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1. Introduction

Let M, be the set of all n X n real matrices, R" be the set of all n X 1 (column) real vectors,
{e1,...,e,} be the standard basis of R", e = (1,...,1), P, be the set of all n X n permutation
matrices and J, be the n X n matrix with all entries equal to one.

For x,y € R", we say that y majorizes x and write x <y, if

fork = 1,...,n — 1 and equality holds for k = n, where x! = (x{, LX) s arrangement of x in
non-increasing order. Notation x ~ y means that x < y and y < x. It is easy to see that x ~ y if
and only if there exists P € P, such that x = Py. We say that a linear operator A : R" — R”
preservers majorization, if Ax < Ay whenever x < y. The following theorem has an essential role
to characterize linear preservers of majorization, see [1].

Theorem 1.1. [1, Theorem 2.6] Let A be a linear map from R" to R™. Then the following condi-
tions are mutually equivalent:

(i) A preserves majorization.
(ii) Ax ~ Ay whenever x ~ y.

(iii) For any permutation matrix 11 € M, there exists a permutation matrix I e M,, such that
IT1A = AIL

The following theorem characterizes all linear preservers of majorization.

Theorem 1.2. [I, Corollary 2.7] Any linear operator A : R" — R" preserving majorization has
one of the following forms:

(a) A = aé' for some a € R".

(b) A = all + BJ, for some a,5 € R and 11 € P,.

A matrix D € M, is called doubly stochastic if De = e and D'e = e. We know that x < y if and
only if x = Dy for some doubly stochastic matrix D. Birkhoff theorem [3, Theorem I1.2.3] says
that the set of all nxn doubly stochastic matrices is the convex hull of IP,. On the other word, x <y
if and only if x € conv{Px : P € PP,}. By replacing PP, with any subgroup of orthogonal group
O(R"), we can define a new concept of majorization on R" which is called group majorization
induced by G. More details and examples of group majorization available in [9].

Definition 1.3. Let V be a finite dimensional inner product space and G be a subgroup of orthog-
onal group O(V). We say that x is group majorized by y, write x < y, if x € conv{gy : g € G}.

In section 2, we present a method to state a simple proof of Theorem 1.1 and by using this
method, we state an equivalent condition for matrix representations of linear preservers 7 :
M, , = M,,, of G-majorizations, where G is a finite subgroup of O(R"). Also, we improve some
known results on matrix majorizations. In section 3, a new concept of majorization on R? will be
introduced and extended for 2 X m matrices. Then we will characterize all its linear preservers.



Soleymani, Salemi/ Wavelets and Linear Algebra 10(2) (2023) 71- 80 73

2. Multivariate group majorization and its linear preservers

In this section, we present a method which has an essential role to characterize linear preservers of
various types of majorizations. In the following theorem, we state our method to prove (ii) — (iii)
of Theorem 1.1. Note that the cases (i) — (ii) and (iii) — (i) are obvious.

Theorem 2.1. Let A be a linear map from R" to R™. If A preserves ~, then for any permutation
matrix I1 € M, there exists a permutation matrix I1 € M,, such that 11A = AIl.

Proof. Letll € P, be arbitrary. We define A(A, I1) := mlnndP mln{ll(HA AlDe|, : (HA Alle; #

0,i=1,...,n}and A(A, H)—OwhenHA Al'[forsomeHeIP>
On the contrary let A(A,TI) # 0. Suppose that x = Y7, A"'e; where 1 € (O, ?}gﬁﬁz). Since A
preserves ~ and Ilx ~ x, there exists I1 € P, such that TIAx = AILx. hence

Z AY(TIA — ATD)e; = 0. 2.1

i=1
Since A(A,II) # 0, there exists i such that (ﬁA — All)e; # 0. Let i be the first integer with
this property. By equation (2.1), (ITA — All)e; = A X, /7' (IIA — Ale;. So A(A,TI) <

31 n - A(A,TI)
[(TTA — ATDeill, < A Y, A~ "|(TIA - ATDe,|l, < 2nAllAll,. Then A >

2n||All,°
Therefore, A(A,IT) = 0. ]

, a contradiction.

In the following, we talk about matrix majorization and define a class of group majorization
on M, ,,. By our method, we are able to find an equivalent condition for linear preservers of group
majorization on M, ,,, see Theorem 2.7.

