Dilation of a family of g-frames

Mohammad Reza Abdollahpoura,*

aDepartment of Mathematics, Faculty of Mathematical Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran

ARTICLE INFO

Article history:
Received 1 November 2013
Accepted 29 April 2014
Available online 1 July 2014
Communicated by Asghar Rahimi

Keywords:
g-Riesz basis
g-frame
disjointness

2000 MSC:
41A58
42C15

ABSTRACT

In this paper, we first discuss about canonical dual of g-frame
\[\Lambda P = \{ \Lambda_i P \in B(\mathcal{H}, \mathcal{H}_i) : i \in I \}, \]
where $\Lambda = \{ \Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I \}$ is a g-frame for a Hilbert space \mathcal{H} and P is the orthogonal projection from \mathcal{H} onto a closed subspace M. Next, we prove that, if $\Lambda = \{ \Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I \}$ and $\Theta = \{ \Theta_i \in B(\mathcal{K}, \mathcal{H}_i) : i \in I \}$ be respective g-frames for non zero Hilbert spaces \mathcal{H} and \mathcal{K}, and Λ and Θ are unitarily equivalent (similar), then Λ and Θ can not be weakly disjoint. On the other hand, we study dilation property for g-frames and we show that two g-frames for a Hilbert space have dilation property, if they are disjoint, or they are similar, or one of them is similar to a dual g-frame of another one. We also prove that a family of g-frames for a Hilbert space has dilation property, if all the members in that family have the same deficiency.

© (2014) Wavelets and Linear Algebra

1. Introduction

Let \mathcal{H} be a separable Hilbert space. A sequence $F = \{ f_i \}_{i \in I}$ is called a frame for \mathcal{H}, if there exist two positive constants A, B such that
\[
A \| f \|^2 \leq \sum_{i \in I} |(f, f_i)|^2 \leq B \| f \|^2, \quad f \in \mathcal{H}.
\]

*Corresponding author

Email address: m.abdollah@uma.ac.ir (Mohammad Reza Abdollahpour)

© (2014) Wavelets and Linear Algebra
If \(A = B = 1 \) in (1.1), then we say that \(F = \{ f_i \}_{i \in I} \) is a Parseval frame for \(\mathcal{H} \). Let \(F = \{ f_i \}_{i \in I} \) be a frame for \(\mathcal{H} \). In this case,

\[
T_F : l_2(I) \to \mathcal{H}, \quad T_F(\{c_i\}_{i \in I}) = \sum_{i \in I} c_i f_i
\]
is a bounded and onto operator and its adjoint is \(T_F^*(f) = \{ \langle f, f_i \rangle \}_{i \in I} \), for all \(f \in \mathcal{H} \) \([6]\). The operators \(T_F, T_F^* \) and \(S_F = T_F T_F^* \) are called the synthesis, analysis and frame operator of \(F = \{ f_i \}_{i \in I} \), respectively. If \(F = \{ f_i \}_{i \in I} \) is a frame for \(\mathcal{H} \), then \(S_F \) is an invertible positive operator and we have

\[
f = \sum_{i \in I} \langle f, S_F^{-1} f_i \rangle f_i, \quad f \in \mathcal{H}.
\]

(1.2)

A sequence \(F = \{ f_i \}_{i \in I} \) is called a Riesz basis for \(\mathcal{H} \), if \(\text{span}\{ f_i \}_{i \in I} = \mathcal{H} \) and there exist two positive constants \(A, B \) such that for any finite scalar sequence \(\{ c_i \} \) we have

\[
A \sum_i |c_i|^2 \leq \sum_i \|c_i f_i\|^2 \leq B \sum_i |c_i|^2.
\]

Let \(F = \{ f_i \}_{i \in I} \) and \(G = \{ g_i \}_{i \in I} \) be two frames for a Hilbert space \(\mathcal{H} \). We say that \(G \) is a dual frame for \(F \), if

\[
f = \sum_{i \in I} \langle f, g_i \rangle f_i, \quad f \in \mathcal{H}.
\]

From (1.2), we conclude that \(\tilde{F} = \{ S_F^{-1} f_i \}_{i \in I} \) is a dual frame of \(F \), which is called the canonical dual of \(F \). It is proved in \([6]\), each Riesz basis for \(\mathcal{H} \) is a frame and has only one dual frame.

The concepts of disjoint frames and strongly disjoint frames introduced by Han and Larson \([7]\), and these notions generalized to frames in Banach spaces by Casazza, Han and Larson \([5]\). In 2006, more general extension of frames, the so-called \(g \)-frames, introduced by Sun \([9]\). Some properties of \(g \)-frames have been investigated in papers \([2, 3, 4]\).

Throughout this paper, \(\mathcal{H} \) and \(\mathcal{K} \) are separable Hilbert spaces and \(\{ \mathcal{H}_i \}_{i \in I} \) is a sequence of separable Hilbert spaces.

Definition 1.1. We call a sequence \(\Lambda = \{ \Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I \} \) a \(g \)-frame for \(\mathcal{H} \) with respect to \(\{ \mathcal{H}_i \}_{i \in I} \), if there exist two positive constants \(A \) and \(B \) such that

\[
A \|f\|^2 \leq \sum_{i \in I} \|\Lambda_i f\|^2 \leq B \|f\|^2, \quad f \in \mathcal{H}.
\]

A and \(B \) are called the lower and upper \(g \)-frame bounds, respectively.

