivalence classes, the F -convex component of A are disjoint and their union is A. Each F-convex subset of A contains only one of them. For if, A intersects the components A_{1}, A_{2} of A say, in points x_{1}, x_{2} respectively, then $x_{1} \sim x_{2}$. this means $A_{1}=A_{2}$. To show the F-convex component B is F-convex, choose a point x of B. For each $y \in B$, we know that $x_{1} \sim x_{2}$, so there is a F-convex subset A_{y} containing x, y. By the result just proved $A_{y} \subset A$. thus, $B=\bigcup_{y \in A} A_{y}$. Since subsets A_{y} are F -convex and the point x is in their intersection, by $2.3 B$ is F -convex.

Remark 2.10. Let A be a subset of linear space X. A is F -convex if and only if it has one F -convex component.

In the following theorem, for a subset A of a Banach space X, a necessary and sufficient condition for F -convexity is proved.

Theorem 2.11. Let X be a Banach space, $A \subseteq X$ is F-convex if and only if

$$
\operatorname{co}(A) \subseteq \bigcap_{f \in X^{*}} A+\operatorname{Ker}(f)
$$

Proof. The set $A \subseteq X$ is F-convex iff for all $f \in X^{*}$, the element $\sum_{i=1}^{n} \lambda_{i} f\left(a_{i}\right)$ belongs to $f(A)$ which, $\lambda_{i} \geq 0, a_{i} \in A$ and $\sum_{i=1}^{n} \lambda_{i}=1$. This is equivalent that for all $f \in X^{*}$, there is $a \in A$ such that $a-\sum_{i=1}^{n} \lambda_{i} a_{i} \in \operatorname{Ker}(f)$.

Remark 2.12. Note that in special case $X=\mathbb{R}$, since every nonzero functional is one to one so we have $\bigcap_{f \in X^{*}} A+\operatorname{Ker}(f)=A$. Thus $A \subseteq \mathbb{R}$ is F -convex iff $\operatorname{co}(A) \subseteq A$. Also, we have $A \subseteq \operatorname{co}(A)$. Then we obtain $A \subseteq \mathbb{R}$ is F -convex iff A is convex.

Let X be a vector space. A hyperplane in X (through $x_{0} \in X$) is a set of the form $H=$ $x_{0}+\operatorname{Ker}(f) \subseteq X$, where f is a non-zero linear functional on X. Equivalently, $H=f^{-1}(\gamma)$, where $\gamma=f\left(x_{0}\right)$. So, we have

$$
\bigcap_{f \in X^{*}} A+\operatorname{Ker}(f)=\bigcap_{f \in X^{*}} \bigcup_{a \in A} a+\operatorname{Ker}(f)=\bigcap_{f \in X^{*}} f^{-1}(f(A)) .
$$

Hence, $A \subseteq X$ is F -convex if and only if

$$
c o(A) \subseteq \bigcap_{f \in X^{*}} f^{-1}(f(A)) .
$$

Proposition 2.13. Let A be a subset of Banach space X. The set $U=\bigcap_{B \in \Gamma} \bigcap_{f \in X^{*}} f^{-1}(f(B))$ is F-convex, where $\Gamma=\{B: A \subseteq B, \quad B$ is F-convex $\}$.
Proof. By discussion ago, we have $c o(B) \subseteq \bigcap_{f \in X^{*}} f^{-1}(f(B))$. Intersecting on all $B \in \Gamma$, implies that

$$
\operatorname{co}(A)=\bigcap_{B \in \Gamma} \operatorname{co}(B) \subseteq U \subseteq \bigcap_{f \in X^{*}} f^{-1}(f(c o(A)))
$$

On the other hand, for every $g \in X^{*}$,

$$
g(c o(A)) \subseteq g(U) \subseteq g\left(g^{-1}(g(c o(A)))\right) \subseteq g(c o(A))
$$

Hence, for every $g \in X^{*}, g(U)=g(c o(A))$. So U is F-convex.
Theorem 2.14. [3] If K_{1} and K_{2} are disjoint closed convex subsets of a locally convex linear topological space X, and if K_{1} is compact, then there exist constants c and $\epsilon>0$, and a continuous linear functional f on X, such that

$$
f\left(K_{2}\right) \leq c-\epsilon<c \leq f\left(K_{1}\right) .
$$

Lemma 2.15. [5] If A is a subset of a Banach space X, then

$$
\bigcap_{f \in X^{*}} f^{-1}(f(A)) \subseteq \overline{c o}(A)
$$

Corollary 2.16. [5] Let A be an F-closed subset of a Banach space X. Then A is F-convex if and only if

$$
\overline{c o}(A)=\bigcap_{f \in X^{*}} f^{-1}(f(A)) .
$$

Corollary 2.17. A compact subset A in a Banach space X is convex if and only if A is F-convex and X^{*} separates A and every element of $X-A$.