The concept of matrix majorization is defined by multivariate majorization [2] or directional ma-
jorization [6] as follows:

Definition 2.2. For X, Y € M, ,,, we say that X is multivariate majorized by Y and write X <,, Y if
there exists doubly stochastic matrix D € M,, such that X = DY.

Definition 2.3. For X,Y € M, ,,, we say that X is directional majorized by Y and write X <; Y if
Xv < Yv for every v € R™.

It is clear that X <,, Y implies that X <, Y. In the following theorem, by using our method (as
in the proof of Theorem 2.1), we show that X ~; Y (X <, Yand Y <; X )ifandonlyif X ~,, ¥
X<pYandY <, X). ForX,Y € M, ,,,, we define I'(X, Y) = O when X = Y = aJ,,,, and otherwise

I'(X,Y) = min{|x;; — yu| : xij # ys, | < 0,5 <n, 1 < j,t <mj.

Theorem 2.4. Let X,Y € M,,,,,. The following statements are equivalent:
(i) X ~

(ii) X = PY for some P € P,.

(iii) X ~,, Y.
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Proof. (ii) — (iii) and (iii) — (i) are obvious. Now, we prove (i) — (ii). If X = Y the assertion

. I'X,Y)
holds. Otherwise, let 1 € |0, ————
( n(|IX1l2 + [1Y1l2)

Xv ~ Yv and there exists P € P, such that Xv = PYv. So

) and v = e; + dey + -+ + 1" 'e,. By the hypothesis,

X+ A+ + Uy, = Py, + APy, + - + A7 ' Py,

where x;,y; are the i’ columns of X, Y, respectively. With the same argument as in the proof of
Theorem 2.1 we have

1 = Pyilly = Allxz = Pyalla + -+ + "1y = Pyullz < (= DA(IX]2 + [1Y]]).

I,y .
If x; # Py, then 4 > ( ) a contradiction. Then x; = Py; and by the same
, (n = D(IXI + IY1l2)
argument we obtain x; = Py; for i = 2,...,m. Therefore, X = PY. ]

A class of group majorizations of matrices can be defined as follows.

Definition 2.5. For X,Y € M, ,, X is said to be multivariate group majorized by Y (written as
X <pg Y),if X = Zf;l c;g;Y where g; € G,¢; 20, Zle ¢; = 1 and G is a subgroup of O(R").

By using the method as in the proof of Theorem 2.1, we prove an equivalent condition for
linear preservers of multivariate group majorization. To do this, we need some preliminaries.
For every A = (a;;) € M,,,,, we associate the vector vec(A) € R"" defined by

VEC(A) = [@11s ... Gn1s A12s oy Qs ooy Qs -+ v s G
Let B ={Ei,....En,Eins...,Epy ..., E\pys . . ., Eny) be the standard basis of M, and [T']g
be representation of 7 with respect to 8. Then
Biy Bia -+ Bin
s =| PR P 22)
Bu B - B

where each B;; € M, and vec(T(X)) = [T]g(vec(X)). LetA € M, ,,, X € M,,,, B € M, , and
CeM,, By[5 Lemma4.3.1], AXB = C if and only if

vec(C) = vec(AXB) = (B' ® A)vec(X). (2.3)

To verify linear preservers of multivariate group majorization, we deal with x ~,,, y means
X <mg y and y <,,, x. The following theorem gives an equivalent condition for ~,,,.

Theorem 2.6. Let X,Y € M, ,,,. Then X ~,,, Y if and only if X = gY for some g € G.
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Proof. By the definition of multivariate group majorization, X <,,, ¥ means that X = Sk agY.
Since g, € O(R"),

k k k
Xl = 1) eng ¥l < " adlig¥lh = Y allYl = IIY1L. 24)
t=1 t=1

= =1
On the other hand, Y <,,, X and then [|Y]| < [|X]|. Hence, equality holds in (2.4). If ay # O for
some 1 <t <k, then

largrY + Zlla = llargr Yl + IZ]l,
where Z = Zlem, a,g:Y. Since equality holds in triangle inequality(cauchy-schwarz inequality),
Z = Aa, g, Y for some A € R. Therefore, X = (1 +)a,g,Y. Since || X]|, = ||Y],, (1+Da, =1. [

The following theorem states an equivalent condition for matrix representations of linear op-
erator T : M,,, = M,,, which preserves multivariate group majorization, where G is a finite
subgroup of O(R").

