

Some results on functionally convex sets in real Banach spaces

Madjid Eshaghi^a, Hamidreza Reisi Dezaki^{a,*}, Alireza Moazzen^b

^aDepartment of Mathematics, Semnan University, Semnan, Islamic Republic of Iran ^bDepartment of Mathematics, Kosar University of Bojnord, Bojnord, Islamic Republic of Iran

ARTICLE INFO

Article history: Received 1 February 2016 Accepted 17 May 2016 Available online June 2016 Communicated by H. R. Afshin

Keywords: F-convex set convex set,

2000 MSC: 65F05, 46L05, 11Y50

Abstract

We use of two notions functionally convex (briefly, F–convex) and functionally closed (briefly, F–closed) in functional analysis and obtain more results. We show that if $\{A_{\alpha}\}_{\alpha \in I}$ is a family F– convex subsets with non empty intersection of a Banach space X, then $\bigcup_{\alpha \in I} A_{\alpha}$ is F–convex. Moreover, we introduce new definition of notion F–convexiy.

© (2016) Wavelets and Linear Algebra

1. Introduction

In [5], M. Eshahgi, H. R. Reisi and A. R. Moazzen introduced two new notions in functional analysis. By defining functionally convex (briefly, F–convex) and functionally closed (briefly, F–

© (2016) Wavelets and Linear Algebra

^{*}Corresponding author

Email addresses: madjid.eshaghi@gmail.com (Madjid Eshaghi), Hamidreza.reisi@gmail.com (Hamidreza Reisi Dezaki), ar.moazzen@yahoo.com (Alireza Moazzen)

closed) sets, they improved some basic theorems in functional analysis. Among other things, the Krein-Milman theorem has been generalized on finite dimensional Banach spaces. Hence, they have proved that, the set of extreme points of every bounded, *F*-convex and *F*-closed subset of a finite dimensional space is nonempty. Additionally, they partially proved the famous Chebyshev open problem (which asks whether or not every Chebyshev set in a Hilbert space is convex?). Hence, they have shown that, if *A* is a Chebyshev subset of a Hilbert space and the metric projection P_A is continuous, then *A* is *F*-convex

From now on, we suppose that all normed spaces and Banach spaces are real.

Definition 1.1. [5] In a normed space *X*, we say that $K \subseteq X$ is functionally convex (briefly, F–convex) if for every bounded linear transformation $T \in B(X, \mathbb{R})$, the subset T(K) of \mathbb{R} is convex.

Proposition 1.2. [5] If T is a bounded linear mapping from a normed space X into a normed space Y, and K is F-convex in X, then T(K) is F-convex in Y.

Corollary 1.3. [5] Let A, B be two F-convex subsets of a normed space X and λ be a real number, then

$$A + B = \{a + b : a \in A, b \in B\}, and \quad \lambda A = \{\lambda . a : a \in A\}$$

are F-convex.

Proposition 1.4. [5] Let A and B be F-convex subsets of a linear space X, which have nonempty intersection. Then $A \cup B$ is F-convex.

Definition 1.5. [5] Let *X* be a normed space and let $A \subseteq X$. *A* is functionally closed (briefly, F–closed), if f(A) is closed for all $f \in X^*$.

Note that every compact set is F-closed. Also, every closed subset of real numbers \mathbb{R} is F-closed. In $X = \mathbb{R}^2$, the set $A = \{(x, y) : x, y \ge 0\}$ is (non-compact) F-closed whereas, the set $A = \mathbb{Z} \times \mathbb{Z}$ is closed but it is not F-closed (by taking $f(x, y) = x + \sqrt{2}y$, the set f(A) is not closed in \mathbb{R}). By taking $A = \{(x, y) : 1 \le x^2 + y^2 \le 4\}$ a nonconvex F-closed and F- convex set is obtained. Also, the set $B = \{(x, y) : x \in [0, \frac{\pi}{2}), y \ge \tan(x)\}$ is a closed convex set which is not F-closed. On the other hand, $A = \{(x, y) : 1 < x^2 + y^2 \le 4\}$ is a non-compact and F-closed set. The two last examples show that weakly closed(weakly compact) and F-closed sets are different.

