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Abstract
We regard the shearlet group as a semidirect product group and
show that its standard representation is,typically, a quasiregu-
lar representation. As a result we can characterize irreducible
as well as square-integrable subrepresentations of the shearlet
group.
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1. Introduction

Among the main tasks of applied harmonic analysis are, firstly, optimally sparse representation
of functions belonging to a specific family in terms of some “building blocks” such as frames or
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bases; secondly, identifying discontinuities of functions such as edge detection in image process-
ing. For a long time wavelet theory was the best possible tool for dealing with these problems, but
during the last 20 years many alternatives have been suggested. For instance, steerable pyramid
[18], two dimensional directional wavelets [3] and complex wavelets [15],[16] were some “direc-
tional” versions of wavelets which outperform the wavelets. However, they are not completely
satisfying. The first desirable representation was curvelet introduced by Candès and Donoho in
2004 [6]. Curvelets have two notable shortcomings: Firstly, this system is not singly generated,
to wit, it is not derived from the action of countably many operators applied to a single func-
tion; Secondly, there is no algebraic background for curvelets, namely, curvelet transform is not
voice transform of some locally compact group. Finally, the best directional representation out-
performing curvelets as well as the other representations was shearlet that was established in [17].
Kutyniok and et al. usually work with reduced shearlet group, namely, shearlet group with R+ as
the parameter space of dilations and it is known that the standard unitary representation of this
group is not square-integrable or even irreducible. In this paper we exhibit two subrepresentations
of this representation which are at the same time irreducible and square-integrable.

2. Preliminaries and Notations

Let Aa =

(
a 0
0
√

a

)
be anisotropic(parabolic) scaling matrix and S s =

(
1 s
0 1

)
be shear matrix

acting on the plane. Let ψ ∈ L2(R2), and for each a ∈ R+ , s ∈ R and t ∈ R2 define ψa,s,t ∈ L2(R2)
by

ψa,s,t(x) = a−
3
4ψ(Aa

−1S s
−1(x − t)).

Then the shearlet system generated by ψ is defined by {ψa,s,t : a ∈ R+, s ∈ R, t ∈ R2}. The
associated continuous shearlet transform of f ∈ L2(R2) is given by

SHψ f : R+ × R × R2 −→ C

SHψ f (a, s, t) = ⟨ f , ψa,s,t⟩.
Consider the shearlet group S, defined as the set R+ × R × R2 along with the multiplication law
given by

(a, s, t)(a′, s′, t′) = (aa′, s +
√

as′, t + S sAat′).

The shearlet group is a locally compact group and as mentioned in [8], the left and righ Haar
measures of this group, respectively, are

dµl(a, s, t) =
da
a3 dsdt, dµr(a, s, t) =

da
a

dsdt.

Moreover, σ : S −→ U(L2(R2)) defined by

σ(a, s, t)ψ = ψa,s,t
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is a unitary representation of S on L2(R2).
A function ψ ∈ L2(R2) is called a continuous shearlet, if it satisfies the admissibility condition.
That is, ∥SHψ f ∥2L2(S) < ∞, for any f ∈ L2(R2).
As it is shown in [8], the shearlet transform tends to be an isometry. Indeed, for ψ ∈ L2(R2)
consider the following two quantities

C+ψ =
∫ ∞

0

∫
R

|ψ̂(ξ)|2

ξ1
2 dξ2dξ1, C−ψ =

∫ 0

−∞

∫
R

|ψ̂(ξ)|2

ξ1
2 dξ2dξ1.

For any f ∈ L2(R2), we have

∥SHψ f ∥2L2(S) =

∫
S
|⟨ f , ψa,s,t⟩|2

da
a3 dsdt = C+ψ

∫
R

∫ ∞

0
| f̂ (ω)|2dω1dω2

+C−ψ

∫
R

∫ 0

−∞
| f̂ (ω)|2dω1dω2. (*)

So if C+ψ = C−ψ = 1, then the shearlet transform is an isometry.
According to [8], for any classical shearlet we have C+ψ = C−ψ = 1, where by classical shearlet we
mean any ψ ∈ L2(R2) which is wavelet-like along one axis and bump-like along another one. As
an example consider ψ satisfying the following condition:

ψ̂(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ1)ψ̂2(
ξ2

ξ1
),

where ψ1 ∈ L2(R) is a discrete wavelet in the sense that it satisfies the discrete Calderón condition,
given by ∑

j∈Z
|ψ̂1(2− jη)|2 = 1, for a.e. η ∈ R

with ψ̂1 ∈ C∞(R) and supp(ψ̂1) ⊆ [− 1
2 ,−

1
16]

∪
[ 1

16 ,
1
2 ], and ψ2 ∈ L2(R) is a bump function in the

sense that
1∑

k=−1

|ψ̂2(γ + k)|2 = 1, for a.e. γ ∈ [−1, 1]

where ψ̂2 ∈ C∞(R) and supp(ψ̂2) ⊆ [−1, 1].

