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1. Introduction

Let Mn be the set of all n × n real matrices, Rn be the set of all n × 1 (column) real vectors,
{e1, . . . , en} be the standard basis of Rn, e = (1, . . . , 1)t, Pn be the set of all n × n permutation
matrices and Jn be the n × n matrix with all entries equal to one.

For x, y ∈ Rn, we say that y majorizes x and write x ≺ y, if

k∑
i=1

x↓i 6
k∑

i=1

x↓i

for k = 1, . . . , n − 1 and equality holds for k = n, where x↓ = (x↓1, . . . , x
↓
n) is arrangement of x in

non-increasing order. Notation x ∼ y means that x ≺ y and y ≺ x. It is easy to see that x ∼ y if
and only if there exists P ∈ Pn such that x = Py. We say that a linear operator A : Rn −→ Rm

preservers majorization, if Ax ≺ Ay whenever x ≺ y. The following theorem has an essential role
to characterize linear preservers of majorization, see [1].

Theorem 1.1. [1, Theorem 2.6] Let A be a linear map from Rn to Rm. Then the following condi-
tions are mutually equivalent:

(i) A preserves majorization.

(ii) Ax ∼ Ay whenever x ∼ y.

(iii) For any permutation matrix Π ∈ Mn there exists a permutation matrix Π̂ ∈ Mm such that
Π̂A = AΠ.

The following theorem characterizes all linear preservers of majorization.

Theorem 1.2. [1, Corollary 2.7] Any linear operator A : Rn → Rn preserving majorization has
one of the following forms:
(a) A = aet for some a ∈ Rn.
(b) A = αΠ + βJn for some α, β ∈ R and Π ∈ Pn.

A matrix D ∈ Mn is called doubly stochastic if De = e and Dte = e. We know that x ≺ y if and
only if x = Dy for some doubly stochastic matrix D. Birkhoff theorem [3, Theorem II.2.3] says
that the set of all n×n doubly stochastic matrices is the convex hull of Pn. On the other word, x ≺ y
if and only if x ∈ conv{Px : P ∈ Pn}. By replacing Pn with any subgroup of orthogonal group
O(Rn), we can define a new concept of majorization on Rn which is called group majorization
induced by G. More details and examples of group majorization available in [9].

Definition 1.3. Let V be a finite dimensional inner product space and G be a subgroup of orthog-
onal group O(V). We say that x is group majorized by y, write x ≺G y, if x ∈ conv{gy : g ∈ G}.

In section 2, we present a method to state a simple proof of Theorem 1.1 and by using this
method, we state an equivalent condition for matrix representations of linear preservers T :
Mn,m → Mn,m of G-majorizations, where G is a finite subgroup of O(Rn). Also, we improve some
known results on matrix majorizations. In section 3, a new concept of majorization on R2 will be
introduced and extended for 2 × m matrices. Then we will characterize all its linear preservers.
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2. Multivariate group majorization and its linear preservers

In this section, we present a method which has an essential role to characterize linear preservers of
various types of majorizations. In the following theorem, we state our method to prove (ii)→ (iii)
of Theorem 1.1. Note that the cases (i)→ (ii) and (iii)→ (i) are obvious.

Theorem 2.1. Let A be a linear map from Rn to Rm. If A preserves ∼, then for any permutation
matrix Π ∈ Mn there exists a permutation matrix Π̂ ∈ Mm such that Π̂A = AΠ.

Proof. Let Π ∈ Pn be arbitrary. We define ∆(A,Π) := minΠ̂∈Pm
min{‖(Π̂A−AΠ)ei‖2 : (Π̂A−AΠ)ei ,

0, i = 1, . . . , n} and ∆(A,Π) = 0 when Π̂A = AΠ for some Π̂ ∈ Pm.
On the contrary let ∆(A,Π) , 0. Suppose that x =

∑n
i=1 λ

i−1ei where λ ∈
(
0, ∆(A,Π)

2n‖A‖2

)
. Since A

preserves ∼ and Πx ∼ x, there exists Π̂ ∈ Pm such that Π̂Ax = AΠx. hence

n∑
i=1

λi−1(Π̂A − AΠ)ei = 0. (2.1)

Since ∆(A,Π) , 0, there exists i such that (Π̂A − AΠ)ei , 0. Let i be the first integer with
this property. By equation (2.1), (Π̂A − AΠ)ei = λ

∑n
j=i+1 λ

j−i−1(Π̂A − AΠ)e j. So ∆(A,Π) ≤

‖(Π̂A − AΠ)ei‖2 ≤ λ
∑n

j=i+1 λ
j−i−1‖(Π̂A − AΠ)e j‖2 ≤ 2nλ‖A‖2. Then λ ≥

∆(A,Π)
2n‖A‖2

, a contradiction.