Theorem 2.7. Let G be a finite subgroup of OR"), T : M, ,, = M,,, be a linear operator and
[T]g be as (3.1). Then T preserves ~y, if and only if for every g € G there exists a matrix g € G
such thatfg\B,-j = Bjjgforeachi=1,...,nand j=1,...,m.
Proof. For necessity, fix g € G. We define A,,;,(T, g) := ming < min{||(g'B;; — B;;g)exll» : II(g'Bij —
Bijg)edl, # 0,1 <k <n,1 <i<n,1< j<m}and Ayin(T, g) = 0 when there exists g’ € G such
that ¢'B;; — B;jjg = Oforevery 1 <i<n,1<j<m.
On the contrary let A, (7, g) # 0. Define

X = Z Z AUVHEDE e M, .. where A€ (0 M)

b
J=1 =1 2mn||T ||,

Since T preserves ~,,,, for every g € G there exists g € G such that T(gX) = gT(X). By (2.3),
[T1s(ln ® g)vec(X) = (I, ® @[T ]gvec(X). (2.5)
Now, by the definition of X,

m

2, 2, AN (T8, @ 8) — (1, @ DT 1s) vee(Eyy) = 0. (26)

=1 i=1
Since Anin(T, g) # 0, there exists i, j such that (g’B;; — B;;jg)ex # 0 and this means
([T1s(l, ® &) — (I, ® Q[ T13) vec(E;j) # 0. (2.7)

Let E,; be the first element of ordered basis B such that (2.7) holds. By the definition of A (7, g)
and (2.6),

Amin(T, ) < 1 ([Tsn ® &) — (1 ®)[T'5) vec(Ey)ll2

< D AN ®DIT s~ [Tls(ly ® 2) vec(Exl

i=t+1

N Z 2 (1, @ DT s — [Tl ® ) vec(Eipll
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Therefore Anin(T, g) < 2mnd||T||, a contradiction. Hence A, (7, g) = 0 and by the definition of
Anin(T, g) the assertion holds.

conversely, for every g € G there exists a matrix g € G such that gB;; = B;;g, foreachi=1,...,n
and j = 1,...,m. Then (2.5) holds and T is a linear preserver of ~,,. ]

Now by using this argument, we are able to improve some results of [6]. For that, we need to
prove two lemmas.

Lemma 2.8. Let n > 3. If there exists a permutation 11 € P, such that I1P = PIl for all P € P,
then1l = I,.

Proof. Assume if possible I1 # I,,. Then there exists i # j such that Ile; = e;. Since n > 3, there
exists k € {1,...,n} \ {i, j}. Choose P € P, such that Pe; = ¢; and Pe; = e;. Then I1Pe; = e; and
Plle; = ¢, and hence I1P # PII, a contradiction. L]

Eemma 2.9. Let T\, T, be n X n matrices and for every 11 € P, there exists e P, such that
T, = T;I1, i = 1,2. Then T, and T, have the same structure, which means that one of the
following statements hold.

(a) T| = ae', T, = be' for some a,b € R".

(b) There exists P € P, such that Ty = a,P +f,J, and T, = a, P + 3, J,, for some a, a3,B1,5: € R.

Proof. By Theorem 1.1, T and T, are linear preservers of majorization and By Theorem 1.2, T}
and T should satisfy (a) or (D). If T and T, satisfy (a), the result holds. Without loss of generality,
assume that 7y = a; P + 8;J,. By assumptions, PII = IIP and IIT, = T,II. This implies that for
every [l € P,

PIIP'T, = T,II. (2.8)

Let T, satisfies (a). Then T, = ae’, for some a € R". Since T, has the same columns, 7,11 = 75,
for every Il € P,. Hence by (2.8), for every Il € PP,, IIT, = T,. This means that 7, has the
same rows and hence T, = J,,, the result holds. Now, let T, satisfies (b). We consider two cases:
Let n = 2. Since ]P)z = {12,.]2 — ]2}, T, = al, +ﬁ.]2 = —(1'(]2 — 12) + (a + ﬁ).]z and the result
holds. Now, letn > 3 and T, = a>Q + 3,J, for some a, # 0 and Q € P,. By equation (2.8), we
obtain that PITP'Q = QII, and hence I[1(P'Q) = (P'Q)II for every I1 € P,. Then the permutation
P'Q commutes with all permutations IT € P,. Since n > 3, by Lemma 2.8, P'Q = I, and hence
T>(x) = @y Px + B3>, x. O

In the following, we will prove [6, Theorem 2] as a result of Theorem 2.7.