Remark 1.6. Note that we can not reduce definition of F–convexity to a basis of X^* , in the sence that a set in X is F–convex whenever its image under elements of a basis is convex. For instance, by taking the Euclidean space \mathbb{R}^2 and the set

$$A = \{(0, \alpha) : \alpha \in \mathbb{R} - \mathbb{Q} \cap [-\sqrt{2}, 1]\} \cup \{(\beta, 1) : \beta \in \mathbb{R} - \mathbb{Q} \cap [0, \sqrt{2}]\} \cup \{(r, -\sqrt{2}) : r \in \mathbb{Q} \cap [0, \sqrt{2}]\} \cup \{(\sqrt{2}, s) : s \in \mathbb{Q} \cap \{[-\sqrt{2}, 1]\} \cup \{(0, 1), (0, \sqrt{2}), (\sqrt{2}, -\sqrt{2}), (\sqrt{2}, 1)\}$$

 $p_x(x, y) = x$ and $p_y(x, y) = y$, projections on axis, is a base for $X = \mathbb{R}^2$ and $P_x(A) = [0, 1]$ also, $p_y(A) = [-\sqrt{2}, 1]$ but f(x, y) = x + y is an element of X^* and f(A) is not convex.

In [5], we prove the following theorem, which help us to find a big class of F-convex sets.

Theorem 1.7. Every arcwise connected subset of a normed space X is F-convex.

Remark 1.8. The converse of the above theorem is not valid. Hence, by taking $S = \{(x, \sin(\frac{1}{x}) : 0 < x \le 1\}$, the set \overline{S} which is called the sine's curve of topologist is connected and so for any linear functional $f \in (\mathbb{R} \times \mathbb{R})^*$, the set $f(\overline{S})$ is an interval. Thus, \overline{S} is an F–convex set which is not arcwise connected.

2. Main Results

In this section, we show, how construct new subset F-convex one of given ones.

Proposition 2.1. Let A, B be subsets of Banach space X. If A is F-convex and $A \subset B \subset \overline{A}$ then, B is F-convex.

Proof. For every $f \in X^*$, we have $f(A) \subseteq f(\overline{A}) \subseteq \overline{f(A)}$. Hence, by assumption, $f(\overline{A})$ is an interval. This completes the proof.

Remark 2.2. In contrary the case of convex sets, interior of an F–convex set, necessarily is not F–convex. For instance, take $X = \mathbb{R} \times \mathbb{R}$ and let $B = \{(x, y) : x^2 + y^2 \le 1\}$. Then if A is all elements surrounded by B and $B + \frac{1}{2}$ is F–convex, but the interior of A is not F–convex. Since, by taking f as projection on x-axis we have $f(A^\circ) = (-\frac{1}{2}, \frac{1}{2}) \cup (\frac{1}{2}, \frac{3}{2})$, which is not convex.

Theorem 2.3. Let $\{A_{\alpha}\}_{\alpha \in I}$ be collection of *F*-convex subsets in Banach space *X*. If $\bigcap_{\alpha \in I} A_{\alpha} \neq \phi$ then, $\bigcup_{\alpha \in I} A_{\alpha}$ is *F*-convex.

Proof. For each $f \in X^*$ and $\alpha \in I$, we know, $f(A_\alpha)$ is an interval and $\bigcap_{\alpha \in I} f(A_\alpha) \neq \phi$. Thus, $f(\bigcup_{\alpha \in I} A_\alpha) = \bigcup_{\alpha \in I} f(A_\alpha)$ is convex.

We know that, if $\{A_{\alpha}\}_{\alpha \in I}$ be a collection of connected subsets in *X*, *A* is connected and $A \cap A_{\alpha} \neq \phi$ for all $\alpha \in I$, then $A \cup (\bigcup_{\alpha \in I} A_{\alpha})$ is connected. Now, we have the following theorem;

Theorem 2.4. Let $\{A_{\alpha}\}_{\alpha \in I}$ be a collection of *F*-convex subsets in Banach space *X*. If *A* is *F*-convex and $A \cap A_{\alpha} \neq \phi$ for evrey $\alpha \in I$, then $A \cup (\bigcup_{\alpha \in I} A_{\alpha})$ is *F*-convex.

