

G-dual function-valued frames in $L_2(0, \infty)$

M. A. Hasankhanifard^{a,*}, M. A. Dehghan^a

^aDepartment of Mathematics, Vali-E-Asr University, Rafsanjan, Islamic Republic of Iran, P.O.Box: 546

ARTICLE INFO

Article history: Received 2 December 2014 Accepted 28 April 2015 Available online September 2015 Communicated by Asghar Rahimi

Abstract

In this paper, g-dual function-valued frames in $L_2(0, \infty)$ are introduced. We can achieve more reconstruction formulas to obtain signals in $L_2(0, \infty)$ by applying g-dual function-valued frames in $L_2(0, \infty)$.

© (2015) Wavelets and Linear Algebra

Keywords:

g-dual frame, function-valued frame,

2000 MSC: 46L99, 42C15

1. Introduction

Given a separable Hilbert space \mathcal{H} with inner product $\langle ., . \rangle$, a sequence $\{f_k\}_{k=1}^{\infty}$ is called a frame for \mathcal{H} if there exist constants A > 0, $B < \infty$ such that for all $f \in \mathcal{H}$,

$$A||f||^{2} \leq \sum_{k=1}^{\infty} |\langle f, f_{k} \rangle|^{2} \leq B||f||^{2},$$
(1.1)

*Corresponding author

Email addresses: m.hasankhani@vru.ac.ir (M. A. Hasankhanifard), dehghan@vru.ac.ir (M. A. Dehghan)

© (2015) Wavelets and Linear Algebra

where *A* and *B* are the lower and upper frame bounds, respectively. The second inequality of the frame condition (1.1) is also known as the Bessel condition for $\{f_k\}_{k=1}^{\infty}$. For more information concerning frames refer to [1, 2, 4, 11].

We consider three classes of operators on $L_2(\mathbb{R})$. Their definitions are as follows:

Translation by $a \in \mathbb{R}$, $T_a : L_2(\mathbb{R}) \to L_2(\mathbb{R})$, $(T_ag)(x) = g(x - a)$, Modulation by $b \in \mathbb{R}$, $E_b : L_2(\mathbb{R}) \to L_2(\mathbb{R})$, $(E_bg)(x) = e^{2\pi i b x}g(x)$, Dilation by $c \neq 0$, $D_c : L_2(\mathbb{R}) \to L_2(\mathbb{R})$, $(D_cg)(x) = \frac{1}{\sqrt{|c|}}g(\frac{x}{c})$.

A Gabor frame is a frame for $L_2(\mathbb{R})$ of the form $\{E_{mb}T_{na}g\}_{m,n\in\mathbb{Z}}$ where a, b > 0, g is a fixed function in $L_2(\mathbb{R})$. This frame is special case of shift-invariant systems (up to an irrelevant complex factor). Casazza and Lammers define a function-valued inner product of two function $f, g \in L_2(\mathbb{R})$ as

$$\langle f,g\rangle_a(x) = \sum_{n\in\mathbb{Z}} f(x-na)\overline{g(x-na)}, \quad \forall x\in\mathbb{R},$$

where *a* is a fixed positive real number [3]. They called it as a-inner product and used it in the study of Gabor frames.

The dilation-invariant system generated by the sequence $\{g_k\}_{k\in\mathbb{Z}}$ in $L_2(\mathbb{R})$ and a > 1 is the sequence $\{D_{a^j}g_k\}_{j,k\in\mathbb{Z}}$, where D_{a^j} is the dilation operator by a^j . Dilation-invariant systems contain wavelet frames and hence they will play an important role in the analysis of wavelet frames.

A function-valued inner product on $L_2(0, \infty)$ by using of the dilation operator has been introduced in [8]. The authors use of a function-valued inner product in the study of the dilation-invariant systems:

Fix a > 1. For each pair $f, g \in L_2(0, \infty)$, the function $\langle f, g \rangle_a$ on $(0, \infty)$ is defined by

$$\langle f,g \rangle_a(x) := \sum_{j \in \mathbb{Z}} a^j f(a^j x) \overline{g(a^j x)}$$

and is called function-valued inner product on $L_2(0, \infty)$ with respect to *a*. It is easy to show that $\langle f, g \rangle = \int_1^a \langle f, g \rangle_a(x) dx$, where $\langle ., . \rangle$ is the original inner product in $L_2(0, \infty)$. Also, the function-valued norm on $L_2(0, \infty)$ with respect to *a* is defined by

$$||f||_a(x) := \sqrt{\langle f, f \rangle_a(x)}, \quad \forall f \in L_2(0, \infty) \quad and \quad \forall x \in (0, \infty).$$

The function ϕ on $(0, \infty)$ is called dilation periodic function with period *a* if $\phi(ax) = \phi(x)$ for all $x \in (0, \infty)$. The set of bounded dilation periodic functions on $(0, \infty)$ is denoted by B_a .