Corollary 2.10. Let T be a linear operator on M,,,,. The following are equivalent:
(i) T preserves multivariate majorization.
(ii) T preserves directional majorization.
(iii) TX <4 TY whenever X <, Y .
(iv) TX ~; TY whenever X ~; Y .
(v) TX ~,, TY whenever X ~,, Y .
(vi) One of the following holds :
(a) There exist R,S € M,, and P € P, such that T(X) = PXR + J,XS.
(b) There exist Ay, ...,Ay € M, , such that T(X) = ZTZI tr(x;)A;.
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Proof. By the definition of multivariate majorization and directional majorization, (i) — (ii) and
(if) — (i@ii) are clear. Theorem 2.4 implies (iii) — (iv) and (iv) — (v).

(v) — (vi) By Theorem 2.7 for every P € PP, there exist Q € PP, such that B;;P = QB;; for
each i, j. By Lemma 2.9 two cases may occur. First, let there exists II € P, such that B;; =
a;I1+pijJ,, «ij,pij € R. Then [T]g = A®Il+B®J,, where A = («a;;), B = (§;;). By equation 2.3,
T(X) = IIXR + J,XS, where R = A", S = B'. Now, let there exist b;; € R" such that B;; = b;e’ €
M,. So T(X) = (Z]”il byje'x|--- | X bmjetx.,-) and hence T(X) = X, tr(x;)A;, where A; :=
(bijl -+ bus).

(vi) — (i) Let P € P,. Then for every Q € P,, there exists Q' € P, such that PQ = Q’P and
J,Q = Q'J,. Therefore, for every doubly stochastic matrix D, There exists a doubly stochastic
matrix D’ such that T(DX) = D'T(X) and hence (vi)(a) implies (i). Also, tr(x;) = tr(Dx;), for
every doubly stochastic matrix D. Then (vi)(b) implies (i). O

By Theorem 2.7 and the above argument, we are able to prove [4, Theorem 4.3], [7, Theorem
2.5] and [8, Theorems 3.4, 3.6].

3. Reflective majorization

In this section, we define a class of group majorization on O(R?) and characterize its linear
preservers. Let By € M, be the reflection about the line passing through the origin that forms an
angle g with the positive x-axis in O(R?). In other words

_ [ cos(f)  sin(6)
By = ( sin(d) —cos() | G.h

It is easy to see that By € O(R?) and Gy = {By, I} is a subgroup of O(R?).

Definition 3.1. The group majorization induced by Gy is called reflective majorization associated
to 6 and denoted by <,. On the other word, x <y y means that x = Ay + (1 — A)Byy for some
A€ (0,1).

The reflective majorization associated to — is the same as majorization. Figure 1 shows the
difference between majorization and a reflective majorization.

In the following theorem, we will characterize linear preservers of reflective majorization. The
linear preservers of <z must be as same as Theorem 1.2.

Theorem 3.2. Let 6 # kn. If A is a linear preserver of <y, then A has one of the following form:

acos(§)  asin(f)

(i) A= ( ﬁcos(g) Bsin(%) )forsome a,BeR.