Proof. For every $f \in X^*$ and all $\alpha \in I$, $f(A_\alpha)$ and f(A) are intervals such that $f(A) \cap f(A_\alpha) \neq \phi$. Therefore, $f(A \cup (\bigcup_{\alpha \in I} A_\alpha)) = \bigcup_{\alpha \in I} f(A_\alpha) \cup f(A)$ is interval for every $f \in X^*$. So, $A \cup (\bigcup_{\alpha \in I} A_\alpha)$ is F-convex.

We know that, if $\{A_n\}_{n \in \mathbb{N}}$ be a collection of connected subsets in X such that $A_n \cap A_{n+1} \neq \phi$ for all $n \in \mathbb{N}$, then $\bigcup_{n \in \mathbb{N}} A_n$ is connected. Now, we have the following theorem;

Theorem 2.5. Let $\{A_n\}_{n \in \mathbb{N}}$ be a collection of *F*-convex subsets in Banach space *X*. If $A_n \cap A_{n+1} \neq \phi$ for evrey $n \in \mathbb{N}$, then $\bigcup_{n \in \mathbb{N}} A_n$ is *F*-convex.

Proof. For every $f \in X^*$ and all $n \in \mathbb{N}$, $f(A_n)$ is interval and $f(A_n) \cap f(A_{n+1}) \neq \phi$. Therefore, $f(\bigcup_{n \in \mathbb{N}} A_n) = \bigcup_{n \in \mathbb{N}} f(A_n)$ is interval for every $f \in X^*$. So, $\bigcup_{n \in \mathbb{N}} A_n$ is F–convex.

Let *A* be a subset of linear space *X*. We define an equivalence relation on *A* as: $x \sim y$ if and only if both lie in a F–convex subset of *A*. The relation ~ actually is an equivalence relation. For transitivity, note that if $x \sim y$ and $y \sim z$ then there are weakly convex subsets *A* and *B* such that $x, y \in A$ and $y, z \in B$. Proposition 1.4 asserts that $A \cup B$ is F–convex subset of *X* and so $x \sim z$.

Theorem 2.6. Let $(X_i, ||.||_i)$ be norm linear spaces, then $A_i \subset X_i$ are *F*-convex if and only if, $\prod_{i=1}^n A_i$ is *F*-convex in $\prod_{i=1}^n X_i$ equepted by the norm

$$||(x_1, x_2, \cdots, x_n)|| = \left\{ \sum_{i=1}^n ||x_i||_i^2 \right\}^{\frac{1}{2}}.$$

Proof. We Know that

$$(\prod_{i=1}^n X_i)^* = \bigoplus_{i=1}^n X_i^*.$$

So, for every $g \in (\prod_{i=1}^{n} X_i)^*$ there are uniqe $f_i \in X_i^*$, $i = 1, 2, \dots, n$ such that, $g = \sum_{i=1}^{n} f_i$. Now we have

$$g(\prod_{i=1}^n A_i) = \sum_{i=1}^n f_i(A_i).$$

Since, every A_i is F–convex so, $f_i(A_i)$ and their sum is an interval. Conversely, for every $f_i \in X_i^*$, taking $g = 0 + 0 + \dots + f_i + \dots + 0$, we have $f(A_i) = g(\prod_{i=1}^n A_i)$ so, A_i is F–convex.

Theorem 2.7. Let Y be a subspace of the norm linear space X. If $A \subset Y$ is F-convex then, A is F-convex in X.

Proof. Let *Y* be a subspace of *X*. There exists subspace Y^{\perp} of *X* such that $X = Y \oplus Y^{\perp}$. Thus, for every $f \in X^*$ we have, $f|_Y \in Y^*$. Now, if *A* is F–convex in *Y*, Therefore, $f(A) = f|_Y(A) + f(Y^{\perp})$. By assumption, $f|_Y(A)$ is F–convex also, since Y^{\perp} is a subspace, so Y^{\perp} is F–convex in *X*. Thus, By using 1.3 f(A) is F–convex in *X*.

Definition 2.8. Let *A* be a subset of linear space *X*. Let $\frac{A}{a} = \{A_{\alpha}\}_{\alpha \in I}$ be the set of all equivalence classes. For each $\alpha \in I, A_{\alpha}$ is called F–convex component of *A*.

