G-dual function-valued frames in $L_{2}(0, \infty)$

M. A. Hasankhanifard ${ }^{\mathrm{a}, *}$, M. A. Dehghan ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Vali-E-Asr University, Rafsanjan, Islamic
Republic of Iran, P.O.Box: 546

Article Info

Article history:

Received 2 December 2014
Accepted 28 April 2015
Available online September 2015
Communicated by Asghar Rahimi

Keywords:

g-dual frame,
function-valued frame,
2000 MSC:
46L99, 42C15

Abstract

In this paper, g-dual function-valued frames in $L_{2}(0, \infty)$ are introduced. We can achieve more reconstruction formulas to obtain signals in $L_{2}(0, \infty)$ by applying g-dual function-valued frames in $L_{2}(0, \infty)$.
(c) (2015) Wavelets and Linear Algebra

1. Introduction

Given a separable Hilbert space \mathcal{H} with inner product $\langle.,$.$\rangle , a sequence \left\{f_{k}\right\}_{k=1}^{\infty}$ is called a frame for \mathcal{H} if there exist constants $A>0, B<\infty$ such that for all $f \in \mathcal{H}$,

$$
\begin{equation*}
A\|f\|^{2} \leq \sum_{k=1}^{\infty}\left|\left\langle f, f_{k}\right\rangle\right|^{2} \leq B\|f\|^{2}, \tag{1.1}
\end{equation*}
$$

[^0]M. A. Hasankhanifard, M. A. Dehghan/ Wavelets and Linear Algebra 2 (1) (2015) 39-47 40
where A and B are the lower and upper frame bounds, respectively. The second inequality of the frame condition (1.1) is also known as the Bessel condition for $\left\{f_{k}\right\}_{k=1}^{\infty}$. For more information concerning frames refer to $[1,2,4,11]$.
We consider three classes of operators on $L_{2}(\mathbb{R})$. Their definitions are as follows:
Translation by $a \in \mathbb{R}, \quad T_{a}: L_{2}(\mathbb{R}) \rightarrow L_{2}(\mathbb{R}), \quad\left(T_{a} g\right)(x)=g(x-a)$,
Modulation by $b \in \mathbb{R}, \quad E_{b}: L_{2}(\mathbb{R}) \rightarrow L_{2}(\mathbb{R}), \quad\left(E_{b} g\right)(x)=e^{2 \pi i b x} g(x)$,
Dilation by $c \neq 0, \quad D_{c}: L_{2}(\mathbb{R}) \rightarrow L_{2}(\mathbb{R}), \quad\left(D_{c} g\right)(x)=\frac{1}{\sqrt{|c|}} g\left(\frac{x}{c}\right)$.
A Gabor frame is a frame for $L_{2}(\mathbb{R})$ of the form $\left\{E_{m b} T_{n a} g\right\}_{m, n \in \mathbb{Z}}$ where $a, b>0, g$ is a fixed function in $L_{2}(\mathbb{R})$. This frame is special case of shift-invariant systems (up to an irrelevant complex factor). Casazza and Lammers define a function-valued inner product of two function $f, g \in L_{2}(\mathbb{R})$ as
$$
\langle f, g\rangle_{a}(x)=\sum_{n \in \mathbb{Z}} f(x-n a) \overline{g(x-n a)}, \quad \forall x \in \mathbb{R},
$$
where a is a fixed positive real number [3]. They called it as a-inner product and used it in the study of Gabor frames.

The dilation-invariant system generated by the sequence $\left\{g_{k}\right\}_{k \in \mathbb{Z}}$ in $L_{2}(\mathbb{R})$ and $a>1$ is the sequence $\left\{D_{a^{j}} g_{k}\right\}_{j, k \in \mathbb{Z}}$, where $D_{a^{j}}$ is the dilation operator by a^{j}. Dilation-invariant systems contain wavelet frames and hence they will play an important role in the analysis of wavelet frames.
A function-valued inner product on $L_{2}(0, \infty)$ by using of the dilation operator has been introduced in [8]. The authors use of a function-valued inner product in the study of the dilation-invariant systems:
Fix $a>1$. For each pair $f, g \in L_{2}(0, \infty)$, the function $\langle f, g\rangle_{a}$ on $(0, \infty)$ is defined by

$$
\langle f, g\rangle_{a}(x):=\sum_{j \in \mathbb{Z}} a^{j} f\left(a^{j} x\right) \overline{g\left(a^{j} x\right)}
$$

and is called function-valued inner product on $L_{2}(0, \infty)$ with respect to a. It is easy to show that $\langle f, g\rangle=\int_{1}^{a}\langle f, g\rangle_{a}(x) d x$, where $\langle.,$.$\rangle is the original inner product in L_{2}(0, \infty)$. Also, the functionvalued norm on $L_{2}(0, \infty)$ with respect to a is defined by

$$
\|f\|_{a}(x):=\sqrt{\langle f, f\rangle_{a}(x)}, \quad \forall f \in L_{2}(0, \infty) \text { and } \forall x \in(0, \infty) .
$$

The function ϕ on $(0, \infty)$ is called dilation periodic function with period a if $\phi(a x)=\phi(x)$ for all $x \in(0, \infty)$. The set of bounded dilation periodic functions on $(0, \infty)$ is denoted by B_{a}.