(ii) Az( /JC’Y a/—2,gcot(9) )forsomea,BE]R.
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3

Ay =01Y2)

2 V=01Y2)

Figure 1: majorization and reflective majorization associated to 37”

Proof. By Theorem 2.7, for every g € Gy there exists a matrix g € Gy such that gA = Ag. If g = I,
we can choose g = I. Now assume that

_ [ cos(f) sin(0) A= a b

| sin(@) —cos@® |’ \c d]°
Since G4 = {By, I}, two cases can be occurred:
Casel) Assume that’g = I. So

a b cos(¢) sin(@) |\ (a b
c d sin(@) —cos@ | \c d ]

It means that (a, b), (¢, d) are placed on the line passing through the origin that forms an angle g
with the positive x-axis. Therefore there exists @, 5 such that

(a b)Z(a/cos(g) asm(e)) © d) = ( COS( ) ﬂsm(e))

Case2) Now, let BokA = ABy. So

acos@+csinf =acos@ + bsind (3.2)

bcosO+dsinf = asinf — bcosb 3.3)

asind —ccosf = ccosf +dsinf 3.4

bsinf —dcosf = csinf — dcos b (3.5)

Since 6 # km, equation (3.2) implies that b = ¢ and equation (3.4) implies that d = a — 2c cot 6.
Therefore A has form (ii). O
For 6 = (2k + 1)rr, we have By, = ( _01 (1) ) and the linear preservers of <1y, has the

form

A=(5 5 )ora=(5 5
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Also the linear preservers of reflective majorization associated to 2k has the form

a 0 a 0
A:(,B 0)0rA:(O ,3)'

By choosing 8 = 7y sin(f) in the Theorem 3.2 (ii), we know that a linear preservers of reflective
majorization associated to 6 has one of the following forms:

B acos(%’) asin(%’) B 0 sin @

( Bcos(g) ﬂsin(g) A=al+p sinf —2cosf @B ER.
In the proof of Theorem 3.2, we see that if A = AB, then A has form (i) and if ByA = ABy then
A has form (ii). By this fact, we have the following theorem that is used to characterize linear
preservers of matrix majorization associated to 6.

Theorem 3.3. Let By, B, be linear preservers of reflective majorization associated to 6 with the
property that for every g € By there exist g € By such that gB; = B\g and gB, = B,g. Then

B _( ajcos(?)  ajsin(d) ) ( arcos(})  axsin(d) )
P Bicos(D)  Bisin(D) )72 T Bacos(B)  Basin(d)

for some a1, B1,as,5, € Ror

0 sin @

0 sin @
Bl_/h“_)/l(sine —2cosf )

)’BZ :/12“_72( sin @ —2cos0

for some Ay,y1,4,,7, € R.

In the following, we will characterize linear preservers of multivariare reflective majorization
associated to € on 2 X m matrices. This is an application of Theorem 2.7.

Theorem 3.4. Let T be an operator on M,,,. Then T is a linear preserver of reflective matrix
majorization associated to 6 if and only if it has one of the following form:
. _{ cos($) sin(%) 0 0
(i) T(X) = ( 0 0 XA + Cos(g) sin(g) XB, for some A, B € M,,.
0 sin(6)

(it) T(X) = XC*( sin(6) -2 cos(6)

)XD, for some C,D € M,,.

Proof. Let [T]g be the representation of 7" with respect to standard basis of M,,,. Then [T]g is
the block matrix as in (3.1) and each B;; is 2 X 2 matrix. Theorem 2.7 implies that for every g € By
there exists g € By such that Byg = gB, for every i, j = 1,...,m. By Theorem 3.3 two cases can
be occurred.

@;; cos(2) @;; sin(%) ) ..
Case]) If B;; = / 2 7727 | foreveryi, j=1,...,m, then
VB (ﬁ,-jcos@) Bissin(d) yiJ
Ci - Cin Dy -+ Dy
[T]g = : : + : : ,

le e Cmm Dml e Dmm
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cos(%) sin(§) 0 0

where C;; = a,-j( 0 0 ) and D;; = oz,-j( cos(2) sin() ) Therefore

B cos(%) sin(%) 0 0
vec(T(X)) = (A ®( 02 0 2 ) + B®( COS(%) sin(g) )) vec(X),

where A = («;;), B = (Bij) € M,,. By equation (2.3), we have

B cos(g) sin(g) . 0 0 ;
T(X)= ( 0 0 XA" + cos(g) sin(g) XB'.
Case2) If B;; = A;;1 + yij( si(r)le B 281(;29 )for every i,j=1,...,m, then

veo(T(X)) = (A ®hL+T® ( Sig o _25;222) )) (vec(X))

where A = (4;;)),I" = (y;;) € M,,. By the same argument as in above, we have T(X) = IXC +

(sin(@) —2cos(6)

0 sin(6) )XD, where C = A"and D =T". O
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