Theorem 2.9. Let A be a subset of linear space X. The F-convex components of A are disjoint F-convex subsets of A whose their union is A, such that any non empty F-convex subset of A contains only one of them.

Proof. Being equivalence classes, the F-convex component of *A* are disjoint and their union is *A*. Each F-convex subset of *A* contains only one of them. For if, *A* intersects the components A_1, A_2 of *A* say, in points x_1, x_2 respectively, then $x_1 \sim x_2$. this means $A_1 = A_2$. To show the F-convex component *B* is F-convex, choose a point *x* of *B*. For each $y \in B$, we know that $x_1 \sim x_2$, so there is a F-convex subset A_y containing *x*, *y*. By the result just proved $A_y \subset A$. thus, $B = \bigcup_{y \in A} A_y$. Since subsets A_y are F-convex and the point *x* is in their intersection, by 2.3 *B* is F-convex. *Remark* 2.10. Let *A* be a subset of linear space *X*. *A* is F–convex if and only if it has one F–convex component.

In the following theorem, for a subset A of a Banach space X, a necessary and sufficient condition for F–convexity is proved.

Theorem 2.11*. Let X be a Banach space,* $A \subseteq X$ *is F*–*convex if and only if*

$$co(A) \subseteq \bigcap_{f \in X^*} A + Ker(f).$$

Proof. The set $A \subseteq X$ is F-convex iff for all $f \in X^*$, the element $\sum_{i=1}^n \lambda_i f(a_i)$ belongs to f(A) which, $\lambda_i \ge 0$, $a_i \in A$ and $\sum_{i=1}^n \lambda_i = 1$. This is equivalent that for all $f \in X^*$, there is $a \in A$ such that $a - \sum_{i=1}^n \lambda_i a_i \in Ker(f)$.

Remark 2.12. Note that in special case $X = \mathbb{R}$, since every nonzero functional is one to one so we have $\bigcap_{f \in X^*} A + Ker(f) = A$. Thus $A \subseteq \mathbb{R}$ is F–convex iff $co(A) \subseteq A$. Also, we have $A \subseteq co(A)$. Then we obtain $A \subseteq \mathbb{R}$ is F–convex iff A is convex.

Let X be a vector space. A hyperplane in X (through $x_0 \in X$) is a set of the form $H = x_0 + Ker(f) \subseteq X$, where f is a non-zero linear functional on X. Equivalently, $H = f^{-1}(\gamma)$, where $\gamma = f(x_0)$. So, we have

$$\bigcap_{f \in X^*} A + Ker(f) = \bigcap_{f \in X^*} \bigcup_{a \in A} a + Ker(f) = \bigcap_{f \in X^*} f^{-1}(f(A)).$$

Hence, $A \subseteq X$ is F–convex if and only if

$$co(A) \subseteq \bigcap_{f \in X^*} f^{-1}(f(A)).$$

Proposition 2.13. Let A be a subset of Banach space X. The set $U = \bigcap_{B \in \Gamma} \bigcap_{f \in X^*} f^{-1}(f(B))$ is *F*-convex, where $\Gamma = \{B : A \subseteq B, B \text{ is } F\text{-convex}\}.$

Proof. By discussion ago, we have $co(B) \subseteq \bigcap_{f \in X^*} f^{-1}(f(B))$. Intersecting on all $B \in \Gamma$, implies that

$$co(A) = \bigcap_{B \in \Gamma} co(B) \subseteq U \subseteq \bigcap_{f \in X^*} f^{-1}(f(co(A)))$$

On the other hand, for every $g \in X^*$,

$$g(co(A)) \subseteq g(U) \subseteq g(g^{-1}(g(co(A)))) \subseteq g(co(A))$$

Hence, for every $g \in X^*$, g(U) = g(co(A)). So U is *F*-convex.