We call \(\Lambda = \{ \Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I \} \) a tight \(g \)-frame if \(A = B \) and Parseval \(g \)-frame if \(A = B = 1 \).

If there is no confusion, we use \(g \)-frame (\(g \)-frame for \(\mathcal{H} \)) instead of \(g \)-frame for \(\mathcal{H} \) with respect to \(\{ \mathcal{H}_i \}_{i \in I} \).

Let \(\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) \) be given for all \(i \in I \). Let us define the set

\[
\widetilde{\mathcal{H}} = \{ \{ f_i \}_{i \in I} : f_i \in \mathcal{H}_i, \sum_{i \in I} \|f_i\|^2 < \infty \}
\]
with the inner product given by \(\langle \{f_i\}_{i \in I}, \{g_i\}_{i \in I} \rangle = \sum_{i \in I} \langle f_i, g_i \rangle \). It is easy to show that \(\hat{\mathcal{H}} \) is a Hilbert space with respect to the pointwise operations. It is proved in [8], if \(\Lambda = \{\Lambda_i \in \mathcal{B}(\mathcal{H}, \mathcal{H}_i) : i \in I\} \) is a \(g \)-Bessel sequence for \(\mathcal{H} \), then the operator

\[
T_\Lambda : \mathcal{H} \to \mathcal{H}, \quad T_\Lambda(\{f_i\}_{i \in I}) = \sum_{i \in I} \Lambda_i^*(f_i)
\]

is well defined and bounded and its adjoint is \(T_\Lambda^* f = \{\Lambda_i^*f\}_{i \in I} \) for all \(f \in \mathcal{H} \). Also, a sequence \(\Lambda = \{\Lambda_i \in \mathcal{B}(\mathcal{H}, \mathcal{H}_i) : i \in I\} \) is a \(g \)-frame for \(\mathcal{H} \) if and only if the operator \(T_\Lambda \) defined in (1.3) is a bounded and onto operator. We call operators \(T_\Lambda \) and \(T_\Lambda^* \), the synthesis and analysis operators of \(\Lambda \), respectively. If \(\Lambda = \{\Lambda_i \in \mathcal{B}(\mathcal{H}, \mathcal{H}_i) : i \in I\} \) is a \(g \)-frame for \(\mathcal{H} \), then

\[
S_\Lambda : \mathcal{H} \to \mathcal{H}, \quad S_\Lambda f = \sum_{i \in I} \Lambda_i^* \Lambda_i f
\]

is a bounded invertible positive operator [9], and every \(f \in \mathcal{H} \) has the following representation

\[
f = \sum_{i \in I} S_{\Lambda_i}^{-1} \Lambda_i^* \Lambda_i f = \sum_{i \in I} \Lambda_i^* \Lambda_i S_{\Lambda_i}^{-1} f.
\]

(1.4)

\(S_\Lambda \) is called the \(g \)-frame operator of \(\Lambda \). Let \(\Lambda = \{\Lambda_i \in \mathcal{B}(\mathcal{H}, \mathcal{H}_i) : i \in I\} \) be a \(g \)-frame for \(\mathcal{H} \) with \(g \)-frame bounds \(A, B \) and let \(\tilde{\Lambda}_i = \Lambda_i S_{\Lambda_i}^{-1} \), for all \(i \in I \). Then \(\tilde{\Lambda} = \{\tilde{\Lambda}_i \in \mathcal{B}(\mathcal{H}, \mathcal{H}_i) : i \in I\} \) is a \(g \)-frame for \(\mathcal{H} \) with bounds \(\frac{1}{B} \) and \(\frac{1}{A} \) [9].

Definition 1.2. Let \(\Lambda = \{\Lambda_i \in \mathcal{B}(\mathcal{H}, \mathcal{H}_i) : i \in I\} \) and \(\Theta = \{\Theta_i \in \mathcal{B}(\mathcal{H}, \mathcal{H}_i) : i \in I\} \) be two \(g \)-frames for \(\mathcal{H} \) such that

\[
f = \sum_{i \in I} \Theta_i^* \Lambda_i f, \quad f \in \mathcal{H},
\]

then \(\Theta \) is called a dual \(g \)-frame of \(\Lambda \).

By (1.4), \(\tilde{\Lambda} = \{\tilde{\Lambda}_i\}_{i \in I} \) is a dual \(g \)-frame of \(\{\Lambda_i\}_{i \in I} \), which is called the canonical dual of \(\Lambda = \{\Lambda_i\}_{i \in I} \).

