On some special classes of Sonnenschein matrices

Masoud Aminizadeh ${ }^{\text {a }}$, Gholamreza Talebi ${ }^{\text {a,* }}$
${ }^{a}$ Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Islamic Republic of Iran

Article Info

Article history:

Received 27 August 2018
Accepted 30 October 2018
Available online 2 November 2018
Communicated by A.Taghavi

Keywords:

Sonnenschein matrix, Binomial coefficients identity, Sequence space.

2000 MSC:
05A10

Abstract

In this paper we consider the special classes of Sonnenschein matrices, namely the Karamata matrices $K[\alpha, \beta]=\left(a_{n, k}\right)$ with the entries

$$
a_{n, k}=\sum_{v=0}^{k}\binom{n}{v}(1-\alpha-\beta)^{v} \alpha^{n-v}\binom{n+k-v-1}{k-v} \beta^{k-v}
$$

and calculate their row and column sums and give some applications of these sums.
(C) Wavelets and Linear Algebra

1. Introduction

Let $f(z)$ be an analytic function in $D_{f}=\{z \in \mathbb{C}:|z|<r, r \geq 1\}$ with $f(1)=1$. The matrix $S=S_{f}=\left(a_{n, k}\right)$, where $\left(a_{n, k}\right)$ are defined by $[f(z)]^{n}=\sum_{k=0}^{\infty} a_{n, k} z^{k}$ is called a Sonnenschein matrix [7, 9]. The special choice

$$
f(z)=\frac{\alpha+(1-\alpha-\beta) z}{1-\beta z}, z \in \mathbb{C} \backslash\left\{\frac{1}{\beta}\right\},
$$

[^0](c) Wavelets and Linear Algebra
where α and β are complex numbers, gives the Karamata matrix $K[\alpha, \beta]$ and its coefficients are given by $[3,4]$
$$
a_{n, k}=\sum_{v=0}^{k}\binom{n}{v}(1-\alpha-\beta)^{v} \alpha^{n-v}\binom{n+k-v-1}{k-v} \beta^{k-v} .
$$

In particular, $K[1-\alpha, 0]$ and $K[0,1-\alpha]$, give the Euler [1] matrix E^{α}, and the Taylor [10] matrix T^{α}, respectively.

In this paper we are going to compute the row and column sums of the Karamata matrix $K[\alpha, \beta]$ for the cases $\alpha, \beta \in(0,1)$ and to give some applications for these sums. Our results are based on the following binomial coefficients identities:
(i) $\frac{1}{(1-x)^{k+1}}=\frac{1}{k!} \sum_{n=0}^{\infty}(n+k) \ldots(n+1) x^{n}, \quad|x|<1$.
(ii) $\binom{t}{v}=0, \quad(v>t$ or $v<0)$.

We begin with the following lemma which is essential in the text.
Lemma 1.1. Let $n, k, v \in \mathbb{N} \cup\{0\}$ and $\alpha<1$. Then

$$
\sum_{n=v}^{\infty}\binom{n}{v}\binom{n+k-v-1}{k-v} \alpha^{n-v}=\frac{\alpha\binom{k}{v}+(1-\alpha)\binom{k-1}{v-1}}{(1-\alpha)^{k+1}} .
$$

Proof. Using the identity (i), we have

$$
\begin{aligned}
\sum_{n=v}^{\infty}\binom{n}{v}\binom{n+k-v-1}{k-v} \alpha^{n-v} & =\sum_{n=0}^{\infty}\binom{n+v}{v}\binom{n+k-1}{k-v} \alpha^{n} \\
& =\frac{1}{v!(k-v)!} \sum_{n=0}^{\infty} \frac{(n+v)(n+k-1)!}{n!} \alpha^{n} \\
& =\frac{1}{v!(k-v)!} \sum_{n=1}^{\infty} \frac{(n+k-1)!}{(n-1)!} \alpha^{n}+\frac{1}{(v-1)!(k-v)!} \sum_{n=0}^{\infty} \frac{(n+k-1)!}{n!} \alpha^{n} \\
& =\frac{\alpha}{v!(k-v)!} \sum_{n=0}^{\infty} \frac{(n+k)!}{n!} \alpha^{n}+\frac{1}{(v-1)!(k-v)!} \sum_{n=0}^{\infty} \frac{(n+k-1)!}{n!} \alpha^{n} \\
& =\frac{k!}{v!(k-v)!} \frac{\alpha}{(1-\alpha)^{k+1}}+\frac{(k-1)!}{(v-1)!(k-v)!} \frac{1}{(1-\alpha)^{k}} \\
& =\frac{\alpha\binom{k}{v}+(1-\alpha)(k-1)}{(1-\alpha)^{k+1}},
\end{aligned}
$$

as desired.
Theorem 1.2. For the Karamata matrix $K[\alpha, \beta]$, the sum of the first column is $\frac{1}{1-\alpha}$, the sum of all other columns are $\frac{1-\beta}{1-\alpha}$, and the sum of all rows are 1 .