Example 1.1. Let *f* be a bounded function on $(0, \infty)$ and let (G, +) be a finite group (for example $G = \mathbb{Z}_n, n \in \mathbb{N}, n \ge 2$). Then the function ϕ defined by $\phi(x) = \sum_{j \in G} f(a^j x)$, for all $x \in (0, \infty)$ is in B_a .

For any function ϕ on [1, a], the function ϕ defined by $\phi(a^j x) = \phi(x)$, for all $j \in \mathbb{Z}$ and $x \in [1, a]$ is dilation periodic. Throughout this paper, let ϕ be the dilation periodic function defined as above for any complex function ϕ on [1, a].

Proposition 1.2. [8] Let $f, g \in L_2(0, \infty)$ and $\phi \in B_a$. Then

$$\langle \phi f, g \rangle_a = \phi \langle f, g \rangle_a$$
 and $\langle f, \phi g \rangle_a = \overline{\phi} \langle f, g \rangle_a$

For any $f, g \in L_2(0, \infty)$, f and g are function-valued orthogonal with respect to a, or simply function-valued orthogonal if $\langle f, g \rangle_a = 0$ a.e. on [1, a].

A sequence $\{e_n\}_{n\in\mathbb{Z}}$ in $L_2(0,\infty)$ is called function-valued orthogonal with respect to *a* if $e_n \perp_a e_m$, for all $n \neq m \in \mathbb{Z}$. If also $||e_n||_a = 1$ a.e. on [1, a], then $\{e_n\}_{n\in\mathbb{Z}}$ is called a function-valued orthonormal sequence with respect to *a*, or simply function-valued orthonormal sequence, in $L_2(0,\infty)$. A sequence $\{e_n\}_{n\in\mathbb{Z}}$ is called function-valued orthonormal basis with respect to *a*, or simply functionvalued orthonormal basis, for $L_2(0,\infty)$ if it is a function-valued orthonormal sequence and $\overline{span}\{\widetilde{\psi_m}e_n\}_{m,n\in\mathbb{Z}} =$ $L_2(0,\infty)$, where ψ_m is defined by $\psi_m(x) = \frac{1}{\sqrt{a-1}}e^{2\pi i \frac{m}{a-1}(a-x)}$ for all $m \in \mathbb{Z}$ and $x \in [1, a]$.

Proposition 1.3. [8] If $\{e_n\}_{n \in \mathbb{Z}}$ is a function-valued orthonormal basis in $L_2(0, \infty)$, then $\{\widetilde{\psi_m}e_n\}_{m,n \in \mathbb{Z}}$ is an orthonormal basis in $L_2(0, \infty)$ and $f = \sum_{n \in \mathbb{Z}} \langle \widetilde{f, e_n} \rangle_a e_n$ on $(0, \infty)$.

Let *E* be a measurable subset of $(0, \infty)$ and $1 \le p \le \infty$. A linear operator $L : L_2(0, \infty) \rightarrow L_p(E)$, is called a function-valued factorable operator with respect to *a*, or simply function-valued factorable operator if $L(\phi f) = \phi L(f)$ for all $f \in L_2(0, \infty)$ and $\phi \in B_a$.

Proposition 1.4. [8] If $L : L_2(0, \infty) \to L_2(0, \infty)$ is a bounded function-valued factorable operator, then for all $f, g \in L_2(0, \infty)$ we have

$$\langle L(f), g \rangle_a(x) = \langle f, L^*(g) \rangle_a(x), \text{ for all } x \in (0, \infty),$$

where L^* is the adjoint operator of L.