Definition 1.3. A sequence \(\Lambda = \{\Lambda_i \in \mathcal{B}(\mathcal{H}, \mathcal{H}_i) : i \in I\} \) is called

1. a \(g \)-Riesz basis for \(\mathcal{H} \) with respect to \(\{\mathcal{H}_i\}_{i \in I} \), if there exist two positive constants \(A \) and \(B \) such that for any finite subset \(F \subseteq I \) we have

\[
A \sum_{i \in F} \|g_i\|^2 \leq \sum_{i \in F} \Lambda_i^* g_i \|^2 \leq B \sum_{i \in F} \|g_i\|^2, \quad g_i \in \mathcal{H}_i,
\]

and \(\Lambda = \{\Lambda_i \in \mathcal{B}(\mathcal{H}, \mathcal{H}_i) : i \in I\} \) is \(g \)-complete, i.e.,

\[
\{f : \Lambda_i f = 0, \forall i \in I\} = \{0\}.
\]

2. a \(g \)-orthonormal basis for \(\mathcal{H} \) with respect to \(\{\mathcal{H}_i\}_{i \in I} \), if for all \(f \in \mathcal{H} \), \(\sum_{i \in I} \|\Lambda_i f\|^2 = \|f\|^2 \), and

\[
\langle \Lambda_i^* g_i, \Lambda_j^* g_j \rangle = \delta_{ij} \langle g_i, g_j \rangle, \quad g_i \in \mathcal{H}_i, \quad g_j \in \mathcal{H}_j, \quad i, j \in I.
\]
2. Dilation of g-frames

The concepts of disjoint g-frames and strongly disjoint g-frames were introduced in [1]. In this section, we investigate dilation of g-frames and we show that disjoint g-frames for a Hilbert space have dilation property.

Definition 2.1. Let \(\Lambda = \{ \Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I \} \) and \(\Theta = \{ \Theta_i \in B(\mathcal{K}, \mathcal{H}_i) : i \in I \} \) be g-frames for Hilbert spaces \(\mathcal{H} \) and \(\mathcal{K} \), respectively. Then \(\Lambda \) and \(\Theta \) are called

1. disjoint, if \(\text{Range}T_{\Lambda}^* \cap \text{Range}T_{\Theta}^* = \{0\} \) and \(\text{Range}T_{\Lambda}^* + \text{Range}T_{\Theta}^* \) is a closed subspace of \(\mathcal{H} \).
2. complementary pair, if \(\text{Range}T_{\Lambda}^* \cap \text{Range}T_{\Theta}^* = \{0\} \) and
 \[
 \text{Range}T_{\Lambda}^* + \text{Range}T_{\Theta}^* = \mathcal{H}.
 \]
3. weakly disjoint if \(\text{Range}T_{\Lambda}^* \cap \text{Range}T_{\Theta}^* = \{0\} \).

Proposition 2.2 ([1]). Two g-frames \(\Lambda = \{ \Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I \} \) and \(\Theta = \{ \Theta_i \in B(\mathcal{K}, \mathcal{H}_i) : i \in I \} \) are disjoint if and only if \(\{ \Gamma_i \in B(\mathcal{H} \oplus \mathcal{K}, \mathcal{H}_i) : i \in I \} \) is a g-frame for \(\mathcal{H} \oplus \mathcal{K} \) with respect to \(\{ \mathcal{H}_i \}_{i \in I} \), where
 \[
 \Gamma_i : \mathcal{H} \oplus \mathcal{K} \to \mathcal{H}_i, \quad \Gamma_i(f \oplus g) = \Lambda_i f + \Theta_i g,
 \]
 for all \(i \in I \).

Proposition 2.3 ([1]). Two g-frames \(\Lambda = \{ \Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I \} \) and \(\Theta = \{ \Theta_i \in B(\mathcal{K}, \mathcal{H}_i) : i \in I \} \) are complementary pair if and only if \(\{ \Gamma_i \in B(\mathcal{H} \oplus \mathcal{K}, \mathcal{H}_i) : i \in I \} \) is a g-Riesz basis for \(\mathcal{H} \oplus \mathcal{K} \) with respect to \(\{ \mathcal{H}_i \}_{i \in I} \), where \(\Gamma_i \) is defined by (2.1), for all \(i \in I \).

Proposition 2.4 ([1]). Two g-frames \(\Lambda = \{ \Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I \} \) and \(\Theta = \{ \Theta_i \in B(\mathcal{K}, \mathcal{H}_i) : i \in I \} \) are weakly disjoint if and only if
 \[
 \{f \oplus g : \Gamma_i(f \oplus g) = 0, \forall i \in I\} = \{0\},
 \]
 where \(\Gamma_i \) is defined by (2.1), for all \(i \in I \).

Proposition 2.5. Let \(\Lambda = \{ \Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I \} \) and \(\Theta = \{ \Theta_i \in B(\mathcal{K}, \mathcal{H}_i) : i \in I \} \) be Parseval g-frames for \(\mathcal{H} \) and \(\mathcal{K} \), respectively. Then \(\text{Range}T_{\Lambda}^* \oplus \text{Range}T_{\Theta}^* = \mathcal{H} \) if and only if \(\{ \Gamma_i \}_{i \in I} \) is a g-orthonormal basis for \(\mathcal{H} \oplus \mathcal{K} \), where \(\Gamma_i \) is defined by (2.1), for all \(i \in I \).