Example 1.1. Let f be a bounded function on $(0, \infty)$ and let $(G,+)$ be a finite group (for example $\left.G=\mathbb{Z}_{n}, n \in \mathbb{N}, n \geq 2\right)$. Then the function ϕ defined by $\phi(x)=\sum_{j \in G} f\left(a^{j} x\right)$, for all $x \in(0, \infty)$ is in B_{a}.

For any function ϕ on $[1, a]$, the function $\widetilde{\phi}$ defined by $\widetilde{\phi}\left(a^{j} x\right)=\phi(x)$, for all $j \in \mathbb{Z}$ and $x \in[1, a]$ is dilation periodic. Throughout this paper, let $\widetilde{\phi}$ be the dilation periodic function defined as above for any complex function ϕ on $[1, a]$.
M. A. Hasankhanifard, M. A. Dehghan/ Wavelets and Linear Algebra 2 (1) (2015) 39-47 41

Proposition 1.2. [8] Let $f, g \in L_{2}(0, \infty)$ and $\phi \in B_{a}$. Then

$$
\langle\phi f, g\rangle_{a}=\phi\langle f, g\rangle_{a} \text { and }\langle f, \phi g\rangle_{a}=\bar{\phi}\langle f, g\rangle_{a}
$$

For any $f, g \in L_{2}(0, \infty), f$ and g are function-valued orthogonal with respect to a, or simply function-valued orthogonal if $\langle f, g\rangle_{a}=0$ a.e. on $[1, a]$.
A sequence $\left\{e_{n}\right\}_{n \in \mathbb{Z}}$ in $L_{2}(0, \infty)$ is called function-valued orthogonal with respect to a if $e_{n} \perp_{a} e_{m}$, for all $n \neq m \in \mathbb{Z}$. If also $\left\|e_{n}\right\|_{a}=1$ a.e. on $[1, a]$, then $\left\{e_{n}\right\}_{n \in \mathbb{Z}}$ is called a function-valued orthonormal sequence with respect to a, or simply function-valued orthonormal sequence, in $L_{2}(0, \infty)$.
A sequence $\left\{e_{n}\right\}_{n \in \mathbb{Z}}$ is called function-valued orthonormal basis with respect to a, or simply functionvalued orthonormal basis, for $L_{2}(0, \infty)$ if it is a function-valued orthonormal sequence and $\overline{\operatorname{span}}\left\{\widetilde{\psi}_{m} e_{n}\right\}_{m, n \in \mathbb{Z}}=$ $L_{2}(0, \infty)$, where ψ_{m} is defined by $\psi_{m}(x)=\frac{1}{\sqrt{a-1}} e^{2 \pi i \frac{m}{a-1}(a-x)}$ for all $m \in \mathbb{Z}$ and $x \in[1, a]$.

Proposition 1.3. [8] If $\left\{e_{n}\right\}_{n \in \mathbb{Z}}$ is a function-valued orthonormal basis in $L_{2}(0, \infty)$, then $\left\{\widetilde{\psi}_{m} e_{n}\right\}_{m, n \in \mathbb{Z}}$ is an orthonormal basis in $L_{2}(0, \infty)$ and $f=\sum_{n \in \mathbb{Z}} \widetilde{\left\langle f, e_{n}\right\rangle_{a}} e_{n}$ on $(0, \infty)$.

Let E be a measurable subset of $(0, \infty)$ and $1 \leq p \leq \infty$. A linear operator $L: L_{2}(0, \infty) \rightarrow$ $L_{p}(E)$, is called a function-valued factorable operator with respect to a, or simply function-valued factorable operator if $L(\phi f)=\phi L(f)$ for all $f \in L_{2}(0, \infty)$ and $\phi \in B_{a}$.