A sequence $\{f_n\}_{n \in \mathbb{Z}}$ in $L_2(0, \infty)$ is called a function-valued frame with respect to *a* for $L_2(0, \infty)$, or simply function-valued frame for $L_2(0, \infty)$ if there exist constants $A > 0, B < \infty$ such that

$$A||f||_a^2(x) \le \sum_{n \in \mathbb{Z}} |\langle f, f_n \rangle_a(x)|^2 \le B||f||_a^2(x),$$

for a.e. $x \in [1, a]$ and for all $f \in L_2(0, \infty)$.

Let $\{f_n\}_{n\in\mathbb{Z}}$ be a function-valued frame for $L_2(0,\infty)$. A function-valued frame $\{g_n\}_{n\in\mathbb{Z}}$ is called a **dual function-valued frame** of $\{f_n\}_{n\in\mathbb{Z}}$ with respect to *a*, or simply dual function-valued frame of $\{f_n\}_{n\in\mathbb{Z}}$ for $L_2(0,\infty)$ if for all $f \in L_2(0,\infty)$

$$f = \sum_{n \in \mathbb{Z}} \widetilde{\langle f, g_n \rangle_a} f_n.$$
(1.2)

Theorem 1.5. [8] Let $\{f_n\}_{n\in\mathbb{Z}}$ be a sequence in $L_2(0,\infty)$. The following statements are equivalent: 1) $\{f_n\}_{n\in\mathbb{Z}}$ is a function-valued frame for $L_2(0,\infty)$. 2) $\{\psi_m f_n\}_{m,n\in\mathbb{Z}}$ is a frame for $L_2(0,\infty)$.

Two frames $\{f_k\}_{k=1}^{\infty}$ and $\{g_k\}_{k=1}^{\infty}$ are dual frames for \mathcal{H} if

$$f = \sum_{k=1}^{\infty} \langle f, g_k \rangle f_k, \ \forall f \in \mathcal{H}.$$

Dual frames have an important role for the reconstruction of signals. From this point of view, dual frames have been generalized. Pseudo duals [10], Oblique dual frames [5, 9] and approximately dual frames [6] are some generalizations of dual frames.

G-duals of a frame in a separable Hilbert space \mathcal{H} are introduced in [7]. Let $\{f_k\}_{k=1}^{\infty}$ be a frame for \mathcal{H} . A frame $\{g_k\}_{k=1}^{\infty}$ is called a generalized dual frame or g-dual frame of $\{f_k\}_{k=1}^{\infty}$ for \mathcal{H} if there exists an invertible operator $A \in B(\mathcal{H})$ such that for all $f \in \mathcal{H}$,

$$f = \sum_{k=1}^{\infty} < Af, g_k > f_k.$$

In this paper, g-dual function-valued frames in $L_2(0, \infty)$ are introduced. Also an application of g-dual function-valued frames in $L_2(0, \infty)$ for characterizing g-dual frame of a dilation-invariant system in $L_2(0, \infty)$ is given.

2. G-dual function-valued frames in $L_2(0, \infty)$

Definition 2.1. Let $\{f_n\}_{n\in\mathbb{Z}}$ be a function-valued frame for $L_2(0,\infty)$. A function-valued frame $\{g_n\}_{n\in\mathbb{Z}}$ is called a **g-dual function-valued frame** of $\{f_n\}_{n\in\mathbb{Z}}$ with respect to *a*, or simply g-dual function-valued frame of $\{f_n\}_{n\in\mathbb{Z}}$ for $L_2(0,\infty)$ if there exists a bounded invertible function-valued factorable operator *L* on $L_2(0,\infty)$ such that for all $f \in L_2(0,\infty)$

$$f = \sum_{n \in \mathbb{Z}} \langle \widetilde{Lf, g_n} \rangle_a f_n.$$
(2.1)

The function-valued factorable operator L in (2.1) is unique. Indeed, if L_{\natural} and L_{\flat} are two bounded invertible function-valued factorable operators which satisfy in (2.1), then for all $f \in L_2(0, \infty)$

$$L_{\natural}^{-1}f = \sum_{n \in \mathbb{Z}} \widetilde{\langle f, g_n \rangle_a} f_n = L_{\flat}^{-1}f.$$

Also, we say the function-valued frame $\{g_n\}_{n \in \mathbb{Z}}$ is a g-dual function-valued frame of $\{f_n\}_{n \in \mathbb{Z}}$ with the corresponding bounded invertible function-valued factorable operator *L* (or with bounded invertible function-valued factorable operator *L*).