Therefore, ∆(A,Π) = 0.

In the following, we talk about matrix majorization and define a class of group majorization
on Mn,m. By our method, we are able to find an equivalent condition for linear preservers of group
majorization on Mn,m, see Theorem 2.7.
The concept of matrix majorization is defined by multivariate majorization [2] or directional ma-
jorization [6] as follows:

Definition 2.2. For X,Y ∈ Mn,m, we say that X is multivariate majorized by Y and write X ≺m Y if
there exists doubly stochastic matrix D ∈ Mn such that X = DY .

Definition 2.3. For X,Y ∈ Mn,m, we say that X is directional majorized by Y and write X ≺d Y if
Xv ≺ Yv for every v ∈ Rm.

It is clear that X ≺m Y implies that X ≺d Y . In the following theorem, by using our method (as
in the proof of Theorem 2.1), we show that X ∼d Y (X ≺d Y and Y ≺d X ) if and only if X ∼m Y
(X ≺m Y and Y ≺m X). For X,Y ∈ Mn,m, we define Γ(X,Y) = 0 when X = Y = αJn,m and otherwise

Γ(X,Y) = min{|xi j − yst| : xi j , yst, 1 ≤ i, s ≤ n, 1 ≤ j, t ≤ m}.

Theorem 2.4. Let X,Y ∈ Mn,m. The following statements are equivalent:
(i) X ∼d Y.
(ii) X = PY for some P ∈ Pn.
(iii) X ∼m Y.
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Proof. (ii) → (iii) and (iii) → (i) are obvious. Now, we prove (i) → (ii). If X = Y the assertion

holds. Otherwise, let λ ∈
(
0,

Γ(X,Y)
n(‖X‖2 + ‖Y‖2)

)
and v = e1 + λe2 + · · · + λn−1en. By the hypothesis,

Xv ∼ Yv and there exists P ∈ Pn such that Xv = PYv. So

x1 + λx2 + · · · + λn−1xn = Py1 + λPy2 + · · · + λn−1Pyn,

where xi, yi are the ith columns of X,Y , respectively. With the same argument as in the proof of
Theorem 2.1 we have

‖x1 − Py1‖2 = λ‖x2 − Py2‖2 + · · · + λn−1‖xn − Pyn‖2 ≤ (n − 1)λ(‖X‖2 + ‖Y‖2).

If x1 , Py1, then λ ≥
Γ(X,Y)

(n − 1)(‖X‖2 + ‖Y‖2)
a contradiction. Then x1 = Py1 and by the same

argument we obtain xi = Pyi for i = 2, . . . ,m. Therefore, X = PY .

A class of group majorizations of matrices can be defined as follows.

Definition 2.5. For X,Y ∈ Mn,m, X is said to be multivariate group majorized by Y (written as
X ≺mg Y), if X =

∑k
i=1 cigiY where gi ∈ G, ci ≥ 0,

∑k
i=1 ci = 1 and G is a subgroup of O(Rn).

By using the method as in the proof of Theorem 2.1, we prove an equivalent condition for
linear preservers of multivariate group majorization. To do this, we need some preliminaries.
For every A = (ai j) ∈ Mn,m, we associate the vector vec(A) ∈ Rnm defined by

vec(A) = [a11, . . . , an1, a12, . . . , an2, . . . , a1m, . . . , anm]t.

Let B = {E11, . . . , En1, E12, . . . , En2, . . . , E1m, . . . , Enm} be the standard basis of Mn,m and [T ]B
be representation of T with respect to B. Then

[T ]B =


B11 B12 · · · B1m

B21 B22 · · · B2m
...

...
...