Proposition 1.4. [8] If $L: L_{2}(0, \infty) \rightarrow L_{2}(0, \infty)$ is a bounded function-valued factorable operator, then for all $f, g \in L_{2}(0, \infty)$ we have

$$
\langle L(f), g\rangle_{a}(x)=\left\langle f, L^{*}(g)\right\rangle_{a}(x), \text { for all } x \in(0, \infty),
$$

where L^{*} is the adjoint operator of L.
A sequence $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ in $L_{2}(0, \infty)$ is called a function-valued frame with respect to a for $L_{2}(0, \infty)$, or simply function-valued frame for $L_{2}(0, \infty)$ if there exist constants $A>0, B<\infty$ such that

$$
A\|f\|_{a}^{2}(x) \leq \sum_{n \in \mathbb{Z}}\left|\left\langle f, f_{n}\right\rangle_{a}(x)\right|^{2} \leq B\|f\|_{a}^{2}(x),
$$

for a.e. $x \in[1, a]$ and for all $f \in L_{2}(0, \infty)$.
Let $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ be a function-valued frame for $L_{2}(0, \infty)$. A function-valued frame $\left\{g_{n}\right\}_{n \in \mathbb{Z}}$ is called a dual function-valued frame of $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ with respect to a, or simply dual function-valued frame of $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ for $L_{2}(0, \infty)$ if for all $f \in L_{2}(0, \infty)$

$$
\begin{equation*}
f=\sum_{n \in \mathbb{Z}} \widetilde{\left\langle f, g_{n}\right\rangle_{a}} f_{n} . \tag{1.2}
\end{equation*}
$$

Theorem 1.5. [8] Let $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ be a sequence in $L_{2}(0, \infty)$. The following statements are equivalent: 1) $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ is a function-valued frame for $L_{2}(0, \infty)$.
2) $\left\{\psi_{m} f_{n}\right\}_{m, n \in \mathbb{Z}}$ is a frame for $L_{2}(0, \infty)$.
M. A. Hasankhanifard, M. A. Dehghan/ Wavelets and Linear Algebra 2 (1) (2015) 39-47 42

Two frames $\left\{f_{k}\right\}_{k=1}^{\infty}$ and $\left\{g_{k}\right\}_{k=1}^{\infty}$ are dual frames for \mathcal{H} if

$$
f=\sum_{k=1}^{\infty}<f, g_{k}>f_{k}, \forall f \in \mathcal{H}
$$

Dual frames have an important role for the reconstruction of signals. From this point of view, dual frames have been generalized. Pseudo duals [10], Oblique dual frames [5, 9] and approximately dual frames [6] are some generalizations of dual frames.
G-duals of a frame in a separable Hilbert space \mathcal{H} are introduced in [7].
Let $\left\{f_{k}\right\}_{k=1}^{\infty}$ be a frame for \mathcal{H}. A frame $\left\{g_{k}\right\}_{k=1}^{\infty}$ is called a generalized dual frame or g -dual frame of $\left\{f_{k}\right\}_{k=1}^{\infty}$ for \mathcal{H} if there exists an invertible operator $A \in B(\mathcal{H})$ such that for all $f \in \mathcal{H}$,

$$
f=\sum_{k=1}^{\infty}<A f, g_{k}>f_{k} .
$$

In this paper, g-dual function-valued frames in $L_{2}(0, \infty)$ are introduced. Also an application of g-dual function-valued frames in $L_{2}(0, \infty)$ for characterizing g-dual frame of a dilation-invariant system in $L_{2}(0, \infty)$ is given.

2. G-dual function-valued frames in $L_{\mathbf{2}}(0, \infty)$

Definition 2.1. Let $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ be a function-valued frame for $L_{2}(0, \infty)$. A function-valued frame $\left\{g_{n}\right\}_{n \in \mathbb{Z}}$ is called a \mathbf{g}-dual function-valued frame of $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ with respect to a, or simply g-dual function-valued frame of $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ for $L_{2}(0, \infty)$ if there exists a bounded invertible function-valued factorable operator L on $L_{2}(0, \infty)$ such that for all $f \in L_{2}(0, \infty)$

$$
\begin{equation*}
f=\sum_{n \in \mathbb{Z}}\left\langle\widetilde{\left.L f, g_{n}\right\rangle_{a}} f_{n}\right. \tag{2.1}
\end{equation*}
$$

The function-valued factorable operator L in (2.1) is unique. Indeed, if L_{\natural} and L_{b} are two bounded invertible function-valued factorable operators which satisfy in (2.1), then for all $f \in$ $L_{2}(0, \infty)$

$$
L_{\natural}^{-1} f=\sum_{n \in \mathbb{Z}} \widetilde{\left\langle f, g_{n}\right\rangle_{a}} f_{n}=L_{b}^{-1} f .
$$

Also, we say the function-valued frame $\left\{g_{n}\right\}_{n \in \mathbb{Z}}$ is a g-dual function-valued frame of $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ with the corresponding bounded invertible function-valued factorable operator L (or with bounded invertible function-valued factorable operator L).