Proof. If A is a compact convex subset of X, then by Theorem 2.14, the assertion holds. Conversely, assume that A is a compact F - convex subset of X. Hence, $\overline{c o}(A)=\bigcap_{f \in X^{*}} f^{-1}(f(A))$. On the other hand, there is $f \in X^{*}$ such that for every $x \in X-A$, we have $f(A)<f(x)$. This implies that x is outside of $f^{-1}(f(A))$. Thus $f^{-1}(f(A))=A$ and $\overline{c o}(A)=A$.

Remark 2.18. If X is a Hilbert space, then by Riesz representation theorem for every $f \in X^{*}$, there exists a unique $z \in X$ such that for all $x \in X, f(x)=\langle x, z\rangle$, the inner product of x and z. Then

$$
\operatorname{Ker}(f)=\{x \in X:<x, z>=0\} \doteq z^{\perp} .
$$

In this case, we have

$$
\begin{equation*}
\bigcap_{f \in X^{*}} f^{-1}(f(A))=\bigcap_{f \in X^{*}} A+\operatorname{Ker}(f)=\bigcap_{z \in X} A+z^{\perp} . \tag{2.1}
\end{equation*}
$$

Thus, in a Hilbert space X, every F-closed subset A of X is F-convex iff

$$
\overline{\operatorname{co}}(A)=\bigcap_{z \in X} A+z^{\perp} .
$$

Corollary 2.19. Let A and B be F-closed and F-convex subsets of a Banach space X which have nonempty intersection. Then

$$
\overline{c o}(A \cup B)=\overline{c o}(A) \cup \overline{c o}(B) .
$$

Proof. By Proposition 1.4, $A \cup B$ is F-convex. Then we have

$$
\begin{array}{r}
\overline{c o}(A \cup B)=\bigcap_{f \in X^{*}} f^{-1}(f(A \cup B)) \\
=\left(\bigcap_{f \in X^{*}} f^{-1}(f(A))\right) \bigcup\left(\bigcap_{f \in X^{*}} f^{-1}(f(A))\right) \\
=\overline{c o}(A) \cup \overline{c o}(B) .
\end{array}
$$

Corollary 2.20. Let A and B be F-closed and F-convex subsets of a Banach space X. Then

$$
\overline{c o}(A+B)=\overline{c o}(A)+\overline{c o}(B) .
$$

Proof. Obviously, we have

$$
\overline{c o}(A+B) \subseteq \overline{c o}(A)+\overline{c o}(B) .
$$

Let x be an arbitrary element of $\overline{c o}(A)+\overline{c o}(B)$. Then there are $x_{1} \in \overline{c o}(A)$ and $x_{2} \in \overline{c o}(B)$ such that $x=x_{1}+x_{2}$. Then for every $f \in X^{*}$, we have $f\left(x_{1}\right) \in f(A)$ and $f\left(x_{2}\right) \in f(B)$. This implies that $f\left(x_{1}+x_{2}\right) \in f(A+B)$ and hence, $x \in f^{-1}(f(A+B))$. It follows that

$$
\overline{c o}(A)+\overline{c o}(B) \subseteq \bigcap_{f \in X^{*}} f^{-1}(f(A+B))=\overline{c o}(A+B)
$$

Note that if A and B are F -convex and F -closed then, $A+B$ is $\mathrm{F}-\mathrm{closed}$.

References

[1] D. Aliprantis and C. Border, Infinite Dimensional Analysis, 2th. edition. Springer, 1999.
[2] J. B. Conway. A Course in Functionall Analysis, Springer-verlag, 1985.
[3] N. Dunford and J. T. Schwartz, Linear operators. Part 1, Interscience, New York 1958.
[4] E. Zeidler. Nonlinear Functional Analysis and its Applications I: Fixed Point Theorems, Springer-Verlog New York, 1986.
[5] M. Eshaghi, H. Reisi Dezaki and A. Moazzen, Functionally convex sets and functionally closed sets in real Banach spaces, Int. J. Nonlinear Anal. Appl., 7(1)(2016), 289-294.

[^0]: *Corresponding author
 Email addresses: madjid.eshaghi@gmail.com (Madjid Eshaghi), Hamidreza.reisi@gmail.com (Hamidreza Reisi Dezaki), ar.moazzen@yahoo.com (Alireza Moazzen)