Proposition 2.2. Let $\{f_n\}_{n\in\mathbb{Z}}$ and $\{g_n\}_{n\in\mathbb{Z}}$ be function-valued frames for $L_2(0,\infty)$. Then $\{g_n\}_{n\in\mathbb{Z}}$ is a g-dual function-valued frame of $\{f_n\}_{n\in\mathbb{Z}}$ for $L_2(0,\infty)$ with bounded invertible function-valued factorable operator L if and only if $\{f_n\}_{n\in\mathbb{Z}}$ is a g-dual function-valued frame of $\{g_n\}_{n\in\mathbb{Z}}$ for $L_2(0,\infty)$ with bounded invertible function-valued factorable operator L^{*}.

Proof. We first assume that $\{g_n\}_{n\in\mathbb{Z}}$ is a g-dual function-valued frame of $\{f_n\}_{n\in\mathbb{Z}}$ for $L_2(0,\infty)$ with bounded invertible function-valued factorable operator L and hence $f = \sum_{n\in\mathbb{Z}} \langle Lf, g_n \rangle_a f_n$ for all $f \in L_2(0,\infty)$. For all $h, k \in L_2(0,\infty)$, $\langle h, k \rangle_a = \langle h, k \rangle_a$, on [1, *a*]. Thus by Proposition 1.2 we have

$$\left\langle f, (L^{-1})^* g \right\rangle_a = \left\langle L^{-1} f, g \right\rangle_a$$

$$= \left\langle \sum_{n \in \mathbb{Z}} \langle \widetilde{f, g_n} \rangle_a f_n, g \right\rangle_a$$

$$= \sum_{n \in \mathbb{Z}} \langle \widetilde{f, g_n} \rangle_a \langle f_n, g \rangle_a$$

$$= \sum_{n \in \mathbb{Z}} \langle f, g_n \rangle_a \langle \widetilde{f_n, g} \rangle_a$$

$$= \overline{\sum_{n \in \mathbb{Z}} \langle \widetilde{g, f_n} \rangle_a \langle g_n, f \rangle_a }$$

$$= \left\langle f, \sum_{n \in \mathbb{Z}} \langle \widetilde{g, f_n} \rangle_a g_n \right\rangle_a$$

on [1, *a*] for all $g \in L_2(0, \infty)$. Therefore

$$\left\langle f, (L^{-1})^*g - \sum_{n \in \mathbb{Z}} \widetilde{\langle g, f_n \rangle_a} g_n \right\rangle = \int_1^a \left\langle f, (L^{-1})^*g - \sum_{n \in \mathbb{Z}} \widetilde{\langle g, f_n \rangle_a} g_n \right\rangle_a (x) dx = 0$$

Thus $g = \sum_{n \in \mathbb{Z}} \langle \widetilde{L^*g, f_n} \rangle_a g_n$. The converse is obtained by $(L^*)^* = L$.

Example 2.3. Assume that $\{g_n\}_{n\in\mathbb{Z}}$ is a dual function-valued frame of $\{f_n\}_{n\in\mathbb{Z}}$ for $L_2(0,\infty)$ (for example $\{S^{-1}f_n\}_{n\in\mathbb{Z}}$ is a dual function-valued frame of $\{f_n\}_{n\in\mathbb{Z}}$ for $L_2(0,\infty)$ by Theorem 2.4) and assume that ϕ is a non zero constant function on $(0,\infty)$. Then $\{\phi g_n\}_{n\in\mathbb{Z}}$ is a g-dual function-valued frame of $\{f_n\}_{n\in\mathbb{Z}}$ for $L_2(0,\infty)$ with bounded invertible function-valued factorable operator *L* defined on $L_2(0,\infty)$ by $Lf = \frac{1}{\phi}f$, for all $f \in L_2(0,\infty)$.

Every function-valued frame is a g-dual function-valued frame of itself.