Proposition 2.2. Let $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ and $\left\{g_{n}\right\}_{n \in \mathbb{Z}}$ be function-valued frames for $L_{2}(0, \infty)$. Then $\left\{g_{n}\right\}_{n \in \mathbb{Z}}$ is a g-dual function-valued frame of $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ for $L_{2}(0, \infty)$ with bounded invertible function-valued factorable operator L if and only if $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ is a g-dual function-valued frame of $\left\{g_{n}\right\}_{n \in \mathbb{Z}}$ for $L_{2}(0, \infty)$ with bounded invertible function-valued factorable operator L^{*}.
M. A. Hasankhanifard, M. A. Dehghan/ Wavelets and Linear Algebra 2 (1) (2015) 39-47 43

Proof. We first assume that $\left\{g_{n}\right\}_{n \in \mathbb{Z}}$ is a g-dual function-valued frame of $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ for $L_{2}(0, \infty)$ with bounded invertible function-valued factorable operator L and hence $f=\sum_{n \in \mathbb{Z}}\left\langle\widetilde{\left.L f, g_{n}\right\rangle_{a}} f_{n}\right.$ for all $f \in L_{2}(0, \infty)$. For all $h, k \in L_{2}(0, \infty), \widetilde{\langle h, k\rangle_{a}}=\langle h, k\rangle_{a}$, on [1,a]. Thus by Proposition 1.2 we have

$$
\begin{aligned}
\left\langle f,\left(L^{-1}\right)^{*} g\right\rangle_{a} & =\left\langle L^{-1} f, g\right\rangle_{a} \\
& =\left\langle\sum_{n \in \mathbb{Z}} \widetilde{\left\langle f, g_{n}\right\rangle_{a}} f_{n}, g\right\rangle_{a} \\
& =\sum_{n \in \mathbb{Z}}^{\left\langle f, g_{n}\right\rangle_{a}}\left\langle f_{n}, g\right\rangle_{a} \\
& =\sum_{n \in \mathbb{Z}}^{\left\langle f, g_{n}\right\rangle_{a}} \widetilde{\left\langle f_{n}, g\right\rangle_{a}} \\
& =\widetilde{\sum_{n \in \mathbb{Z}}\left\langle\widetilde{\left\langle g, f_{n}\right\rangle_{a}}\left\langle g_{n}, f\right\rangle_{a}\right.} \\
& \left.=\widehat{\left\langle\sum_{n \in \mathbb{Z}}\right.} \widetilde{\left\langle g, f_{n}\right\rangle_{a}} g_{n}, f\right\rangle_{a} \\
& =\left\langle f, \sum_{n \in \mathbb{Z}}^{\left\langle g, f_{n}\right\rangle_{a}} g_{n}\right\rangle_{a}
\end{aligned}
$$

on $[1, a]$ for all $g \in L_{2}(0, \infty)$. Therefore

$$
\left\langle f,\left(L^{-1}\right)^{*} g-\sum_{n \in \mathbb{Z}} \widetilde{\left\langle g, f_{n}\right\rangle_{a}} g_{n}\right\rangle=\int_{1}^{a}\left\langle f,\left(L^{-1}\right)^{*} g-\sum_{n \in \mathbb{Z}} \widetilde{\left\langle g, f_{n}\right\rangle_{a}} g_{n}\right\rangle_{a}(x) d x=0
$$

Thus $g=\sum_{n \in \mathbb{Z}}\left\langle\widetilde{L^{*} g, f_{n}}\right\rangle_{a} g_{n}$. The converse is obtained by $\left(L^{*}\right)^{*}=L$.
Example 2.3. Assume that $\left\{g_{n}\right\}_{n \in \mathbb{Z}}$ is a dual function-valued frame of $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ for $L_{2}(0, \infty)$ (for example $\left\{S^{-1} f_{n}\right\}_{n \in \mathbb{Z}}$ is a dual function-valued frame of $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ for $L_{2}(0, \infty)$ by Theorem 2.4) and assume that ϕ is a non zero constant function on $(0, \infty)$. Then $\left\{\phi g_{n}\right\}_{n \in \mathbb{Z}}$ is a g-dual function-valued frame of $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ for $L_{2}(0, \infty)$ with bounded invertible function-valued factorable operator L defined on $L_{2}(0, \infty)$ by $L f=\frac{1}{\phi} f$, for all $f \in L_{2}(0, \infty)$.