Proof. For $k=0$, obviously $\sum_{n=0}^{\infty} a_{n, 0}=\sum_{n=0}^{\infty} \alpha^{n}=\frac{1}{1-\alpha}$. If $k \geq 1$, applying Lemma 1.1 together with the identity (i), we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} a_{n, k} & =\sum_{n=0}^{\infty} \sum_{v=0}^{k}\binom{n}{v}(1-\alpha-\beta)^{v} \alpha^{n-v}\binom{n+k-v-1}{k-v} \beta^{k-v} \\
= & \sum_{v=0}^{k} \sum_{n=0}^{\infty}\binom{n}{v}(1-\alpha-\beta)^{v} \alpha^{n-v}\binom{n+k-v-1}{k-v} \beta^{k-v} \\
= & \sum_{v=0}^{k}(1-\alpha-\beta)^{v} \beta^{k-v} \sum_{n=v}^{\infty}\binom{n}{v}\binom{n+k-v-1}{k-v} \alpha^{n-v} \\
= & \sum_{v=0}^{k}(1-\alpha-\beta)^{v} \beta^{k-v} \frac{\alpha\binom{k}{v}+(1-\alpha)\binom{k-1}{(1-1}}{(1-\alpha)^{k+1}} \\
= & \frac{\alpha}{(1-\alpha)^{k+1}} \sum_{v=0}^{k}\binom{k}{v}(1-\alpha-\beta)^{v} \beta^{k-v} \\
= & \left.\frac{\alpha-\alpha}{(1-\alpha)^{k+1}} \sum_{v=1}^{k}\binom{k-1}{v-1}(1-\alpha-\beta)^{v}\right)^{k+1}+\frac{1-\alpha}{(1-\alpha)^{k+1}}(1-\alpha-\beta) \sum_{v=1}^{k}\binom{k-1}{v-1}(1-\alpha-\beta)^{v} \beta^{k-v} \\
= & \frac{\alpha(1-\alpha)^{k}+(1-\alpha)(1-\alpha-\beta)(1-\alpha)^{k-1}}{(1-\alpha)^{k+1}} \\
= & \frac{1-\beta}{1-\alpha} .
\end{aligned}
$$

For the row sums of the Karamata matrix, fix $n \in \mathbb{N} \cup\{0\}$, using identities (i) and (ii), we have

$$
\begin{aligned}
\sum_{k=0}^{\infty} a_{n, k} & =\sum_{k=0}^{\infty} \sum_{v=0}^{k}\binom{n}{v}(1-\alpha-\beta)^{v} \alpha^{n-v}\binom{n+k-v-1}{k-v} \beta^{k-v} \\
& =\sum_{k=0}^{\infty} \sum_{v=0}^{n}\binom{n}{v}(1-\alpha-\beta)^{v} \alpha^{n-v}\binom{n+k-v-1}{k-v} \beta^{k-v} \\
& =\sum_{v=0}^{n}\binom{n}{v}(1-\alpha-\beta)^{v} \alpha^{n-v} \sum_{k=v}^{\infty}\binom{n+k-v-1}{k-v} \beta^{k-v} \\
& =\sum_{v=0}^{n}\binom{n}{v}(1-\alpha-\beta)^{v} \alpha^{n-v} \sum_{k=0}^{\infty}\binom{n+k-1}{k} \beta^{k} \\
& =(1-\beta)^{n} \frac{1}{(1-\beta)^{n}}=1 .
\end{aligned}
$$

2. Applications

For $0<p<\infty$, the Karamata sequence space is defined by

$$
\mathcal{K}_{p}^{\alpha, \beta}=\left\{\left(x_{n}\right) \in \mathbb{C}: \sum_{n=0}^{\infty}\left|\sum_{k=0}^{\infty} \sum_{v=0}^{k}\binom{n}{v}(1-\alpha-\beta)^{v} \alpha^{n-v}\binom{n+k-v-1}{k-v} \beta^{k-v} x_{k}\right|^{p}<\infty\right\} .
$$

