TY - JOUR
ID - 46686
TI - Multiplication on double coset space $L^1(K\setminus G/H)$
JO - Wavelet and Linear Algebra
JA - WALA
LA - en
SN - 2383-1936
AU - Fahimian, F.
AU - Kamyabi-Gol, R. A.
AU - Esmaeelzadeh, F.
AD - Department of Pure Mathematics, Ferdowsi University of Mashhad,
P.O.Box 1159-91775, Mashhad, Islamic Republic of Iran.
AD - Department of Pure Mathematics, Ferdowsi University of Mashhad and Center of Excellence in Analysis on Algebric Structures (CEAAS) Islamic Republic of Iran.
AD - Department of Mathematics, Bojnourd Branch, Islamic Azad university, Bojnourd, Islamic Republic of Iran.
Y1 - 2020
PY - 2020
VL - 7
IS - 1
SP - 37
EP - 46
KW - Double coset space
KW - Convolution
KW - Integrable function space
KW - $N$-relatively invariant measure
DO - 10.22072/wala.2020.119154.1262
N2 - Consider a locally compact group $G$ with two compact subgroups $H$ and $K$. Equip the double coset space $K\setminus G/H$ with the quotient topology. Suppose that $\mu$ is an $N$-relatively invariant measure, on $K\setminus G/H$. We define a multiplication on $L^1(K\setminus G/H,\mu)$ such that this space becomes a Banach algebra that possesses a left (right) approximate identity.
UR - https://wala.vru.ac.ir/article_46686.html
L1 - https://wala.vru.ac.ir/article_46686_9f07065f47167dcc4da0c9c61eb55d1b.pdf
ER -