Every function-valued frame is a g-dual function-valued frame of itself.
Theorem 2.4. Let $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ be a function-valued frame for $L_{2}(0, \infty)$ and

$$
\begin{equation*}
S f=\sum_{n \in \mathbb{Z}} \widetilde{\left\langle f, f_{n}\right\rangle_{a}} f_{n}, \quad \forall f \in L_{2}(0, \infty) . \tag{2.2}
\end{equation*}
$$

1) S is a well define bounded invertible function-valued factorable operator on $L_{2}(0, \infty)$.
2) $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ is a g-dual function-valued frame of itself with bounded invertible function-valued factorable operator S^{-1}.
M. A. Hasankhanifard, M. A. Dehghan/ Wavelets and Linear Algebra 2 (1) (2015) 39-47 44

Proof. Let $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ be a function-valued frame for $L_{2}(0, \infty)$ with bounds A and B. Then for all $f \in L_{2}(0, \infty)$,

$$
\begin{equation*}
A\|f\|_{a}^{2}(x) \leq \sum_{n \in \mathbb{Z}}\left|\left\langle f, f_{n}\right\rangle_{a}(x)\right|^{2} \leq B\|f\|_{a}^{2}(x), \quad \text { for a.e. } x \in[1, a] . \tag{2.3}
\end{equation*}
$$

Thus

$$
\begin{aligned}
& \left\|\sum_{|n|=N}^{M} \widetilde{\left\langle f, f_{n}\right\rangle_{a}} f_{n}\right\|_{L_{2}(0, \infty)}^{2}=\int_{1}^{a}\left\|\sum_{|n|=N}^{M} \widetilde{\left\langle f, f_{n}\right\rangle_{a}} f_{n}\right\|_{a}^{2}(x) d x \\
& =\int_{1}^{a} \sup _{\substack{\|g\|_{a}=1 \\
\text { on }[1, a]}}\left|\left\langle\sum_{|n|=N}^{M} \widetilde{\left\langle f, f_{n}\right\rangle_{a}} f_{n}, g\right\rangle(x)\right|^{2} d x \\
& =\left.\int_{1}^{a} \sup _{\substack{\|g\|_{a}==\\
\text { on }[1, a]}}\left|\sum_{|n|=N}\right| \widetilde{\left\langle f, f_{n}\right\rangle_{a}}(x)\left\langle f_{n}, g\right\rangle_{a}(x)\right|^{2} d x \\
& \leq \int_{1}^{a} \sup _{\substack{\|g\|_{a}=1 \\
o n[1, a]}} \sum_{|n|=N}^{M} \widetilde{\left|\widetilde{\left.f, f_{n}\right\rangle_{a}}(x)\right|^{2} \sum_{|n|=N}^{M}\left|\left\langle f_{n}, g\right\rangle_{a}(x)\right|^{2} d x} \\
& \leq B \int_{1}^{a} \sum_{|n|=N}^{M}\left|\widetilde{\left\langle f, f_{n}\right\rangle_{a}}(x)\right|^{2} d x \rightarrow 0,
\end{aligned}
$$

as $M, N \rightarrow \infty$, since, the second inequality in (2.3) and Monotone Convergence Theorem imply that $\sum_{n \in \mathbb{Z}}\left|\left\langle f, f_{n}\right\rangle_{a}\right|^{2}$ converges in $L_{1}[1, a]$. Thus S is well define and $\|S\|<B$. It is easy to show that S is linear. If $\phi \in B_{a}$, then for all $f \in L_{2}(0, \infty)$

$$
\begin{aligned}
S(\phi f) & =\sum_{n \in \mathbb{Z}}\left\langle\widetilde{\left\langle f, f_{n}\right\rangle_{a}} f_{n}\right. \\
& =\phi \sum_{n \in \mathbb{Z}} \widetilde{\left\langle f, f_{n}\right\rangle_{a}} f_{n} \\
& =\phi S(f)
\end{aligned}
$$

by Proposition 1.2. Also inequality (2.3) shows that

$$
A\|f\|_{a}^{2}(x) \leq\langle S f, f\rangle_{a}(x) \leq B\|f\|_{a}^{2}(x), \quad \text { for a.e. } x \in[1, a] .
$$

By integration of above inequality on $[1, a]$ we have $A\|f\|^{2} \leq\langle S f, f\rangle \leq B\|f\|^{2}$. Thus $\left\|I-B^{-1} S\right\|<1$ and so S is invertible.
Also by replacing f with $S^{-1} f$ in (2.2),

$$
f=\sum_{n \in \mathbb{Z}}\left\langle\widetilde{S^{-1} f, f_{n}}\right\rangle_{a} f_{n}, \quad \forall f \in L_{2}(0, \infty) .
$$

Thus $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ is a g-dual function-valued frame of itself with invertible function-valued factorable operator S^{-1}

The function-valued factorable operator S defined by (2.2) is called function-valued frame operator of $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$. Now we are going to give a simple way for construction of infinitly many gdual function-valued frames of a given function-valued frame (with common bounded invertible function-valued factorable operator).