Now (*) shows that ψ is admissible if ∫
R2

|ψ̂(ξ)|2

ξ1
2 dξ < ∞.

3. Main results

Consider the semidirect product H ×τ K of locally compact groups H and K, with the opera-
tions:

(h, k)(h′, k′) = (hh′, kτh(k′))
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(h, k)−1 = (h−1, τh−1(k−1)),

in which, τ is supposed to be a homomorphism from H to the set of automorphisms of K. Fol-
lowing [4], the quasiregular representation(U, L2(K)) of G = H ×τ K, which in general is not
irreducible, is defined by

U(h, k) f (y) = δ(h)
1
2 f (τh−1(yk−1)), (h, k) ∈ G

in which, f ∈ L2(K) and y ∈ K.
From now on assume that K is also Abelian and consider K̂ as the dual group of K and denote
its left Haar measure by dω. Then one can define a continuous action from H on K̂ by (h, ω) 7→
ωoτh−1 . This action will play an important role in our discussion. Now for a fixω ∈ K̂ the stabilizer
and the orbit of ω, that play a key role in our discussion are defined respectively by

Hω := {h ∈ H;ωoτh−1 = ω}, Oω := {ωoτh−1 ; h ∈ H}.

Hω is a closed subgroup of H and Oω is an H−invariant subset in K̂.
For any measurable subset A of K̂ of positive measure, put

L2
A(K) := {ψ ∈ L2(K); supp(ψ̂) ⊆ A}.

It is easy to show that L2
A(K) is a translation invariant closed subspace of L2(K).

Here we quote some essential theorems [4, Theorems 2.6 and 2.9] by which we deduce our main
results:

Proposition 3.1. With the notations as above, and for a measurable subset A in K̂ we have:
i) L2

A(K) are the only translation invariant closed subspaces of L2(K);
ii) The closed subspaces L2

A(K) are U−invariant if A is an invariant subset in K̂ with respect to the
action of H on K̂.
(So in this case the restriction of U on L2

A(K) denoted by UA is a subrepresentation of U).

An H-invariant measurable subset A of K̂ is called ergodic if every invariant subset of A is null
or conull(complement of a null set). For instance, orbits are ergodic subsets.

Corollary 3.2. A nonzero closed subspace M of L2(K) is invariant under the representation U
if and only if M = L2

A(K) for some measurable H-invariant subset A of K̂ of positive measure.
Moreover the subrepresentation UA is irreducible if and only if A is ergodic.

Proposition 3.3. Let G = H ×τ K be the semidirect product of H and K. If A ⊆ K̂ is an ergodic
set of positive measure such that A = Oω a.e. for some ω, then:
i) The representation UA is square-integrable if and only if Hω is compact;
ii) ψ ∈ L2

A(K) is admissible if and only if h 7→ ψ̂(γoτh) is in L2(H) for almost all γ ∈ A.
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The special case K = Rn has already been investigated in [2, chapter 9] , and [12, corollary
5.24] .

Now we are able to apply the theory to our favorite group, the shearlet group. So we regard
the shearlet group as the semidirect product group

S = (R+ ×τ R) ×λ R2

in which, τ and λ are given by τa(s) =
√

as, and λ(a,s)(t) = S sAat.
We find out that the standard representation of the shearlet group, namely, σ(a, s, t)ψ = ψa,s,t is the
quasiregular representation of this semidirect product group. Indeed

σ(a, s, t)ψ(x) = a−
3
4ψ(A−1

a S −1
s (x − t))

= a−
3
4ψ(S τ 1

a
(−s)A 1

a
(x − t))

= a−
3
4ψ(λ( 1

a ,τ 1
a

(−s))(x − t))

= δ(a, s)
1
2ψ(λ(a,s)−1(x − t)),

where δ(a, s) is given by:

dµR2(t) = δ(a, s)dµR2(λ(a,s)(t))
= δ(a, s)dµR2(S sAat)
= δ(a, s)| det S sAa|dµR2(t) (by [11, Theorem 2.44])

= δ(a, s)a
3
2 dµR2(t).