Bm1 Bm2 · · · Bmm

 , (2.2)

where each Bi j ∈ Mn and vec(T (X)) = [T ]B (vec(X)). Let A ∈ Mn,m, X ∈ Mm,p, B ∈ Mp,q and
C ∈ Mn,q. By [5, Lemma 4.3.1], AXB = C if and only if

vec(C) = vec(AXB) = (Bt ⊗ A)vec(X). (2.3)

To verify linear preservers of multivariate group majorization, we deal with x ∼mg y means
x ≺mg y and y ≺mg x. The following theorem gives an equivalent condition for ∼mg.

Theorem 2.6. Let X,Y ∈ Mn,m. Then X ∼mg Y if and only if X = gY for some g ∈ G.



Soleymani, Salemi/ Wavelets and Linear Algebra 10(2) (2023) 71- 80 75

Proof. By the definition of multivariate group majorization, X ≺mg Y means that X =
∑k

t=1 αtgtY .
Since gt ∈ O(Rn),

‖X‖2 = ‖

k∑
t=1

αtgtY‖2 ≤
k∑

t=1

αt‖gtY‖2 =

k∑
t=1

αt‖Y‖2 = ‖Y‖2. (2.4)

On the other hand, Y ≺mg X and then ‖Y‖ ≤ ‖X‖. Hence, equality holds in (2.4). If αt′ , 0 for
some 1 ≤ t′ ≤ k, then

‖αt′gt′Y + Z‖2 = ‖αt′gt′Y‖2 + ‖Z‖2,

where Z =
∑k

t=1,t,t′ αtgtY . Since equality holds in triangle inequality(cauchy-schwarz inequality),
Z = λαt′gt′Y for some λ ∈ R. Therefore, X = (1+λ)αt′gt′Y . Since ‖X‖2 = ‖Y‖2, (1+λ)αt′ = 1.

The following theorem states an equivalent condition for matrix representations of linear op-
erator T : Mn,m → Mn,m which preserves multivariate group majorization, where G is a finite
subgroup of O(Rn).

Theorem 2.7. Let G be a finite subgroup of O(Rn), T : Mn,m → Mn,m be a linear operator and
[T ]B be as (3.1). Then T preserves ∼mg if and only if for every g ∈ G there exists a matrix ĝ ∈ G
such that ĝBi j = Bi jg for each i = 1, . . . , n and j = 1, . . . ,m.

Proof. For necessity, fix g ∈ G. We define ∆min(T, g) := ming′∈G min{‖(g′Bi j − Bi jg)ek‖2 : ‖(g′Bi j −

Bi jg)ek‖2 , 0, 1 ≤ k ≤ n, 1 ≤ i ≤ n, 1 ≤ j ≤ m} and ∆min(T, g) = 0 when there exists g′ ∈ G such
that g′Bi j − Bi jg = 0 for every 1 ≤ i ≤ n, 1 ≤ j ≤ m.
On the contrary let ∆min(T, g) , 0. Define

X =

m∑
j=1

n∑
i=1

λn( j−1)+(i−1)Ei j ∈ Mn,m, where λ ∈

(
0,

∆min(T, g)
2mn‖T‖2

)
.

Since T preserves ∼mg, for every g ∈ G there exists ĝ ∈ G such that T (gX) = ĝT (X). By (2.3),

[T ]B(Im ⊗ g)vec(X) = (Im ⊗ ĝ)[T ]Bvec(X). (2.5)

Now, by the definition of X,
m∑

j=1

n∑
i=1

λn( j−1)+(i−1) ([T ]B(Im ⊗ g) − (Im ⊗ ĝ)[T ]B
)

vec(Ei j) = 0. (2.6)

Since ∆min(T, g) , 0, there exists i, j such that (g′Bi j − Bi jg)ek , 0 and this means(
[T ]B(Im ⊗ g) − (Im ⊗ ĝ)[T ]B

)
vec(Ei j) , 0. (2.7)

Let Ets be the first element of ordered basis B such that (2.7) holds. By the definition of ∆min(T, g)
and (2.6),

∆min(T, g) ≤ ‖
(
[T ]B(Im ⊗ g) − (Im ⊗ ĝ)[T ]B

)
vec(Ets)‖2

≤

n∑
i=t+1

λi−t‖
(
(Im ⊗ ĝ)[T ]B − [T ]B(Im ⊗ g)