More precisely, $\mathcal{K}_{p}^{\alpha, \beta}$ is the set of all sequences such that $K[\alpha, \beta]$-transforms of them are in the space ℓ_{p}. In particular, $\mathcal{K}_{p}^{0,0}=\ell_{p}$ and $\mathcal{K}_{p}^{1-\alpha, 0}=e_{p}^{\alpha}$, the Euler sequence space of order α [2], which is defined as below:

$$
e_{p}^{\alpha}=\left\{\left(x_{n}\right) \in \mathbb{C}: \sum_{n=0}^{\infty}\left|\sum_{k=0}^{n}\binom{n}{k}(1-\alpha)^{n-k} \alpha^{k} x_{k}\right|^{p}<\infty\right\} .
$$

Lemma 2.1. The set $\mathcal{K}_{p}^{\alpha, \beta}$ becomes a linear space with the coordinatewise addition and scalar multiplication, which is the semi normed space with the semi norm

$$
\|x\|_{\mathcal{K}_{p}^{\alpha \beta}}:=\left(\sum_{n=0}^{\infty}\left|\sum_{k=0}^{\infty} \sum_{v=0}^{k}\binom{n}{v}(1-\alpha-\beta)^{v} \alpha^{n-v}\binom{n+k-v-1}{k-v} \beta^{k-v} x_{k}\right|^{p}\right)^{\frac{1}{p}},
$$

for $1 \leq p<\infty$. Further, it is a p-semi normed space with the p-semi norm $\|x\| x\|=\| x \|_{\mathcal{K}_{p}^{\alpha, \beta}}^{p}$, whenever $0<p<1$.

An easy calculation shows that the absolute property does not hold on the space $\mathcal{K}_{p}^{\alpha, \beta}$, that is, $\|x\|_{\mathcal{K}_{p}^{\alpha, \beta}} \neq\|x\|_{\mathcal{K}_{p}^{\alpha, \beta}}$ for at least one sequence in the space $\mathcal{K}_{p}^{\alpha, \beta}$, and this says us that $\mathcal{K}_{p}^{\alpha, \beta}$ is a sequence space of non-absolute type, where $|x|=\left(\left|x_{k}\right|\right)$. It is immediate by the well-known inclusion $\ell_{p} \subset \ell_{q}$ that the inclusion $\mathcal{K}_{p}^{\alpha, \beta} \subset \mathcal{K}_{q}^{\alpha, \beta}$ holds whenever $p \leq q$.

Theorem 2.2. The inclusion $\ell_{p} \subseteq \mathcal{K}_{p}^{\alpha, \beta}$ holds for $1 \leq p<\infty$.
Proof. Let $x \in \ell_{p}$. Applying Theorem 1.2 with Hölder's inequality for $1<p<\infty$, we obtain

$$
\begin{aligned}
& \left|\sum_{k=0}^{\infty} \sum_{v=0}^{k}\binom{n}{v}(1-\alpha-\beta)^{v} \alpha^{n-v}\binom{n+k-v-1}{k-v} \beta^{k-v} x_{k}\right|^{p} \\
& \leq\left(\sum_{k=0}^{\infty} \sum_{v=0}^{k}\binom{n}{v}(1-\alpha-\beta)^{v} \alpha^{n-v}\binom{n+k-v-1}{k-v} \beta^{k-v}\left|x_{k}\right|^{p}\right) \\
& \quad \times(\underbrace{\sum_{k=0}^{\infty} \sum_{v=0}^{k}\binom{n}{v}(1-\alpha-\beta)^{v} \alpha^{n-v}\binom{n+k-v-1}{k-v} \beta^{k-v}}_{=1})^{p-1}
\end{aligned}
$$

$$
\begin{equation*}
=\sum_{k=0}^{\infty} \sum_{v=0}^{k}\binom{n}{v}(1-\alpha-\beta)^{v} \alpha^{n-v}\binom{n+k-v-1}{k-v} \beta^{k-v}\left|x_{k}\right|^{p} . \tag{2.1}
\end{equation*}
$$