Proof. If \(\{ \Gamma_i \}_{i \in I} \) is a g-orthonormal basis for \(\mathcal{H} \oplus \mathcal{K} \) then
 \[
 \|f\|^2 + \|g\|^2 = \sum_{i \in I} \|f_i(f \oplus g)|^2
 = \sum_{i \in I} \|\Lambda_i f\|^2 + \sum_{i \in I} \|\Theta_i g\|^2 + 2 \text{Re} \sum_{i \in I} \langle \Lambda_i f, \Theta_i g \rangle,
 \]
 and
 \[
 \text{Re} \sum_{i \in I} \langle \Lambda_i f, \Theta_i g \rangle = 0, \quad f \in \mathcal{H}, \; g \in \mathcal{K}.
 \]
If we replace g by ig in (2.2), then

$$Im \sum_{i \in I} \langle \Lambda_i f, \Theta_i g \rangle = 0, \quad f \in \mathcal{H}, \ g \in \mathcal{K}.$$

Therefore $RangeT^*_\Lambda \perp RangeT^*_\Theta$. Since $\Gamma = \{ \Gamma_i \in B(\mathcal{H} \oplus \mathcal{K}, \mathcal{H}) : i \in I \}$ is a g-orthonormal basis, T^*_Γ is onto. But $RangeT^*_\Lambda + RangeT^*_\Theta = RangeT^*_\Gamma$, hence $RangeT^*_\Lambda + RangeT^*_\Theta = \hat{\mathcal{H}}$.

For the converse implication, we have

$$\sum_{i \in I} ||\Gamma_i(f \oplus g)||^2 = \sum_{i \in I} ||\Lambda_i f + \Theta_i g||^2 = \sum_{i \in I} ||\Lambda_i f||^2 + \sum_{i \in I} ||\Theta_i g||^2$$

$$= ||f||^2 + ||g||^2 = ||f \oplus g||^2,$$

for all $f \oplus g \in \mathcal{H} \oplus \mathcal{K}$. If $\{g_i\}_{i \in I} \in \hat{\mathcal{H}}$, then $\{g_i\}_{i \in I} = \{\Lambda_i f\}_{i \in I} + \{\Theta_i g\}_{i \in I}$ for some $f \in \mathcal{H}$ and for some $g \in \mathcal{K}$. Therefore, $g_i = \Lambda_i f + \Theta_i g_i$, for all $i \in I$. We have

$$\left\| \sum_{i \in I} \Gamma_i g_i \right\|^2 = \left\| \sum_{i \in I} (\Lambda_i g_i + \Theta_i g_i) \right\|^2 = \left\| \sum_{i \in I} \Lambda_i g_i \right\|^2 + \left\| \sum_{i \in I} \Theta_i g_i \right\|^2$$

$$= \left\| \sum_{i \in I} \Lambda_i (\Lambda_i f + \Theta_i g) \right\|^2 + \left\| \sum_{i \in I} \Theta_i (\Lambda_i f + \Theta_i g) \right\|^2$$

$$= \left\| f + \sum_{i \in I} \Lambda_i \Theta_i g \right\|^2 + \left\| g + \sum_{i \in I} \Theta_i \Lambda_i f \right\|^2.$$

Since $\sum_{i \in I} \Lambda_i \Theta_i g = 0$ and $\sum_{i \in J} \Theta_i \Lambda_i f = 0$,

$$\left\| \sum_{i \in I} \Gamma_i g_i \right\|^2 = \left\| f \right\|^2 + \left\| g \right\|^2 = \sum_{i \in I} \left\| \Lambda_i f \right\|^2 + \sum_{i \in I} \left\| \Theta_i g \right\|^2$$

$$= \sum_{i \in I} \left\| \Lambda_i f + \Theta_i g \right\|^2 = \sum_{i \in I} \left\| g \right\|^2.$$

So

$$\left\| \sum_{i \in I} \Gamma_i g_i \right\|^2 = \sum_{i \in I} \left\| g \right\|^2, \quad \{g_i\}_{i \in I} \in \hat{\mathcal{H}}. \quad (2.3)$$

By (2.3) we have

$$\left\| \Gamma^*_i g_i \right\|^2 = \left\| g_i \right\|^2; \quad i \in I, \ g_i \in \mathcal{H}_i. \quad (2.4)$$

Again, (2.3) implies that

$$\left\| \Gamma^*_i g_i + \Gamma^*_j g_j \right\|^2 = \left\| g_i \right\|^2 + \left\| g_j \right\|^2; \quad i, j \in I, \ g_i \in \mathcal{H}_i, g_j \in \mathcal{H}_j,$$

or

$$\left\| \Gamma^*_i g_i \right\|^2 + \left\| \Gamma^*_j g_j \right\|^2 + 2Re(\Gamma^*_i g_i, \Gamma^*_j g_j) = \left\| g_i \right\|^2 + \left\| g_j \right\|^2; \quad g_i \in \mathcal{H}_i, g_j \in \mathcal{H}_j,$$

for all $i, j \in I$. Therefore, by (2.4)

$$\langle \Gamma^*_i g_i, \Gamma^*_j g_j \rangle = \delta_{ij} \langle g_i, g_j \rangle, \quad g_i \in \mathcal{H}_i, g_j \in \mathcal{H}_j,$$

for all $i, j \in I$. \qed
Let $F = \{f_i\}_{i \in I}$ be a Riesz basis for a Hilbert space \mathcal{H} with unique dual frame $\tilde{F} = \{\tilde{f}_i\}_{i \in I}$. If $M \subset \mathcal{H}$ is a closed subspace of \mathcal{H} and P is the orthogonal projection form \mathcal{H} onto M, then $PF = \{PF_i\}_{i \in I}$ is a frame for M with dual frame $P\tilde{F} = \{P\tilde{f}_i\}_{i \in I}$. In general, $P\tilde{F} = \{P\tilde{f}_i\}_{i \in I}$ is not the canonical dual of $PF = \{PF_i\}_{i \in I}$. But, if P commutes with the frame operator SF, then $P\tilde{F} = \{P\tilde{f}_i\}_{i \in I}$ is the canonical dual of $PF = \{PF_i\}_{i \in I}$ (see [7]). Here, we generalize this result to g-frames.