)
vec(Eis)‖2

+

m∑
j=s+1

n∑
i=1

λn( j−s)+(i−t)‖
(
(Im ⊗ ĝ)[T ]B − [T ]B(Im ⊗ g)

)
vec(Ei j)‖2
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Therefore ∆min(T, g) ≤ 2mnλ‖T‖2 a contradiction. Hence ∆min(T, g) = 0 and by the definition of
∆min(T, g) the assertion holds.
conversely, for every g ∈ G there exists a matrix ĝ ∈ G such that ĝBi j = Bi jg, for each i = 1, . . . , n
and j = 1, . . . ,m. Then (2.5) holds and T is a linear preserver of ∼mg.

Now by using this argument, we are able to improve some results of [6]. For that, we need to
prove two lemmas.

Lemma 2.8. Let n ≥ 3. If there exists a permutation Π ∈ Pn such that ΠP = PΠ for all P ∈ Pn,
then Π = In.

Proof. Assume if possible Π , In. Then there exists i , j such that Πei = e j. Since n ≥ 3, there
exists k ∈ {1, . . . , n} \ {i, j}. Choose P ∈ Pn such that Pei = ei and Pe j = ek. Then ΠPei = e j and
PΠei = ek and hence ΠP , PΠ, a contradiction.

Lemma 2.9. Let T1,T2 be n × n matrices and for every Π ∈ Pn there exists Π̂ ∈ Pn such that
Π̂Ti = TiΠ, i = 1, 2. Then T1 and T2 have the same structure, which means that one of the
following statements hold.
(a) T1 = aet,T2 = bet for some a, b ∈ Rn.
(b) There exists P ∈ Pn such that T1 = α1P + β1Jn and T2 = α2P + β2Jn for some α1, α2, β1, β2 ∈ R.

Proof. By Theorem 1.1, T1 and T2 are linear preservers of majorization and By Theorem 1.2, T1

and T2 should satisfy (a) or (b). If T1 and T2 satisfy (a), the result holds. Without loss of generality,
assume that T1 = α1P + β1Jn. By assumptions, PΠ = Π̂P and Π̂T2 = T2Π. This implies that for
every Π ∈ Pn

PΠPtT2 = T2Π. (2.8)

Let T2 satisfies (a). Then T2 = aet, for some a ∈ Rn. Since T2 has the same columns, T2Π = T2,
for every Π ∈ Pn. Hence by (2.8), for every Π ∈ Pn, ΠT2 = T2. This means that T2 has the
same rows and hence T2 = βJn, the result holds. Now, let T2 satisfies (b). We consider two cases:
Let n = 2. Since P2 = {I2, J2 − I2}, T2 = αI2 + βJ2 = −α(J2 − I2) + (α + β)J2 and the result
holds. Now, let n ≥ 3 and T2 = α2Q + β2Jn for some α2 , 0 and Q ∈ Pn. By equation (2.8), we
obtain that PΠPtQ = QΠ, and hence Π(PtQ) = (PtQ)Π for every Π ∈ Pn. Then the permutation
PtQ commutes with all permutations Π ∈ Pn. Since n ≥ 3, by Lemma 2.8, PtQ = In and hence
T2(x) = α2Px + β2Jnx.

In the following, we will prove [6, Theorem 2] as a result of Theorem 2.7.

Corollary 2.10. Let T be a linear operator on Mn,m. The following are equivalent:
(i) T preserves multivariate majorization.
(ii) T preserves directional majorization.
(iii) T X ≺d TY whenever X ≺m Y .
(iv) T X ∼d TY whenever X ∼d Y .
(v) T X ∼m TY whenever X ∼m Y .
(vi) One of the following holds :

(a) There exist R, S ∈ Mm and P ∈ Pn such that T (X) = PXR + JnXS .
(b) There exist A1, . . . , Am ∈ Mn,m such that T (X) =

∑m
j=1 tr(x j)A j.
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Proof. By the definition of multivariate majorization and directional majorization, (i) → (ii) and
(ii)→ (iii) are clear. Theorem 2.4 implies (iii)→ (iv) and (iv)→ (v).
(v) −→ (vi) By Theorem 2.7 for every P ∈ Pn there exist Q ∈ Pn such that Bi jP = QBi j for
each i, j. By Lemma 2.9 two cases may occur. First, let there exists Π ∈ Pn such that Bi j =

