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Abstract
In this paper we consider the special classes of Sonnenschein
matrices, namely the Karamata matrices K[α, β] =

(
an,k

)
with

the entries

an,k =

k∑
v=0

(
n
v

)
(1 − α − β)vαn−v

(
n + k − v − 1

k − v

)
βk−v,

and calculate their row and column sums and give some appli-
cations of these sums.

c⃝ Wavelets and Linear Algebra

1. Introduction

Let f (z) be an analytic function in D f = {z ∈ C : |z| < r, r ≥ 1} with f (1) = 1. The matrix
S = S f = (an,k), where (an,k) are defined by

[
f (z)

]n
=

∑∞
k=0 an,kzk is called a Sonnenschein matrix

[7, 9]. The special choice

f (z) =
α + (1 − α − β) z

1 − βz , z ∈ C\{1
β
},

∗Corresponding author
Email addresses: m.aminizadeh@vru.ac.ir (Masoud Aminizadeh), gh.talebi@vru.ac.ir (Gholamreza

Talebi)

c⃝ Wavelets and Linear Algebra



M. Aminizadeh, G. Talebi/Wavelets and Linear Algebra Corrected Proof 2

where α and β are complex numbers, gives the Karamata matrix K[α, β] and its coefficients are
given by [3, 4]

an,k =

k∑
v=0

(
n
v

)
(1 − α − β)vαn−v

(
n + k − v − 1

k − v

)
βk−v.

In particular, K[1 − α, 0] and K[0, 1 − α], give the Euler [1] matrix Eα, and the Taylor [10] matrix
Tα, respectively.

In this paper we are going to compute the row and column sums of the Karamata matrix K[α, β]
for the cases α, β ∈ (0, 1) and to give some applications for these sums. Our results are based on
the following binomial coefficients identities:

(i) 1
(1−x)k+1 =

1
k!

∞∑
n=0

(n + k) ... (n + 1) xn, |x| < 1.

(ii)
(t

v
)
= 0, (v > t or v < 0) .

We begin with the following lemma which is essential in the text.

Lemma 1.1. Let n, k, v ∈ N ∪ {0} and α < 1. Then

∞∑
n=v

(n
v
) (n+k−v−1

k−v

)
αn−v =

α
(

k
v

)
+ (1 − α)

(
k−1
v−1

)
(1 − α)k+1 .

Proof. Using the identity (i), we have

∞∑
n=v

(n
v
) (n+k−v−1

k−v

)
αn−v =

∞∑
n=0

(n+v
v
) (n+k−1

k−v

)
αn

= 1
v!(k−v)!

∞∑
n=0

(n+v)(n+k−1)!
n! αn

= 1
v!(k−v)!

∞∑
n=1

(n+k−1)!
(n−1)! α

n + 1
(v−1)!(k−v)!

∞∑
n=0

(n+k−1)!
n! α

n

= α
v!(k−v)!

∞∑
n=0

(n+k)!
n! α

n + 1
(v−1)!(k−v)!

∞∑
n=0

(n+k−1)!
n! α

n

= k!
v!(k−v)!

α
(1−α)k+1 +

(k−1)!
(v−1)!(k−v)!

1
(1−α)k

=
α(k

v)+(1−α)(k−1
v−1)

(1−α)k+1 ,

as desired.

Theorem 1.2. For the Karamata matrix K[α, β], the sum of the first column is 1
1−α , the sum of all

other columns are 1−β
1−α , and the sum of all rows are 1.
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Proof. For k = 0, obviously
∑∞

n=0 an,0 =
∑∞

n=0 α
n = 1

1−α . If k ≥ 1, applying Lemma 1.1 together
with the identity (i), we have

∞∑
n=0

an,k =
∞∑

n=0

k∑
v=0

(n
v
)

(1 − α − β)vαn−v
(

n+k−v−1
k−v

)
βk−v

=
k∑

v=0

∞∑
n=0

(n
v
)

(1 − α − β)vαn−v
(

n+k−v−1
k−v

)
βk−v

=
k∑

v=0
(1 − α − β)vβk−v

∞∑
n=v

(n
v
) (n+k−v−1

k−v

)
αn−v

=
k∑

v=0
(1 − α − β)vβk−v α(k

v)+(1−α)(k−1
v−1)

(1−α)k+1

= α
(1−α)k+1

k∑
v=0

(
k
v

)
(1 − α − β)vβk−v

+ 1−α
(1−α)k+1

k∑
v=1

(
k−1
v−1

)
(1 − α − β)vβk−v

=
α(1−α)k

(1−α)k+1 +
1−α

(1−α)k+1 (1 − α − β)
k∑

v=1

(
k−1
v−1

)
(1 − α − β)vβk−v

=
α(1−α)k+(1−α)(1−α−β)(1−α)k−1

(1−α)k+1

=
1−β
1−α .