Proposition 2.6. Let P be an orthogonal projection from \mathcal{H} onto a closed subspace M and let $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a g-frame for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i \in I}$. Then $\Lambda P = \{\Lambda_i P \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-frame for M with respect to $\{\mathcal{H}_i\}_{i \in I}$ and

$$\forall i \in I, \quad \Lambda_i P = \Lambda_i \Rightarrow \Lambda_i P = S^{-1}_\Lambda P,$$

where $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ and $\Lambda_i P = \{\Lambda_i P \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ are canonical dual of Λ and ΛP, respectively.

Proof. Let $f \in M$ and A, B be the g-frame bounds for Λ, then

$$A\|f\|^2 = A\|P f\|^2 \leq \sum_{i \in I}\|\Lambda_i P f\|^2 \leq B\|P f\|^2 = B\|f\|^2.$$

If $\Lambda_i P = \Lambda_i P$, for all $i \in I$, then $\Lambda_i P S^{-1}_\Lambda P = S^{-1}_\Lambda P$, for all $i \in I$. Therefore, we have $PS^{-1}_\Lambda P = S^{-1}_\Lambda P$, and so $PS^{-1}_\Lambda P = PS^{-1}_\Lambda P$, which implies that $S^{-1}_\Lambda P = PS^{-1}_\Lambda P$. By taking adjoint we get $PS^{-1}_\Lambda P = PS^{-1}_\Lambda P$, and hence $PS^{-1}_\Lambda P = S^{-1}_\Lambda P$.

Now we assume that $PS^{-1}_\Lambda P = S^{-1}_\Lambda P$ and $f \in M$, then

$$f = \sum_{i \in I} (\Lambda_i P)^*(\Lambda_i P)f = \sum_{i \in I} P\Lambda_i^* P S^{-1}_\Lambda P f. \quad (2.5)$$

Since $f \in M \subset \mathcal{H}$, we can write $f = \sum_{i \in I} \Lambda_i^* S^{-1}_\Lambda f$ or

$$f = P f = \sum_{i \in I} P\Lambda_i^* S^{-1}_\Lambda P f.$$

Now, (2.5) and our assumption imply that

$$0 = \sum_{i \in I} P\Lambda_i^* \Lambda_i (PS^{-1}_\Lambda - S^{-1}_\Lambda) P f = \sum_{i \in I} P\Lambda_i^* \Lambda_i (PS^{-1}_\Lambda - S^{-1}_\Lambda) P f = S^{-1}_\Lambda (PS^{-1}_\Lambda f - S^{-1}_\Lambda P f),$$

for all $f \in M$. Therefore $PS^{-1}_\Lambda P = S^{-1}_\Lambda P$, and so $\Lambda_i P = \Lambda_i P$, for all $i \in I$. \hfill \square

Let $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ and $\Theta = \{\Theta_i \in B(\mathcal{K}, \mathcal{H}_i) : i \in I\}$ be g-frames for Hilbert spaces \mathcal{H} and \mathcal{K}, respectively. We recall that Λ and Θ are unitarily equivalent (similar), if there exists a unitary (an invertible) operator $U \in B(\mathcal{H}, \mathcal{K})$ such that

$$\Lambda_i = \Theta_i U, \quad i \in I.$$
Proposition 2.7. Let $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ and $\Theta = \{\Theta_i \in B(K, \mathcal{H}_i) : i \in I\}$ be g-frames for non zero Hilbert spaces \mathcal{H} and K, respectively. If Λ and Θ are unitarily equivalent (similar), then
\[
\overline{\text{span}}[\Gamma_i(\mathcal{H}_i)]_{i \in I} \neq \mathcal{H} \oplus K,
\]
where Γ_i is defined by (2.1), for all $i \in I$.

Proof. Let $U \in B(\mathcal{H}, K)$ be a unitary (an invertible) operator such that $\Lambda_i = \Theta_i U$ for any $i \in I$. If $0 \neq g \in K$, then there exists $f \in \mathcal{H}$ and $Uf = -g$. Then $\Theta_i(Uf + g) = 0$, for all $i \in I$. Hence
\[
\{f \oplus g : \Gamma_i(f \oplus g) = 0, \ i \in I\} \neq \{0\},
\]
consequently $\overline{\text{span}}[\Gamma_i(\mathcal{H}_i)]_{i \in I} \neq \mathcal{H} \oplus K$, (see [8]).