Theorem 2.4. Let $\{f_n\}_{n\in\mathbb{Z}}$ be a function-valued frame for $L_2(0,\infty)$ and

$$Sf = \sum_{n \in \mathbb{Z}} \widetilde{\langle f, f_n \rangle_a} f_n, \quad \forall f \in L_2(0, \infty).$$
(2.2)

1) *S* is a well define bounded invertible function-valued factorable operator on $L_2(0, \infty)$. 2) $\{f_n\}_{n \in \mathbb{Z}}$ is a g-dual function-valued frame of itself with bounded invertible function-valued factorable operator S^{-1} .

Proof. Let $\{f_n\}_{n\in\mathbb{Z}}$ be a function-valued frame for $L_2(0,\infty)$ with bounds A and B. Then for all $f \in L_2(0,\infty)$,

$$A||f||_{a}^{2}(x) \leq \sum_{n \in \mathbb{Z}} |\langle f, f_{n} \rangle_{a}(x)|^{2} \leq B||f||_{a}^{2}(x), \quad for \ a.e. \ x \in [1, a].$$
(2.3)

Thus

$$\begin{split} \|\sum_{|n|=N}^{M} \langle \widetilde{f, f_n} \rangle_a f_n \|_{L_2(0,\infty)}^2 &= \int_1^a \|\sum_{|n|=N}^{M} \langle \widetilde{f, f_n} \rangle_a f_n \|_a^2(x) dx \\ &= \int_1^a \sup_{\substack{\|g\|_a=1\\ on[1,a]}} |\langle \sum_{|n|=N}^{M} \langle \widetilde{f, f_n} \rangle_a f_n, g \rangle_a(x)|^2 dx \\ &= \int_1^a \sup_{\substack{\|g\|_a=1\\ on[1,a]}} \sum_{|n|=N}^{M} \langle \widetilde{f, f_n} \rangle_a(x) \langle f_n, g \rangle_a(x)|^2 dx \\ &\leq \int_1^a \sup_{\substack{\|g\|_a=1\\ on[1,a]}} \sum_{|n|=N}^{M} |\langle \widetilde{f, f_n} \rangle_a(x)|^2 \sum_{|n|=N}^{M} |\langle f_n, g \rangle_a(x)|^2 dx \\ &\leq B \int_1^a \sum_{|n|=N}^{M} |\langle \widetilde{f, f_n} \rangle_a(x)|^2 dx \to 0, \end{split}$$

as $M, N \to \infty$, since, the second inequality in (2.3) and Monotone Convergence Theorem imply that $\sum_{n \in \mathbb{Z}} |\langle f, f_n \rangle_a|^2$ converges in $L_1[1, a]$. Thus *S* is well define and ||S|| < B. It is easy to show that *S* is linear. If $\phi \in B_a$, then for all $f \in L_2(0, \infty)$

$$S(\phi f) = \sum_{n \in \mathbb{Z}} \langle \widetilde{\phi f, f_n} \rangle_a f_n$$
$$= \phi \sum_{n \in \mathbb{Z}} \widetilde{\langle f, f_n \rangle_a} f_n$$
$$= \phi S(f)$$

by Proposition 1.2. Also inequality (2.3) shows that

$$A||f||_a^2(x) \le \langle Sf, f \rangle_a(x) \le B||f||_a^2(x), \quad for \ a.e. \ x \in [1, a].$$

By integration of above inequality on [1, a] we have $A||f||^2 \le \langle S f, f \rangle \le B||f||^2$. Thus $||I-B^{-1}S|| < 1$ and so *S* is invertible.

Also by replacing f with $S^{-1}f$ in (2.2),

$$f = \sum_{n \in \mathbb{Z}} \langle \widetilde{S^{-1}f, f_n} \rangle_a f_n, \ \forall f \in L_2(0, \infty).$$

Thus $\{f_n\}_{n \in \mathbb{Z}}$ is a g-dual function-valued frame of itself with invertible function-valued factorable operator S^{-1}

The function-valued factorable operator *S* defined by (2.2) is called **function-valued frame operator** of $\{f_n\}_{n \in \mathbb{Z}}$. Now we are going to give a simple way for construction of infinitly many g-dual function-valued frames of a given function-valued frame (with common bounded invertible function-valued factorable operator).