αi jΠ+βi jJn, αi j, βi j ∈ R. Then [T ]B = A⊗Π+ B⊗ Jn, where A = (αi j), B = (βi j). By equation 2.3,
T (X) = ΠXR + JnXS , where R = At, S = Bt. Now, let there exist bi j ∈ Rn such that Bi j = bi jet ∈

Mn. So T (X) =
(∑m

j=1 b1 jetx j| · · · |
∑m

j=1 bm jetx j

)
and hence T (X) =

∑m
j=1 tr(x j)A j, where A j :=(

b1 j| · · · |bm j

)
.

(vi) −→ (i) Let P ∈ Pn. Then for every Q ∈ Pn, there exists Q′ ∈ Pn such that PQ = Q′P and
JnQ = Q′Jn. Therefore, for every doubly stochastic matrix D, There exists a doubly stochastic
matrix D′ such that T (DX) = D′T (X) and hence (vi)(a) implies (i). Also, tr(x j) = tr(Dx j), for
every doubly stochastic matrix D. Then (vi)(b) implies (i).

By Theorem 2.7 and the above argument, we are able to prove [4, Theorem 4.3], [7, Theorem
2.5] and [8, Theorems 3.4, 3.6].

3. Reflective majorization

In this section, we define a class of group majorization on O(R2) and characterize its linear
preservers. Let Bθ ∈ M2 be the reflection about the line passing through the origin that forms an
angle θ

2 with the positive x-axis in O(R2). In other words

Bθ =

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

)
. (3.1)

It is easy to see that Bθ ∈ O(R2) and Gθ = {Bθ, I} is a subgroup of O(R2).

Definition 3.1. The group majorization induced by Gθ is called reflective majorization associated
to θ and denoted by ≺θ. On the other word, x ≺θ y means that x = λy + (1 − λ)Bθy for some
λ ∈ (0, 1).

The reflective majorization associated to
π

2
is the same as majorization. Figure 1 shows the

difference between majorization and a reflective majorization.
In the following theorem, we will characterize linear preservers of reflective majorization. The

linear preservers of ≺ π
2

must be as same as Theorem 1.2.

Theorem 3.2. Let θ , kπ. If A is a linear preserver of ≺θ, then A has one of the following form:

(i) A =

(
α cos( θ2 ) α sin( θ2 )
β cos( θ2 ) β sin( θ2 )

)
for some α, β ∈ R.

(ii) A =

(
α β
β α − 2β cot(θ)

)
for some α, β ∈ R.
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Figure 1: majorization and reflective majorization associated to 3π
2

Proof. By Theorem 2.7, for every g ∈ Gθ there exists a matrix ĝ ∈ Gθ such that ĝA = Ag. If g = I,
we can choose ĝ = I. Now assume that

g =

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

)
, A =

(
a b
c d

)
.

Since Gθ = {Bθ, I}, two cases can be occurred:
Case1) Assume that ĝ = I. So(

a b
c d

) (
cos(θ) sin(θ)
sin(θ) − cos(θ)

)
=

(
a b
c d

)
.

It means that (a, b), (c, d) are placed on the line passing through the origin that forms an angle θ
2

with the positive x-axis. Therefore there exists α, β such that

(a b) =

(
α cos

(
θ

2

)
α sin

(
θ

2

))
, (c d) =

(
β cos

(
θ

2

)
β sin

(
θ

2

))
Case2) Now, let BθA = ABθ. So

a cos θ + c sin θ = a cos θ + b sin θ (3.2)
b cos θ + d sin θ = a sin θ − b cos θ (3.3)
a sin θ − c cos θ = c cos θ + d sin θ (3.4)
b sin θ − d cos θ = c sin θ − d cos θ (3.5)

Since θ , kπ, equation (3.2) implies that b = c and equation (3.4) implies that d = a− 2c cot θ.
Therefore A has form (ii).

For θ = (2k + 1)π, we have B(2k+1)π =

(
−1 0
0 1

)
and the linear preservers of ≺(2k+1)π has the

form

A =

(
0 α
0 β

)
or A =

(
α 0
0 β

)
.
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Also the linear preservers of reflective majorization associated to 2kπ has the form

A =

(
α 0
β 0

)
or A =

(
α 0
0 β

)
.