Corollary 2.8. Let $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ and $\Theta = \{\Theta_i \in B(K, \mathcal{H}_i) : i \in I\}$ be respective g-frames for non zero Hilbert spaces \mathcal{H} and K. If Λ and Θ are unitarily equivalent (similar), then Λ and Θ can not be weakly disjoint. Moreover, if Λ and Θ are unitarily equivalent (similar), then $\Gamma = \{\Gamma_i \in B(\mathcal{H} \oplus K, \mathcal{H}_i) : i \in I\}$ is not a g-frame for $\mathcal{H} \oplus K$, where Γ_i is defined by (2.1), for all $i \in I$.

Let $\{e_{ij}\}_{j \in J_i}$ be an orthonormal basis for \mathcal{H}_i, for every $i \in I$. It is proved in [8], $\{E_{ij}\}_{i \in I, j \in J_i}$ is an orthonormal basis for \mathcal{H}_i, where
\[
(E_{ij})_k = \begin{cases} e_{ij}, & i = k \\ 0, & i \neq k \end{cases}. \tag{2.6}
\]

We use the above fact in the rest of this paper.

Proposition 2.9. Let $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a g-frame for Hilbert space \mathcal{H} with respect to \mathcal{H}_i, Then there exist a Hilbert space $\mathcal{H} \subset K$ and a g-Riesz basis $\Delta = \{\Delta_i \in B(K, \mathcal{H}_i) : i \in I\}$ for K with respect to \mathcal{H}_i, such that $\Lambda_i = \Delta_i P_{\mathcal{H}}$ for all $i \in I$, where $P_{\mathcal{H}}$ is the orthogonal projection from K onto \mathcal{H}.

Proof. Let $\Theta_i = \Lambda_i S^{-1}_{\Lambda}$, for all $i \in I$. Then $\Theta = \{\Theta_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a Parseval g-frames for \mathcal{H} and $\text{Range} T^*_{\Theta_i} = \text{Range} T^*_{\Lambda_i}$. Let P be the orthogonal projection from \mathcal{H} onto $\text{Range} T^*_{\Theta_i}$. We define the operators
\[
\varphi_i : P^\perp \mathcal{H} \to \mathcal{H}_i, \quad \varphi_i(g) = \sum_{j \in J_i} \langle g, P^\perp E_{ij} \rangle e_{ij}, \tag{2.7}
\]
for all $i \in I$, where E_{ij} is defined by (2.6). Then $\varphi = \{\varphi_i \in B(P^\perp \mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a Parseval g-frame for $P^\perp \mathcal{H}$. In fact
\[
\sum_{i \in I} \|\varphi_i g\|^2 = \sum_{i \in I} \left\| \sum_{j \in J_i} \langle g, P^\perp E_{ij} \rangle e_{ij} \right\|^2 = \sum_{i \in I} \sum_{j \in J_i} |\langle g, P^\perp E_{ij} \rangle|^2 = \|g\|^2,
\]
We define the operator F.

According to the Proposition 2.5, (2.8) and (2.9) imply that consequently so, g for all $f \in \mathcal{H}$ and $g \in P^2 \hat{\mathcal{H}}$. So,

$$\text{Range} T^*_\phi \perp \text{Range} T^*_\psi.$$ (2.8)

On the other hand, if $g = \{g_i\}_{i \in I} \in P^2 \hat{\mathcal{H}}$ then we have

$$\varphi_i g = \sum_{j \in J_i} \langle g, P^2 E_{ij} \rangle e_{ij} = \sum_{j \in J_i} \langle \{g_i\}_{i \in I}, E_{ij} \rangle e_{ij}$$

$$= \sum_{j \in J_i} \langle g_i, e_{ij} \rangle e_{ij} = g_i,$$

so, $g = \{\varphi_i g\}_{i \in I}$. Thus

$$P^2 g = \{\varphi_i(P^2 g)\}_{i \in I}; \quad g = P g + T^*_\phi(P^2 g), \quad g \in \hat{\mathcal{H}}.$$

consequently

$$\hat{\mathcal{H}} = \text{Range} T^*_\phi + \text{Range} T^*_\psi.$$ (2.9)

According to the Proposition 2.5, (2.8) and (2.9) imply that $\{\Gamma_i\}_{i \in I}$ is a g-orthonormal basis for $\mathcal{H} \oplus P^2 \hat{\mathcal{H}}$, where

$$\Gamma_i : \mathcal{H} \oplus P^2 \hat{\mathcal{H}} \rightarrow \mathcal{H}, \quad \Gamma_i(f \oplus g) = \Theta_i f + \varphi_i g.$$ (2.10)

We define the operator $F \in B(\mathcal{H} \oplus P^2 \hat{\mathcal{H}})$ by $F(f \oplus g) = S^2 f \oplus g$, then F is invertible. Let $\Delta_i = \Gamma_i F$, for all $i \in I$. In this case, $\{\Delta_i\}_{i \in I}$ is a g-Riesz basis for $K = \mathcal{H} \oplus P^2 \hat{\mathcal{H}}$ (see [2]). Clearly, $\Delta_i P_{\mathcal{H}} = \Lambda_i$, for all $i \in I$.