Proposition 2.5. Assume that $\{g_n\}_{n\in\mathbb{Z}}$ is a g-dual function-valued frame of $\{f_n\}_{n\in\mathbb{Z}}$ for $L_2(0,\infty)$ with bounded invertible function-valued factorable operator L and $\phi \in B_a$. Then the sequence $\{h_n\}_{n\in\mathbb{Z}}$ defined by $h_n = \phi g_n + (1 - \phi)(L^{-1})^* S^{-1} f_n$, is a g-dual function-valued frame of $\{f_n\}_{n\in\mathbb{Z}}$ for $L_2(0,\infty)$ with bounded invertible function-valued factorable operator L, where S is the function-valued frame operator of $\{f_n\}_{n\in\mathbb{Z}}$.

Proof. For all $f \in L_2(0, \infty)$ we have

$$\sum_{n \in \mathbb{Z}} \langle \widetilde{Lf, h_n} \rangle_a f_n = \bar{\phi} \sum_{n \in \mathbb{Z}} \langle \widetilde{Lf, g_n} \rangle_a f_n + (1 - \bar{\phi}) \sum_{n \in \mathbb{Z}} \langle \widetilde{f, S^{-1}f_n} \rangle_a f_n$$
$$= \bar{\phi} f + (1 - \bar{\phi}) f = f$$

Example 2.6. If $\{g_n\}_{n\in\mathbb{Z}}$ is a dual function-valued frame of $\{f_n\}_{n\in\mathbb{Z}}$, then $\frac{1}{2}g_n + \frac{1}{2}S^{-1}f_n$, is a g-dual function-valued frame of $\{f_n\}_{n\in\mathbb{Z}}$ for $L_2(0,\infty)$ with bounded invertible function-valued factorable operator I, where S is the function-valued frame operator of $\{f_n\}_{n\in\mathbb{Z}}$ and I is the identity operator on $L_2(0,\infty)$.

Definition 2.7. A sequence $\{g_n\}_{n\in\mathbb{Z}}$ is called a function-valued Riesz basis with respect to *a*, or simply function-valued Riesz basis for $L_2(0, \infty)$ if there exist function-valued orthonormal basis $\{e_n\}_{n\in\mathbb{Z}}$ and bounded invertible function-valued factorable operator *L* on $L_2(0, \infty)$ such that $g_n = Le_n$, for all $n \in \mathbb{Z}$.

Not only function-valued orthonormal bases, but also function-valued Riesz bases are g-dual function-valued frames.

Proposition 2.8. Every two function-valued Riesz bases are g-dual function-valued frames.

Proof. Let $\{g_n\}_{n\in\mathbb{Z}}$ and $\{h_n\}_{n\in\mathbb{Z}}$ be two function-valued Riesz bases for $L_2(0, \infty)$. There exist function-valued orthonormal basis $\{e_n\}_{n\in\mathbb{Z}}$ and bounded invertible function-valued factorable operators L_{\natural} and L_{\flat} on $L_2(0, \infty)$ such that $g_n = L_{\natural}e_k$ and $h_n = L_{\flat}e_k$. Since L_{\natural} and L_{\flat} are invertible, there exists a bounded invertible function-valued factorable operator L on $L_2(0, \infty)$ such that $L_{\flat}L_{\natural}^*L = I$ and hence for all $f \in L_2(0, \infty)$ we have

$$f = L_{\flat}L_{\natural}^{*}Lf = L_{\flat}(\sum_{n \in \mathbb{Z}} \left\langle L_{\natural}^{*}Lf, e_{n} \right\rangle_{a} e_{n})$$
$$= \sum_{n \in \mathbb{Z}} \left\langle \widetilde{Lf, L_{\natural}e_{n}} \right\rangle_{a} L_{\flat}e_{n}$$
$$= \sum_{n \in \mathbb{Z}} \left\langle \widetilde{Lf, g_{n}} \right\rangle_{a} h_{n}.$$

-	-	-	

The relation between g-dual frames and g-dual function-valued frames for $L_2(0, \infty)$ is given in the next theorem.

Theorem 2.9. Let $\{f_n\}_{n \in \mathbb{Z}}$ and $\{g_n\}_{n \in \mathbb{Z}}$ be function-valued frames in $L_2(0, \infty)$. The following statements are equivalent:

1 $\{g_n\}_{n \in \mathbb{Z}}$ is a g-dual function-valued frame of $\{f_n\}_{n \in \mathbb{Z}}$ with bounded invertible function-valued factorable operator L.