Proposition 2.5. Assume that $\left\{g_{n}\right\}_{n \in \mathbb{Z}}$ is a g-dual function-valued frame of $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ for $L_{2}(0, \infty)$ with bounded invertible function-valued factorable operator L and $\phi \in B_{a}$. Then the sequence $\left\{h_{n}\right\}_{n \in \mathbb{Z}}$ defined by $h_{n}=\phi g_{n}+(1-\phi)\left(L^{-1}\right)^{*} S^{-1} f_{n}$, is a g-dual function-valued frame of $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ for $L_{2}(0, \infty)$ with bounded invertible function-valued factorable operator L, where S is the function-valued frame operator of $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$.
Proof. For all $f \in L_{2}(0, \infty)$ we have

$$
\begin{aligned}
\sum_{n \in \mathbb{Z}}\left\langle\widetilde{\left.L f, h_{n}\right\rangle_{a}} f_{n}\right. & =\bar{\phi} \sum_{n \in \mathbb{Z}}\left\langle\widetilde{\left.L f, g_{n}\right\rangle_{a}} f_{n}+(1-\bar{\phi}) \sum_{n \in \mathbb{Z}}\left\langle f, \widetilde{S^{-1} f_{n}}\right\rangle_{a} f_{n}\right. \\
& =\bar{\phi} f+(1-\bar{\phi}) f=f
\end{aligned}
$$

Example 2.6. If $\left\{g_{n}\right\}_{n \in \mathbb{Z}}$ is a dual function-valued frame of $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$, then $\frac{1}{2} g_{n}+\frac{1}{2} S^{-1} f_{n}$, is a g-dual function-valued frame of $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ for $L_{2}(0, \infty)$ with bounded invertible function-valued factorable operator I, where S is the function-valued frame operator of $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ and I is the identity operator on $L_{2}(0, \infty)$.
Definition 2.7. A sequence $\left\{g_{n}\right\}_{n \in \mathbb{Z}}$ is called a function-valued Riesz basis with respect to a, or simply function-valued Riesz basis for $L_{2}(0, \infty)$ if there exist function-valued orthonormal basis $\left\{e_{n}\right\}_{n \in \mathbb{Z}}$ and bounded invertible function-valued factorable operator L on $L_{2}(0, \infty)$ such that $g_{n}=$ $L e_{n}$, for all $n \in \mathbb{Z}$.

Not only function-valued orthonormal bases, but also function-valued Riesz bases are g-dual function-valued frames.

Proposition 2.8. Every two function-valued Riesz bases are g-dual function-valued frames.
Proof. Let $\left\{g_{n}\right\}_{n \in \mathbb{Z}}$ and $\left\{h_{n}\right\}_{n \in \mathbb{Z}}$ be two function-valued Riesz bases for $L_{2}(0, \infty)$. There exist function-valued orthonormal basis $\left\{e_{n}\right\}_{n \in \mathbb{Z}}$ and bounded invertible function-valued factorable operators L_{\natural} and L_{b} on $L_{2}(0, \infty)$ such that $g_{n}=L_{\natural} e_{k}$ and $h_{n}=L_{b} e_{k}$. Since L_{\natural} and L_{b} are invertible, there exists a bounded invertible function-valued factorable operator L on $L_{2}(0, \infty)$ such that $L_{b} L_{\natural}^{*} L=I$ and hence for all $f \in L_{2}(0, \infty)$ we have

$$
\begin{aligned}
f=L_{b} L_{\natural}^{*} L f & =L_{b}\left(\sum_{n \in \mathbb{Z}}\left\langle\widetilde{L_{\natural}^{*} L f, e_{n}}\right\rangle_{a} e_{n}\right) \\
& =\sum_{n \in \mathbb{Z}}\left\langle\widetilde{L f, L_{\natural} e_{n}}\right\rangle_{a} L_{b} e_{n} \\
& =\sum_{n \in \mathbb{Z}}\left\langle\widetilde{\left.L f, g_{n}\right\rangle_{a}} h_{n} .\right.
\end{aligned}
$$

M. A. Hasankhanifard, M. A. Dehghan/ Wavelets and Linear Algebra 2 (1) (2015) 39-47 46

The relation between g-dual frames and g-dual function-valued frames for $L_{2}(0, \infty)$ is given in the next theorem.

Theorem 2.9. Let $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ and $\left\{g_{n}\right\}_{n \in \mathbb{Z}}$ be function-valued frames in $L_{2}(0, \infty)$. The following statements are equivalent:

1) $\left\{g_{n}\right\}_{n \in \mathbb{Z}}$ is a g-dual function-valued frame of $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ with bounded invertible function-valued factorable operator L.
2) $\left\{\widetilde{\psi_{m}} g_{n}\right\}_{m, n \in \mathbb{Z}}$ is a g-dual frame of $\left\{\widetilde{\psi_{m}} f_{n}\right\}_{m, n \in \mathbb{Z}}$ with bounded invertible operator L.