Applying (2.1) with Theorem 1.2, we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left|\sum_{k=0}^{\infty} \sum_{v=0}^{k}\binom{n}{v}(1-\alpha-\beta)^{v} \alpha^{n-v}\binom{n+k-v-1}{k-v} \beta^{k-v} x_{k}\right|^{p} \\
& \leq \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{v=0}^{k}\binom{n}{v}(1-\alpha-\beta)^{v} \alpha^{n-v}\binom{n+k-v-1}{k-v} \beta^{k-v}\left|x_{k}\right|^{p} \\
& \leq \sum_{k=0}^{\infty}\left|x_{k}\right|^{p} \sum_{n=0}^{\infty} \sum_{v=0}^{k}\binom{n}{v}(1-\alpha-\beta)^{v} \alpha^{n-v}\binom{n+k-v-1}{k-v} \beta^{k-v} \\
&=\left|x_{0}\right|^{p}\left(\frac{1}{1-\alpha}\right)+\left|x_{1}\right|^{p}\left(\frac{1-\beta}{1-\alpha}\right)+\left|x_{2}\right|^{p}\left(\frac{1-\beta}{1-\alpha}\right)+\left|x_{3}\right|^{p}\left(\frac{1-\beta}{1-\alpha}\right)+\cdots \\
& \leq\left(\frac{1}{1-\alpha}\right) \sum_{k=0}^{\infty}\left|x_{k}\right|^{p}
\end{aligned}
$$

which yields us that

$$
\begin{equation*}
\|x\|_{\mathcal{K}_{p}^{\alpha, \beta}} \leq\left(\frac{1}{1-\alpha}\right)^{1 / p}\|x\|_{\ell_{p}} \tag{2.2}
\end{equation*}
$$

Therefore, $x \in \mathcal{K}_{p}^{\alpha, \beta}$, i.e. $\ell_{p} \subseteq \mathcal{K}_{p}^{\alpha, \beta}$. By similar discussions, it may be easily proved that the inequality (2.2) holds in the case $p=1$ and so we omit the detail. This completes the proof.
Theorem 2.3. Let $0<p<1$, and $x=\left(x_{n}\right)$ be a non-negative sequence in $\mathcal{K}_{p}^{\alpha, \beta}$. Then x belongs to the space ℓ_{p}, and we have

$$
\begin{equation*}
\|x\|_{\ell_{p}} \leq\left(\frac{1-\beta}{1-\alpha}\right)^{-1 / p}\|x\|_{\mathcal{K}_{p}^{\alpha, \beta}} \tag{2.3}
\end{equation*}
$$

Proof. The proof is similar to that of Theorem 2.2. The only difference is due to the first part in which the Hölder's inequality for $0<p<1$, should be applied and therefore the inequality sign must be reversed.

We refer the readers to $[5,6,8]$ to give more information about sequence spaces.

References

[1] R. P. Agnew, Euler transformations, Amer. J. Math., 66(1944), 313-338.
[2] B. Altay, F. Başar and M. Mursaleen, On the Euler sequence spaces which include the spaces ℓ_{p} and $\ell_{\infty} \mathrm{I}$, Inform. Sci., 176(2006), 1450-1462.
[3] B. Bajsnski, Sur une classe generale de procedes de summations du type d'Euler-Borel, Acad. Serbe Sci. Publ. Inst. Math., 10 (1995) 131-152.
[4] Johann Boos, Classical and modern methods in summability, Oxford University Press Inc., New York, 2000.
[5] Metin Başarr, M. Ozturk and E. E. Kara, Some topological and geometric properties of generalized Euler sequence space, Math. Slovaca, 60(3) (2010), 385398.
[6] Metin Başarr, E. E. Kara and Ş. Konaca, On some new weighted Euler sequence spaces and compact operators, Math. Inequal. Appl., 17 (2) (2014), 649-664.
[7] Hartmann Frederick, Inclusion theorems for Sonnenschein matrices, Proc. Amer. Math. Soc., 21 (3) (1969), 513-519.
[8] E. E. Kara, Metin Başarr, On compact operators and some Euler B ${ }^{m}$-difference sequence spaces, J. Math. Anal. Appl., 379 (2011), 499-511.
[9] J. Sonnenschein, Sur les series divergentes, Acad. Roy. Belg. Bull. Cl. Sei., 35(1949), 594-601.
[10] P. Vermes, Series to series transformations and analytic continuation by matrix methods, Amer. J. Math., 71 (1949), 541-562.

[^0]: *Corresponding author
 Email addresses: m.aminizadeh@vru.ac.ir (Masoud Aminizadeh), gh.talebi@vru.ac.ir (Gholamreza Talebi)