Here it is natural to ask that if Kutyniok and et al. did not regard the family ψa,s,t as quasiregular
representation, then what was their approach? The path from wavelet to shearlet was “wavelets
with composite dilations”. Indeed seeking for more flexibility, authors in [13], inserted one addi-
tional dilation operator in the affine system to produce systems like:

ψA,B,k = {DADBTkψ; A, B ∈ GL2(R), k ∈ R2},

in which, Tkψ(x) = ψ(x − k) and DAψ(x) = |det(A)|− 1
2ψ(A−1x).

From this point of view, shearlet systems are special cases of composite dilation wavelets in which,
the matrices A and B are taken as:

A := Aa =

(
a 0
0
√

a

)
, a ∈ R+, B := S s =

(
1 s
0 1

)
, s ∈ R.

Now we are ready to exhibit our main theorem. But first note that for a unitary representation π of
the locally compact group G on the Hilbert spaceH and an invariant closed subspaceM ofH , it
is well known thatM⊥ is also an invariant closed subspace of H and hence π is a direct sum of
two subrepresentations resulting fromM andM⊥. The following lemma is needed in our main
theorem (3.5)
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Lemma 3.4. The action of (R+ ×τ R) on R̂2 = R2 given by

(a, s).γ := γoλ(a,s)−1

is free. That is, for any γ ∈ R̂2 = R2 we have Hγ = {(1, 0)}.

Proof. Since

γoλ(a,s)−1(t) = γ(S −s√
a
A 1

a
t) = e

2πiγ.S −s√
a

A 1
a

t
= e

2πiA 1
a

S T
−s√

a
γ.t
= A 1

a
S T
−s√

a
γ(t)

we have

(a, s).γ := γoλ(a,s)−1 = A 1
a
S T
−s√

a
γ

=

(1
a 0
0 1√

a

) (
1 0
−s√

a 1

) (
γ1

γ2

)
=

( 1
a 0
−s
a

1√
a

) (
γ1

γ2

)
=

( 1
aγ1

−s
a γ1 +

1√
aγ2

)
.

Now
( 1

aγ1
−s
a γ1 +

1√
aγ2

)
=

(
γ1

γ2

)
yields (a, s) = (1, 0).

In particular, since (a, s).γ =
( 1

aγ1
−s
a γ1 +

1√
aγ2

)
, we deduce this action has five orbits as follows:

O(0,0) = {(0, 0)}

O(0,γ2) = {(0, y) ∈ R2 : y > 0}, γ2 > 0

O(0,γ2) = {(0, y) ∈ R2 : y < 0}, γ2 < 0

O(γ1,γ2) = {(x, y) ∈ R2 : x > 0}, γ1 > 0

O(γ1,γ2) = {(x, y) ∈ R2 : x < 0}, γ1 < 0.

Computations are straightforward, for example, for γ2 > 0 we have:

O(0,γ2) = {(0,
1
√

a
γ2) ∈ R2 : a > 0} = {(0, y) ∈ R2 : y > 0}.

Defining A+ := O(1,0) and A− := O(−1,0), we have:
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Theorem 3.5. Irreducible as well as square-integrable subrepresentations of the shearlet group
are precisely the following two:

σ+ : S −→ U(L2
A+(R

2)), σ(a, s, t)ψ = ψa,s,t

σ− : S −→ U(L2
A−(R

2)), σ(a, s, t)ϕ = ϕa,s,t

Proof. Since the action defined on R̂2 is free so for any ω ∈ R̂2, Hω is compact. Moreover A+
and A− are orbits of positive measure, thus proposition 3.3 (i) shows the above representations are
square-integrable. On the other hand, A+ and A− are the only invariant subsets of positive measure
in R2 , hence corollary 3.2 concludes the proof.