By choosing β = γ sin(θ) in the Theorem 3.2 (ii), we know that a linear preservers of reflective
majorization associated to θ has one of the following forms:

A =

(
α cos( θ2 ) α sin( θ2 )
β cos( θ2 ) β sin( θ2 )

)
, A = αI + β

(
0 sin θ

sin θ − 2 cos θ

)
, α, β ∈ R.

In the proof of Theorem 3.2, we see that if A = ABθ then A has form (i) and if BθA = ABθ then
A has form (ii). By this fact, we have the following theorem that is used to characterize linear
preservers of matrix majorization associated to θ.

Theorem 3.3. Let B1, B2 be linear preservers of reflective majorization associated to θ with the
property that for every g ∈ Bθ there exist ĝ ∈ Bθ such that ĝB1 = B1g and ĝB2 = B2g. Then

B1 =

(
α1 cos( θ2 ) α1 sin( θ2 )
β1 cos( θ2 ) β1 sin( θ2 )

)
, B2 =

(
α2 cos( θ2 ) α2 sin( θ2 )
β2 cos( θ2 ) β2 sin( θ2 )

)
for some α1, β1, α2, β2 ∈ R or

B1 = λ1I + γ1

(
0 sin θ

sin θ − 2 cos θ

)
, B2 = λ2I + γ2

(
0 sin θ

sin θ − 2 cos θ

)
for some λ1, γ1, λ2, γ2 ∈ R.

In the following, we will characterize linear preservers of multivariare reflective majorization
associated to θ on 2 × m matrices. This is an application of Theorem 2.7.

Theorem 3.4. Let T be an operator on M2,m. Then T is a linear preserver of reflective matrix
majorization associated to θ if and only if it has one of the following form:

(i) T (X) =

(
cos( θ2 ) sin( θ2 )

0 0

)
XA +

(
0 0

cos( θ2 ) sin( θ2 )

)
XB, for some A, B ∈ Mm.

(ii) T (X) = XC +

(
0 sin(θ)

sin(θ) −2 cos(θ)

)
XD, for some C,D ∈ Mm.

Proof. Let [T ]B be the representation of T with respect to standard basis of M2,m. Then [T ]B is
the block matrix as in (3.1) and each Bi j is 2× 2 matrix. Theorem 2.7 implies that for every g ∈ Bθ

there exists ĝ ∈ Bθ such that Bθg = ĝBθ for every i, j = 1, . . . ,m. By Theorem 3.3 two cases can
be occurred.

Case1) If Bi j =

(
αi j cos( θ2 ) αi j sin( θ2 )
βi j cos( θ2 ) βi j sin( θ2 )

)
for every i, j = 1, . . . ,m, then

[T ]B =


C11 · · · C1m
...

...
Cm1 · · · Cmm

 +


D11 · · · D1m
...

...
Dm1 · · · Dmm

 ,
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where Ci j = αi j

(
cos( θ2 ) sin( θ2 )

0 0

)
and Di j = αi j

(
0 0

cos( θ2 ) sin( θ2 )

)
. Therefore

vec(T (X)) =

(
A ⊗

(
cos( θ2 ) sin( θ2 )

0 0

)
+ B ⊗

(
0 0

cos( θ2 ) sin( θ2 )

))
vec(X),

where A = (αi j), B = (βi j) ∈ Mm. By equation (2.3), we have

T (X) =

(
cos( θ2 ) sin( θ2 )

0 0

)
XAt +

(
0 0

cos( θ2 ) sin( θ2 )

)
XBt.

Case2) If Bi j = λi jI + γi j

(
0 sin θ

sin θ − 2 cos θ

)
for every i, j = 1, . . . ,m, then

vec(T (X)) =

(
Λ ⊗ I2 + Γ ⊗

(
0 sin(θ)

sin(θ) −2 cos(θ)

))
(vec(X))

where Λ = (λi j),Γ = (γi j) ∈ Mm. By the same argument as in above, we have T (X) = IXC +(
0 sin(θ)

sin(θ) −2 cos(θ)

)
XD, where C = Λt and D = Γt.
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