Proof. The sequences $\left\{\widetilde{\psi_{m}} g_{n}\right\}_{m, n \in \mathbb{Z}}$ and $\left\{\widetilde{\psi_{m}} f_{n}\right\}_{m, n \in \mathbb{Z}}$ are frames in $L_{2}(0, \infty)$ by Theorem 1.5.
Let $\left\{e_{n}\right\}_{n \in \mathbb{Z}}$ be a function-valued orthonormal basis for $L_{2}(0, \infty)$. A similar argument as the proof of Theorem 2.4 shows that the operators $T_{1}: L_{2}(0, \infty) \rightarrow L_{2}(0, \infty)$ defined by $T_{1} f=\sum_{n \in \mathbb{Z}} \widetilde{\left\langle f, e_{n}\right\rangle}{ }_{a} g_{n}$ and $T_{2}: L_{2}(0, \infty) \rightarrow L_{2}(0, \infty)$ defined by $T_{2} f=\sum_{n \in \mathbb{Z}} \widetilde{\left\langle f, e_{n}\right\rangle_{a}} f_{n}$ are well define bounded functionvalued factorable operators. Also $T_{1} e_{n}=g_{n}, T_{2} e_{n}=f_{n}, T_{1}\left(\widetilde{\psi_{m}} e_{n}\right)=\widetilde{\psi_{m}} g_{n}$ and $T_{2}\left(\widetilde{\psi_{m}} e_{n}\right)=\widetilde{\psi_{m}} f_{n}$.
Now let $\left\{g_{n}\right\}_{n \in \mathbb{Z}}$ is a g-dual function-valued frame of $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ with bounded invertible functionvalued factorable operator L. Then for all $f \in L_{2}(0, \infty)$

$$
\begin{aligned}
f=\sum_{n \in \mathbb{Z}}\left\langle\widetilde{L f, g_{n}}\right\rangle_{a} f_{n} & =\sum_{n \in \mathbb{Z}}\left\langle\widetilde{L f, T_{1} e_{n}}\right\rangle_{a} T_{2} e_{n} \\
& =T_{2}\left(\sum_{n \in \mathbb{Z}}\left\langle\widetilde{T_{1}^{*} L f, e_{n}}\right\rangle_{a} e_{n}\right) \\
& =T_{2} T_{1}^{*} L f,
\end{aligned}
$$

by Proposition 1.3. Now $\left\{\widetilde{\psi_{m}} e_{n}\right\}_{m, n \in \mathbb{Z}}$ is an orthonormal basis in $L_{2}(0, \infty)$ by Proposition 1.3 and hence for all $f \in L_{2}(0, \infty)$

$$
\begin{aligned}
\sum_{n \in \mathbb{Z}}\left\langle L f, \widetilde{\psi_{m}} g_{n}\right\rangle \widetilde{\psi_{m}} f_{n} & =\sum_{n \in \mathbb{Z}}\left\langle L f, T_{1}\left(\widetilde{\psi_{m}} e_{n}\right)\right\rangle T_{2}\left(\widetilde{\psi_{m}} e_{n}\right) \\
& =T_{2}\left(\sum_{n \in \mathbb{Z}}\left\langle T_{1}^{*} L f, \widetilde{\psi_{m}} e_{n}\right\rangle \widetilde{\psi_{m}} e_{n}\right) \\
& =T_{2} T_{1}^{*} L f=f .
\end{aligned}
$$

Therefore $\left\{\widetilde{\psi_{m}} g_{n}\right\}_{m, n \in \mathbb{Z}}$ is a g-dual frame of $\left\{\widetilde{\psi_{m}} f_{n}\right\}_{m, n \in \mathbb{Z}}$ with bounded invertible operator L. Conversely let $\left\{\widetilde{\psi}_{m} g_{n}\right\}_{m, n \in \mathbb{Z}}$ be a g-dual frame of $\left\{\widetilde{\psi}_{m} f_{n}\right\}_{m, n \in \mathbb{Z}}$ with bounded invertible operator L. Then $L=\left(T_{2} T_{1}^{*}\right)^{-1}$ is bounded invertible function-valued factorable operator, since T_{1} and T_{2} are function-valued factorable operator. Also for all $f \in L_{2}(0, \infty)$

$$
\begin{aligned}
\sum_{n \in \mathbb{Z}}\left\langle\widetilde{\left.L f, g_{n}\right\rangle_{a}} f_{n}\right. & =\sum_{n \in \mathbb{Z}}\left\langle L \widetilde{f, T_{1} e_{n}}\right\rangle_{a} T_{2} e_{n} \\
& =T_{2}\left(\sum_{n \in \mathbb{Z}}\left\langle\widetilde{T_{1}^{*} L f, e_{n}}\right\rangle_{a} e_{n}\right) \\
& =T_{2} T_{1}^{*} L f=f,
\end{aligned}
$$

by Proposition 1.3.
M. A. Hasankhanifard, M. A. Dehghan/ Wavelets and Linear Algebra 2 (1) (2015) 39-47 47