Definition 2.10. Let \mathcal{F} be a family of g-frames for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i \in I}$. We say that \mathcal{F} has dilation property, if there is a larger Hilbert space $\mathcal{K} \subset K$ such that for every $\Lambda = \{\Lambda_i\}_{i \in I} \in \mathcal{F}$, there exists a g-Riesz basis $\Gamma = \{\Gamma_i\}_{i \in I}$ for K such that $\Lambda_i = \Gamma_i P_{\mathcal{H}}$, for all $i \in I$, where $P_{\mathcal{H}}$ is orthogonal projection from K onto \mathcal{H}.

In the next proposition we provide some sufficient conditions, under which a family of g-frames with two members has dilation property.

Proposition 2.11. Let $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ and $\Theta = \{\Theta_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be two g-frames for Hilbert spaces \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i \in I}$. If one of the following conditions holds, then $\mathcal{F} = \{\Lambda, \Theta\}$ has the dilation property.
(1) \(\Lambda \) and \(\Theta \) are similar.

(2) \(\Lambda \) and \(\Theta \) are disjoint.

(3) \(\Theta \) is similar to a dual \(g \)-frame of \(\Lambda \).

Proof. (1) Let \(T \in B(\mathcal{H}) \) be an invertible operator and \(\Theta_i = \Lambda_i T \), for all \(i \in I \). By Proposition 2.9, then there exist a Hilbert space \(\mathcal{H} \subset K \) \((K = \mathcal{H} \oplus P^1 \mathcal{H})\), where \(P_H \) is the orthogonal projection from \(\hat{\mathcal{H}} \) onto \(\text{Range}T^\Lambda_i \) and a \(g \)-Riesz basis \(\Gamma = \{ \Gamma_i \in B(K, \mathcal{H}_i) : i \in I \} \) for \(K \) with \(\Lambda_i = \Gamma_i P_H \) for all \(i \in I \). Let us define \(\Delta_i \in B(K, \mathcal{H}_i) \) by \(\Delta_i = \Gamma_i (T \oplus I) \), where

\[
T \oplus I : K \to K, \quad (T \oplus I)(f \oplus g) = Tf \oplus g.
\]

Since \(T \oplus I \) is invertible and \(\Gamma = \{ \Gamma_i \}_{i \in I} \) is a \(g \)-Riesz basis for \(K \), then \(\Delta = \{ \Delta_i \}_{i \in I} \) is a \(g \)-Riesz basis for \(K \) and \(\Theta_i = \Delta_i P_H \) for all \(i \in I \).

(2) Since \(\Lambda = \{ \Lambda_i \}_{i \in I} \) and \(\Theta = \{ \Theta_i \}_{i \in I} \) are disjoint, by Proposition 2.2, \(\{ \psi_i \}_{i \in I} \) and \(\{ \varphi_i \}_{i \in I} \) are \(g \)-frames for \(\mathcal{H} \oplus \mathcal{H} \), where for all \(i \in I \), \(\psi_i, \varphi_i : \mathcal{H} \oplus \mathcal{H} \to \mathcal{H}_i \) are defined by

\[
\psi_i(f \oplus g) = \Lambda_i f + \Theta_i g, \quad \varphi_i(f \oplus g) = \Theta_i f + \Lambda_i g, \quad f, g \in \mathcal{H}.
\]

From the other hand, \(\{ \psi_i \}_{i \in I} \) and \(\{ \varphi_i \}_{i \in I} \) are similar. Hence by (1), there exist a Hilbert space \(\mathcal{H} \oplus \mathcal{H} \subset K \), and two \(g \)-Riesz basis \(\Gamma = \{ \Gamma_i \}_{i \in I} \) and \(\Delta = \{ \Delta_i \}_{i \in I} \) for \(K \) with respect to \(\{ \mathcal{H}_i \}_{i \in I} \), such that \(\psi_i = \Gamma_i P_{\mathcal{H} \oplus \mathcal{H}} \) and \(\varphi_i = \Delta_i P_{\mathcal{H} \oplus \mathcal{H}} \) for all \(i \in I \), where \(P_{\mathcal{H} \oplus \mathcal{H}} \) is the orthogonal projection from \(K \) onto \(\mathcal{H} \oplus \mathcal{H} \). If we identify \(\mathcal{H} \) by \(\mathcal{H} \oplus 0 \oplus 0 \) and consider \(P_H \) is the orthogonal projection from \(K \) onto \(\mathcal{H} \oplus 0 \oplus 0 \), then \(\Lambda_i = \Gamma_i P_H \) and \(\Theta_i = \Delta_i P_H \) for all \(i \in I \).