2) $\{\widetilde{\psi_m}g_n\}_{m,n\in\mathbb{Z}}$ is a g-dual frame of $\{\widetilde{\psi_m}f_n\}_{m,n\in\mathbb{Z}}$ with bounded invertible operator L.

Proof. The sequences $\{\widetilde{\psi_m}g_n\}_{m,n\in\mathbb{Z}}$ and $\{\widetilde{\psi_m}f_n\}_{m,n\in\mathbb{Z}}$ are frames in $L_2(0,\infty)$ by Theorem 1.5. Let $\{e_n\}_{n\in\mathbb{Z}}$ be a function-valued orthonormal basis for $L_2(0,\infty)$. A similar argument as the proof of Theorem 2.4 shows that the operators $T_1: L_2(0,\infty) \to L_2(0,\infty)$ defined by $T_1f = \sum_{n\in\mathbb{Z}} \langle f, e_n \rangle_a g_n$ and $T_2: L_2(0,\infty) \to L_2(0,\infty)$ defined by $T_2f = \sum_{n\in\mathbb{Z}} \langle f, e_n \rangle_a f_n$ are well define bounded function-valued factorable operators. Also $T_1e_n = g_n, T_2e_n = f_n, T_1(\widetilde{\psi_m}e_n) = \widetilde{\psi_m}g_n$ and $T_2(\widetilde{\psi_m}e_n) = \widetilde{\psi_m}f_n$. Now let $\{g_n\}_{n\in\mathbb{Z}}$ is a g-dual function-valued frame of $\{f_n\}_{n\in\mathbb{Z}}$ with bounded invertible function-valued factorable operator L. Then for all $f \in L_2(0,\infty)$

$$f = \sum_{n \in \mathbb{Z}} \langle \widetilde{Lf, g_n} \rangle_a f_n = \sum_{n \in \mathbb{Z}} \langle \widetilde{Lf, T_1 e_n} \rangle_a T_2 e_n$$
$$= T_2 (\sum_{n \in \mathbb{Z}} \langle \widetilde{T_1^* Lf, e_n} \rangle_a e_n)$$
$$= T_2 T_1^* Lf,$$

by Proposition 1.3. Now $\{\widetilde{\psi_m}e_n\}_{m,n\in\mathbb{Z}}$ is an orthonormal basis in $L_2(0,\infty)$ by Proposition 1.3 and hence for all $f \in L_2(0,\infty)$

$$\sum_{n \in \mathbb{Z}} \left\langle Lf, \widetilde{\psi_m} g_n \right\rangle \widetilde{\psi_m} f_n = \sum_{n \in \mathbb{Z}} \left\langle Lf, T_1(\widetilde{\psi_m} e_n) \right\rangle T_2(\widetilde{\psi_m} e_n)$$
$$= T_2(\sum_{n \in \mathbb{Z}} \left\langle T_1^* Lf, \widetilde{\psi_m} e_n \right\rangle \widetilde{\psi_m} e_n)$$
$$= T_2 T_1^* Lf = f.$$

Therefore $\{\widetilde{\psi}_m g_n\}_{m,n\in\mathbb{Z}}$ is a g-dual frame of $\{\widetilde{\psi}_m f_n\}_{m,n\in\mathbb{Z}}$ with bounded invertible operator *L*. Conversely let $\{\widetilde{\psi}_m g_n\}_{m,n\in\mathbb{Z}}$ be a g-dual frame of $\{\widetilde{\psi}_m f_n\}_{m,n\in\mathbb{Z}}$ with bounded invertible operator *L*. Then $L = (T_2 T_1^*)^{-1}$ is bounded invertible function-valued factorable operator, since T_1 and T_2 are function-valued factorable operator. Also for all $f \in L_2(0, \infty)$

$$\sum_{n \in \mathbb{Z}} \langle \widetilde{Lf, g_n} \rangle_a f_n = \sum_{n \in \mathbb{Z}} \langle \widetilde{Lf, T_1 e_n} \rangle_a T_2 e_n$$
$$= T_2 (\sum_{n \in \mathbb{Z}} \langle \widetilde{T_1^* Lf, e_n} \rangle_a e_n)$$
$$= T_2 T_1^* Lf = f,$$

by Proposition 1.3.