Example 2.10. Let $\left\{e_{n}\right\}_{n \in \mathbb{Z}}$ be an orthonormal basis for $L_{2}(0, \infty)$ and $\lambda \neq 0$. Then $\left\{\lambda e_{n}\right\}_{n \in \mathbb{Z}}$ is a g-dual frame of $\left\{e_{n}\right\}_{n \in \mathbb{Z}}$ with bounded invertible operator L defined on $L_{2}(0, \infty)$ by $L f=\frac{1}{\lambda}$, for all $f \in L_{2}(0, \infty)$. Therefore $\left\{\lambda \widetilde{\psi_{m}} e_{n}\right\}_{m, n \in \mathbb{Z}}$ is a g-dual function-valued frame of $\left\{\widetilde{\psi_{m}} e_{n}\right\}_{m, n \in \mathbb{Z}}$ with bounded invertible function-valued factorable operator L.

Let $\phi \in L_{2}(0, \infty)$. Then for all $x \in(0, \infty)$ we have

$$
\begin{aligned}
\widetilde{\psi}_{k} D_{a^{j}} \phi(x) & =\widetilde{\psi}_{k}(x) D_{a^{j}} \phi(x) \\
& =\frac{1}{\sqrt{a^{j}}} \widetilde{\psi}_{k}(x) \phi\left(a^{-j} x\right) \\
& =\frac{1}{\sqrt{a^{j}}} \widetilde{\psi}_{k}\left(a^{-j} x\right) \phi\left(a^{-j} x\right) \\
& =D_{a^{j}} \widetilde{\psi}_{k} \phi(x)
\end{aligned}
$$

and hence $\widetilde{\psi_{k}}$ commute with $D_{a^{j}}$. Thus the following corollary is immediate from Theorem 2.9.
Corollary 2.11. Let $\left\{D_{a^{j}} \phi_{1}\right\}_{j \in \mathbb{Z}}$ and $\left\{D_{a^{j}} \phi_{2}\right\}_{j \in \mathbb{Z}}$ be function-valued frames for $L_{2}(0, \infty)$, where $\phi_{1}, \phi_{2} \in L_{2}(0, \infty)$. The following are equivalent.
$1)\left\{D_{a^{i}} \phi_{1}\right\}_{j \in \mathbb{Z}}$ is a g-dual function-valued frame of $\left\{D_{a^{i}} \phi_{2}\right\}_{j \in \mathbb{Z}}$ with bounded invertible functionvalued factorable operator L.
2)The dilation invariant system generated by $\left\{\widetilde{\psi}_{k} \phi_{1}\right\}_{k \in \mathbb{Z}}$ and a is a g-dual frame of the dilation invariant system generated by $\left\{\widetilde{\psi}_{k} \phi_{2}\right\}_{k \in \mathbb{Z}}$ and a with bounded invertible operator L.

References

[1] P.G. Casazza, The Art of Frame Theory, Taiwanese J. Math, 4 (2000), 129-201.
[2] P. G. Casazza, and G. Kutyniok, Frames of Subspaces, Contemporary Math, 345 (2004), 87-114.
[3] P. G. Casazza and M. C. Lammers, Bracket Products for Weyl-Heisenberg Frames, In: Advances in Gabor Analysis (eds) Feichtinger H G and Strohmer T (2003) (Boston-MA. Birkhäuser).
[4] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, Basel, Berlin, 2002.
[5] O. Christensen and Y. Eldar, Oblique dual frames and shift-invariant spaces, Appl. Comp. Harm. Anal., 17 (2004) 48-68.
[6] O. Christensen and R. S. Laugesen, Approximately dual frames in Hilbert spaces and application to Gabor frames, Sampl. Theory Signal Image Process. 9 (2011), 77-90.
[7] M. A. Dehghan and M. A. Hasankhani Fard, G-dual frames in Hilbert spaces, U.P.B. Sci. Bull., Series A, 75(1) (2013), 129-140.
[8] M. A. Hasankhani Fard and M. A. Dehghan, A new function-valued inner product and corresponding functionvalued frames in $L_{2}(0, \infty)$, Linear Multilinear Algebra, (Published online: 01 Jul 2013).
[9] A. A. Hemmat and J. P. Gabardo, Properties of oblique dual frames in shift-invariant systems, J. Math. Anal. Appl., 356 (2009) 346-354.
[10] S. Li and H. Ogawa, Pseudo duals of frames with applications, Appl. Comput. Harmon. Anal., 11 (2001) 289304.
[11] R. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 1980.

[^0]: *Corresponding author
 Email addresses: m.hasankhani@vru.ac.ir (M. A. Hasankhanifard), dehghan@vru.ac.ir (M. A. Dehghan) (C) (2015) Wavelets and Linear Algebra