(3) Let \(\phi = \{ \phi_i \}_{i \in I} \) be a dual \(g \)-frame for \(\Lambda = \{ \Lambda_i \}_{i \in I} \) and \(T \in B(\mathcal{H}) \) be an invertible operator so that \(\Theta_i = \phi_i T \), for all \(i \in I \). By Theorem 2.9 of [1], there exists a Hilbert space \(\mathcal{H} \subset K \) and two \(g \)-Riesz basis \(\Gamma = \{ \Gamma_i \}_{i \in I} \) and \(\Delta = \{ \Delta_i \}_{i \in I} \) for \(K \) with \(\Lambda_i = \Gamma_i P_H \) and \(\phi_i = \Delta_i P_H \) for all \(i \in I \), where \(P_H \) is the orthogonal projection from \(K \) onto \(\mathcal{H} \). Let us define

\[
W_i : K \to \mathcal{H}_i, \quad W_i = \Delta_i (T \oplus I), \quad i \in I.
\]

Then \(W = \{ W_i \}_{i \in I} \) is a \(g \)-Riesz basis for \(K \) with respect to \(\{ \mathcal{H}_i \}_{i \in I} \), and \(\Theta_i = W_i P_H \), for all \(i \in I \). \(\square \)

Definition 2.12. Let \(\Lambda = \{ \Lambda_i \in B(\mathcal{H}, \mathcal{H}_i) : i \in I \} \) be a \(g \)-frame for \(\mathcal{H} \). We define the deficiency of \(\Lambda \) to be \(\dim(\text{Range}T^\Lambda_i)^\perp \).

In the following theorem we provide a sufficient condition for a family of \(g \)-frame \(\mathcal{F} \) such that \(\mathcal{F} \) has the dilation property.

Theorem 2.13. Let \(\mathcal{F} \) be a family of \(g \)-frames for \(\mathcal{H} \) with respect to \(\{ \mathcal{H}_i \}_{i \in I} \). Then \(\mathcal{F} \) has the dilation property if all members of \(\mathcal{F} \) have the equal deficiency.

Proof. Fix a \(g \)-frame \(\Lambda = \{ \Lambda_i \}_{i \in I} \) in \(\mathcal{F} \) and let \(\Theta = \{ \Theta_i \}_{i \in I} \) be any \(g \)-frame in \(\mathcal{F} \). Let \(K = \mathcal{H} \oplus P^1 \hat{\mathcal{H}} \) and \(M = \mathcal{H} \oplus Q^1 \hat{\mathcal{H}} \), where \(P \) and \(Q \) are the orthogonal projection from \(\hat{\mathcal{H}} \) onto \(\text{Range}T^\Lambda_i \) and \(\text{Range}T^\Theta_i \), respectively. We define

\[
\varphi_i : P^1 \hat{\mathcal{H}} \to \mathcal{H}_i, \quad \varphi_i(g) = \sum_{j \in J_i} (g, P^1 E_{ij}) e_{ij},
\]
and
\[\psi_i : Q^+ \hat{H} \to \mathcal{H}, \quad \psi_i(h) = \sum_{j \in J} \langle h, Q^+ E_{ij} \rangle e_{ij}, \]
for all \(i \in I \), where \(E_{ij} \) is defined by 2.6. Then \(\varphi = \{ \varphi_i \}_{i \in I} \) and \(\psi = \{ \psi_i \}_{i \in I} \) are respective \(g \)-frames for \(P^+ \hat{H} \) and \(Q^+ \hat{H} \). Now, we consider bounded operators
\[\Gamma_i : K \to \mathcal{H}, \quad \Gamma_i(f \oplus g) = \Lambda_i f + \varphi_i g, \]
(2.11) and
\[\Phi_i : M \to \mathcal{H}, \quad \Phi_i(f \oplus h) = \Theta_i f + \psi_i h. \]
(2.12)
A argument similar to the proof of Proposition 2.9 shows that
\[\hat{H} = \text{Range}T^*_A + \text{Range}T^*_\psi, \quad \text{Range}T^*_A \perp \text{Range}T^*_\psi. \]
So by Proposition 2.3, \(\Gamma = \{ \Gamma_i \}_{i \in I} \) is a \(g \)-Riesz basis for \(K \) with respect to \(\{ \mathcal{H}_i \}_{i \in I} \). Similarly, \(\Phi = \{ \Phi_i \}_{i \in I} \) is a \(g \)-Riesz basis for \(M \) with respect to \(\{ \mathcal{H}_i \}_{i \in I} \). Since \(\dim(\text{Range}T^*_A)^+ = \dim(\text{Range}T^*_\psi)^+ \), there is a unitary operator \(W \) from \((\text{Range}T^*_A)^+ \) onto \((\text{Range}T^*_\psi)^+ \). In fact, if \(\{ x_i \}_{i \in J} \) and \(\{ y_i \}_{i \in J} \) are orthonormal bases for \((\text{Range}T^*_A)^+ \) and \((\text{Range}T^*_\psi)^+ \), respectively, then we may consider
\[W : (\text{Range}T^*_A)^+ \to (\text{Range}T^*_\psi)^+, \quad Wf = \sum_{i \in J} \langle f, x_i \rangle y_i. \]
It is easy to show that \(W \) is a unitary operator. Let us define
\[\Delta_i : K \to \mathcal{H}, \quad \Phi_i(f \oplus g) = \Theta_i f + \psi_i W g, \quad i \in I. \]
Since \(\Delta_i = \Phi_i F \), for all \(i \in I \) and the operator
\[F : K \to M, \quad F(f \oplus g) = f \oplus W g \]
is invertible, \(\Delta = \{ \Delta_i \}_{i \in I} \) is a \(g \)-Riesz basis for \(K \). Clearly, \(\Gamma_i P_H = \Lambda_i \) and \(\Delta_i P_H = \Theta_i \) for ever \(i \in I \), therefore \(\mathcal{F} \) has the dilation property. \(\square \)

References