Theorem 2.14. [3] If K_1 and K_2 are disjoint closed convex subsets of a locally convex linear topological space X, and if K_1 is compact, then there exist constants c and $\epsilon > 0$, and a continuous linear functional f on X, such that

$$f(K_2) \le c - \epsilon < c \le f(K_1).$$

Lemma 2.15. [5] If A is a subset of a Banach space X, then

$$\bigcap_{f \in X^*} f^{-1}(f(A)) \subseteq \overline{co}(A)$$

Corollary 2.16. [5] Let A be an F-closed subset of a Banach space X. Then A is F-convex if and only if

$$\overline{co}(A) = \bigcap_{f \in X^*} f^{-1}(f(A)).$$

Corollary 2.17. A compact subset A in a Banach space X is convex if and only if A is F-convex and X^* separates A and every element of X - A.

Proof. If *A* is a compact convex subset of *X*, then by Theorem 2.14, the assertion holds. Conversely, assume that *A* is a compact F– convex subset of *X*. Hence, $\overline{co}(A) = \bigcap_{f \in X^*} f^{-1}(f(A))$. On the other hand, there is $f \in X^*$ such that for every $x \in X - A$, we have f(A) < f(x). This implies that *x* is outside of $f^{-1}(f(A))$. Thus $f^{-1}(f(A)) = A$ and $\overline{co}(A) = A$.

Remark 2.18. If *X* is a Hilbert space, then by Riesz representation theorem for every $f \in X^*$, there exists a unique $z \in X$ such that for all $x \in X$, $f(x) = \langle x, z \rangle$, the inner product of *x* and *z*. Then

$$Ker(f) = \{x \in X : < x, z \ge 0\} \doteq z^{\perp}.$$

In this case, we have

$$\bigcap_{f \in X^*} f^{-1}(f(A)) = \bigcap_{f \in X^*} A + Ker(f) = \bigcap_{z \in X} A + z^{\perp}.$$
(2.1)

Thus, in a Hilbert space X, every F-closed subset A of X is F-convex iff

$$\overline{co}(A) = \bigcap_{z \in X} A + z^{\perp}$$

Corollary 2.19. Let A and B be F-closed and F-convex subsets of a Banach space X which have nonempty intersection. Then

$$\overline{co}(A \cup B) = \overline{co}(A) \cup \overline{co}(B).$$

Proof. By Proposition 1.4, $A \cup B$ is F–convex. Then we have

$$\overline{co}(A \cup B) = \bigcap_{f \in X^*} f^{-1}(f(A \cup B))$$
$$= \Big(\bigcap_{f \in X^*} f^{-1}(f(A))\Big) \bigcup \Big(\bigcap_{f \in X^*} f^{-1}(f(A))\Big)$$
$$= \overline{co}(A) \cup \overline{co}(B).$$

Corollary 2.20. Let A and B be F-closed and F-convex subsets of a Banach space X. Then

$$\overline{co}(A+B) = \overline{co}(A) + \overline{co}(B).$$

Proof. Obviously, we have

$$\overline{co}(A+B) \subseteq \overline{co}(A) + \overline{co}(B).$$

Let *x* be an arbitrary element of $\overline{co}(A) + \overline{co}(B)$. Then there are $x_1 \in \overline{co}(A)$ and $x_2 \in \overline{co}(B)$ such that $x = x_1 + x_2$. Then for every $f \in X^*$, we have $f(x_1) \in f(A)$ and $f(x_2) \in f(B)$. This implies that $f(x_1 + x_2) \in f(A + B)$ and hence, $x \in f^{-1}(f(A + B))$. It follows that

$$\overline{co}(A) + \overline{co}(B) \subseteq \bigcap_{f \in X^*} f^{-1}(f(A+B)) = \overline{co}(A+B).$$

Note that if A and B are F-convex and F-closed then, A + B is F-closed.

References

- [1] D. Aliprantis and C. Border, Infinite Dimensional Analysis, 2th. edition. Springer, 1999.
- [2] J. B. Conway. A Course in Functionall Analysis, Springer-verlag, 1985.
- [3] N. Dunford and J. T. Schwartz, Linear operators. Part 1, Interscience, New York 1958.
- [4] E. Zeidler. Nonlinear Functional Analysis and its Applications I: Fixed Point Theorems, Springer-Verlog New York, 1986.
- [5] M. Eshaghi, H. Reisi Dezaki and A. Moazzen, Functionally convex sets and functionally closed sets in real Banach spaces, *Int. J. Nonlinear Anal. Appl.*, **7**(1)(2016), 289–294.