Example 2.10. Let $\{e_n\}_{n\in\mathbb{Z}}$ be an orthonormal basis for $L_2(0,\infty)$ and $\lambda \neq 0$. Then $\{\lambda e_n\}_{n\in\mathbb{Z}}$ is a g-dual frame of $\{e_n\}_{n\in\mathbb{Z}}$ with bounded invertible operator L defined on $L_2(0,\infty)$ by $Lf = \frac{1}{\lambda}$, for all $f \in L_2(0,\infty)$. Therefore $\{\lambda \widetilde{\psi}_m e_n\}_{m,n\in\mathbb{Z}}$ is a g-dual function-valued frame of $\{\widetilde{\psi}_m e_n\}_{m,n\in\mathbb{Z}}$ with bounded invertible function-valued factorable operator L.

Let $\phi \in L_2(0, \infty)$. Then for all $x \in (0, \infty)$ we have

$$\begin{split} \widetilde{\psi}_k D_{a^j} \phi(x) &= \widetilde{\psi}_k(x) D_{a^j} \phi(x) \\ &= \frac{1}{\sqrt{a^j}} \widetilde{\psi}_k(x) \phi(a^{-j}x) \\ &= \frac{1}{\sqrt{a^j}} \widetilde{\psi}_k(a^{-j}x) \phi(a^{-j}x) \\ &= D_{a^j} \widetilde{\psi}_k \phi(x) \end{split}$$

and hence $\tilde{\psi}_k$ commute with D_{a^j} . Thus the following corollary is immediate from Theorem 2.9.

Corollary 2.11. Let $\{D_{a^j}\phi_1\}_{j\in\mathbb{Z}}$ and $\{D_{a^j}\phi_2\}_{j\in\mathbb{Z}}$ be function-valued frames for $L_2(0,\infty)$, where $\phi_1, \phi_2 \in L_2(0,\infty)$. The following are equivalent.

1) $\{D_{a^{j}}\phi_{1}\}_{j\in\mathbb{Z}}$ is a g-dual function-valued frame of $\{D_{a^{j}}\phi_{2}\}_{j\in\mathbb{Z}}$ with bounded invertible function-valued factorable operator L.

2)The dilation invariant system generated by $\{\widetilde{\psi}_k \phi_1\}_{k \in \mathbb{Z}}$ and a is a g-dual frame of the dilation invariant system generated by $\{\widetilde{\psi}_k \phi_2\}_{k \in \mathbb{Z}}$ and a with bounded invertible operator L.

References

- [1] P.G. Casazza, The Art of Frame Theory, Taiwanese J. Math, 4 (2000), 129-201.
- [2] P. G. Casazza, and G. Kutyniok, Frames of Subspaces, *Contemporary Math*, 345 (2004), 87-114.
- [3] P. G. Casazza and M. C. Lammers, Bracket Products for Weyl-Heisenberg Frames, In: Advances in Gabor Analysis (eds) Feichtinger H G and Strohmer T (2003) (Boston-MA. Birkhäuser).
- [4] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, Basel, Berlin, 2002.
- [5] O. Christensen and Y. Eldar, Oblique dual frames and shift-invariant spaces, *Appl. Comp. Harm. Anal.*, **17** (2004) 48 68.
- [6] O. Christensen and R. S. Laugesen, Approximately dual frames in Hilbert spaces and application to Gabor frames, Sampl. *Theory Signal Image Process.* 9 (2011), 77-90.
- [7] M. A. Dehghan and M. A. Hasankhani Fard, G-dual frames in Hilbert spaces, U.P.B. Sci. Bull., Series A, 75(1) (2013), 129-140.
- [8] M. A. Hasankhani Fard and M. A. Dehghan, A new function-valued inner product and corresponding function-valued frames in $L_2(0, \infty)$, *Linear Multilinear Algebra*, (Published online: 01 Jul 2013).
- [9] A. A. Hemmat and J. P. Gabardo, Properties of oblique dual frames in shift-invariant systems, J. Math. Anal. Appl., 356 (2009) 346-354.
- [10] S. Li and H. Ogawa, Pseudo duals of frames with applications, Appl. Comput. Harmon. Anal., 11 (2001) 289-304.
- [11] R. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 1980.