Corollary 3.6. With notations as in theorem (3.5), the standard representation of the shearlet
group is direct sum of two irreducible representations, in fact, we have

σ = σ+ ⊕ σ−

Proof. It is sufficient to show that [L2
A+(R

2)]⊥ = L2
A−(R

2). Indeed for f ∈ L2
A−(R

2), g ∈ L2
A+(R

2), f̂

and ĝ vanish on A+ and A− , respectively. So we have ⟨ f , g⟩ = ⟨ f̂ , ĝ⟩ =
∫
R̂2 f̂ ĝ =

∫
A−∪A+

f̂ ĝ = 0

which implies f ∈ [L2
A+(R

2)]⊥. On the other hand, f ∈ [L2
A+(R

2)]⊥ implies that ,
∫

A+
f̂ ĝ = ⟨ f , g⟩ = 0

for any g ∈ L2
A+(R

2). Now since L2
A+(R

2) is a selfdual Banach space we may regard f̂ as a linear
functional on L2

A+(R
2) and deduce f̂ vanishes on A+. So f ∈ L2

A−(R
2).

At this point, we are able to show the irreducibility of the standard representation of full shear-
let group which is studied for example in [9]. Full shearlet group is the set R∗ ×R×R2 along with
the multiplication law given by

(a, s, t)(a′, s′, t′) = (aa′, s +
√
|a|s′, t + S sAat′),

in which dilation and shear matrices are given by

Aa =

(
a 0
0 sgn(a)

√
|a|

)
, S s =

(
1 s
0 1

)
.

Moreover, we have τa(s) =
√
|a|s, and λ(a,s)(t) = S sAa(t). So the action reads

(a, s).γ := γoλ(a,s)−1 = A 1
a
S T
−s√
|a|
γ =

( 1
aγ1

−sgn(a)s
|a| γ1 +

sgn(a)√
|a| γ2

)
.

Now it is easy to see that this action has three orbits:

O(0,0) = {(0, 0)}

O(0,γ2) = {(0, y) ∈ R2 : y , 0}, γ2 , 0

O(γ1,γ2) = {(x, y) ∈ R2 : x , 0}, γ1 , 0.
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Since there is only one positive measure orbit (almost equal to the plane), so as it is shown in [9],
the representation of full shearlet group is irreducible.

As a result of our approach we offer an alternative proof for the well known admissibility
condition:

Proposition 3.7. A function ψ belonging to L2
A+(R

2) or L2
A−(R

2) is admissible if and only if∫
R2

|ψ̂(λ, η)|2
λ2 dλdη < ∞.

Proof. For any γ ∈ R̂2 = R2 we have∫
R+

∫
R
|ψ̂(γoλ(a,s))|2ds

da

a
3
2

=

∫
R+

∫
R
|ψ̂(AaS T

s γ)|2ds
da

a
3
2

=

∫
R+

∫
R
|ψ̂(Aa(γ1, sγ1 + γ2))|2ds

da

a
3
2

(sγ1 + γ2 =: t ⇒ γ1ds = dt)

=

∫
R+

∫
R
|ψ̂(Aa(γ1, t))|2

dt
γ1

da

a
3
2

=

∫
R+

∫
R
|ψ̂(aγ1,

√
at)|2 dt

γ1

da

a
3
2

=

∫
R+

∫
R
|ψ̂(aγ1,

√
at)|2 da

a
3
2

dt
γ1

(aγ1 =: λ⇒ da =
dλ
γ1
,
√

a =

√
λ
√
γ1
,

1

a
3
2

=
γ

3
2
1

λ
3
2

)

=

∫
R

∫
R
|ψ̂(λ,

√
λ
√
γ1

t)|2 dλ

λ
3
2

dt
√
γ1

=

∫
R

∫
R
|ψ̂(λ,

√
λ
√
γ1

t)|2 dt
√
γ1

dλ

λ
3
2

(
√
λ
√
γ1

t =: η⇒
√
λ
√
γ1

dt =: dη)

=

∫
R

∫
R
|ψ̂(λ, η)|2 dη

√
λ

dλ

λ
3
2

=

∫
R

∫
R
|ψ̂(λ, η)|2dη

dλ
λ2 .

Now proposition 3.3 (ii) concludes the proof.

4. conclusion

After the introduction of shearlets relative to bivariate signals, the theory was extended by the
authors of [10], to multivariate signals. Besides, due to rich group-theoretical background, shear-
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lets got immediately popular so that many mathematicians approached the subject from various
aspects. For example, in [7] the shearlet group was considered as an extension of the Heisenberg
group and recently authors in [1] studied the shearlet group as a reproducing subgroup of the sym-
plectic group S p(2,R). But similar to any theory in the scope of harmonic analysis, shearlet theory
is supposed to be extended to the setting of locally compact groups. Among the advantages of our
approach, is the possibility of extending shearlet theory from Euclidean space to locally compact
groups. In a forthcoming paper [14], we will investigate this issue.
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