For the row sums of the Karamata matrix, fix n ∈ N ∪ {0}, using identities (i) and (ii), we have

∞∑
k=0

an,k =
∞∑

k=0

k∑
v=0

(n
v
)

(1 − α − β)vαn−v
(

n+k−v−1
k−v

)
βk−v

=
∞∑

k=0

n∑
v=0

(n
v
)

(1 − α − β)vαn−v
(

n+k−v−1
k−v

)
βk−v

=
n∑

v=0

(n
v
)

(1 − α − β)vαn−v
∞∑

k=v

(
n+k−v−1

k−v

)
βk−v

=
n∑

v=0

(n
v
)

(1 − α − β)vαn−v
∞∑

k=0

(
n+k−1

k

)
βk

= (1 − β)n 1
(1−β)n = 1.
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2. Applications

For 0 < p < ∞, the Karamata sequence space is defined by

Kα,βp =

(xn) ∈ C :
∞∑

n=0

∣∣∣∣∣∣∣
∞∑

k=0

k∑
v=0

(n
v
)

(1 − α − β)vαn−v
(
n+k−v−1

k−v

)
βk−vxk

∣∣∣∣∣∣∣
p

< ∞
 .

More precisely, Kα,βp is the set of all sequences such that K[α, β]−transforms of them are in the
space ℓp. In particular, K0,0

p = ℓp and K1−α,0
p = eαp, the Euler sequence space of order α [2], which

is defined as below:

eαp =

(xn) ∈ C :
∞∑

n=0

∣∣∣∣∣∣∣
n∑

k=0

(n
k
)

(1 − α)n−kαkxk

∣∣∣∣∣∣∣
p

< ∞
 .

Lemma 2.1. The set Kα,βp becomes a linear space with the coordinatewise addition and scalar
multiplication, which is the semi normed space with the semi norm

∥x∥Kα,βp
:=

 ∞∑
n=0

∣∣∣∣∣∣∣
∞∑

k=0

k∑
v=0

(n
v
)

(1 − α − β)vαn−v
(
n+k−v−1

k−v

)
βk−vxk

∣∣∣∣∣∣∣
p

1
p

,

for 1 ≤ p < ∞. Further, it is a p−semi normed space with the p−semi norm |||x||| = ∥x∥p
Kα,βp
,

whenever 0 < p < 1.

An easy calculation shows that the absolute property does not hold on the space Kα,βp , that
is, ∥x∥Kα,βp

, ∥|x|∥Kα,βp
for at least one sequence in the space Kα,βp , and this says us that Kα,βp is

a sequence space of non-absolute type, where |x| = (|xk|). It is immediate by the well-known
inclusion ℓp ⊂ ℓq that the inclusion Kα,βp ⊂ Kα,βq holds whenever p ≤ q.

Theorem 2.2. The inclusion ℓp ⊆ Kα,βp holds for 1 ≤ p < ∞.

Proof. Let x ∈ ℓp. Applying Theorem 1.2 with Hölder’s inequality for 1 < p < ∞, we obtain∣∣∣∣∣∣ ∞∑k=0

k∑
v=0

(n
v
)

(1 − α − β)vαn−v
(

n+k−v−1
k−v

)
βk−vxk

∣∣∣∣∣∣p

≤
(
∞∑

k=0

k∑
v=0

(n
v
)

(1 − α − β)vαn−v
(

n+k−v−1
k−v

)
βk−v|xk|p

)

×


∞∑

k=0

k∑
v=0

(n
v
)

(1 − α − β)vαn−v
(

n+k−v−1
k−v

)
βk−v

︸                                               ︷︷                                               ︸
= 1


p−1
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=

∞∑
k=0

k∑
v=0

(n
v
)

(1 − α − β)vαn−v
(

n+k−v−1
k−v

)
βk−v|xk|p. (2.1)

Applying (2.1) with Theorem 1.2, we have

∞∑
n=0

∣∣∣∣∣∣ ∞∑k=0

k∑
v=0

(n
v
)

(1 − α − β)vαn−v
(

n+k−v−1
k−v

)
βk−vxk

∣∣∣∣∣∣p

≤
∞∑

n=0

∞∑
k=0

k∑
v=0

(n
v
)

(1 − α − β)vαn−v
(

n+k−v−1
k−v

)
βk−v|xk|p

≤
∞∑

k=0
|xk|p

∞∑
n=0

k∑
v=0

(n
v
)

(1 − α − β)vαn−v
(

n+k−v−1
k−v

)
βk−v

= |x0|p
(

1
1−α

)
+ |x1|p

(
1−β
1−α

)
+ |x2|p

(
1−β
1−α

)
+ |x3|p

(
1−β
1−α

)
+ · · ·

≤
(

1
1−α

) ∞∑
k=0
|xk|p,

which yields us that

∥x∥Kα,βp
≤

(
1

1 − α

)1/p

∥x∥ℓp . (2.2)

Therefore, x ∈ Kα,βp , i.e. ℓp ⊆ Kα,βp . By similar discussions, it may be easily proved that the
inequality (2.2) holds in the case p = 1 and so we omit the detail. This completes the proof.

Theorem 2.3. Let 0 < p < 1, and x = (xn) be a non-negative sequence in Kα,βp . Then x belongs to
the space ℓp, and we have

∥x∥ℓp ≤
(

1 − β
1 − α

)−1/p

∥x∥Kα,βp
. (2.3)

Proof. The proof is similar to that of Theorem 2.2. The only difference is due to the first part in
which the Hölder’s inequality for 0 < p < 1, should be applied and therefore the inequality sign
must be reversed.

We refer the readers to [5, 6, 8] to give more information about sequence spaces.
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