

A study on the continuity of some classes of E- \mathbb{Q} -convex functions

Zohreh Heydarpour^a, Masoumeh Aghajani^{b,*}

^aDepartment of Mathematics, Payame Noor University (PNU), P. O. Box 19395-4697, Tehran, Iran. ^bDepartment of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, P.O. Box 16785-136, Tehran, Iran.

ARTICLE INFO

Article history: Received 29 May 2023 Accepted 14 October 2023 Available online 22 November 2023 Communicated by Ali Armandnejad

Abstract

As a generalization of convexity, *E*-convexity has been defined and studied in many publications. In this study, we recall the class of *E*- \mathbb{Q} -convex sets, *E*- \mathbb{Q} -convex and *E*-additive functions and proved some properties of *E*- \mathbb{Q} -convex functions. Also, we develop the classical theorems of Jensen and Bernstein-Doetsch on *E*- \mathbb{Q} -convex functions when vector spaces are over the rational numbers \mathbb{Q} .

© (2023) Wavelets and Linear Algebra

Keywords:

Bernstein-Doetsch theorem, *E*-convex set, Approximately *E*-convex function, E-Q-convex function, *E*-Q-convex set.

2010 MSC: 26B25, 26A51, 39B72.

http://doi.org/10.22072/wala.2023.2003060.1422© (2023) Wavelets and Linear Algebra

^{*}Corresponding author

Email addresses: zohreh.heydarpour@pnu.ac.ir (Zohreh Heydarpour), m.aghajani@sru.ac.ir (Masoumeh Aghajani)

1. Introduction

The concept of convexity and \mathbb{Q} -convexity are important for various branches of mathematical sciences. A question that received much interest is the following one: under what conditions a \mathbb{Q} -convex function is continuous? In 1905, Jensen proved that every \mathbb{Q} -convex function $f : (a, b) \longrightarrow \mathbb{R}$ which is bounded on interval (a, b) is continuous. In 1915, F. Bernstein and Doetsch proved that every \mathbb{Q} -convex function $f : (a, b) \longrightarrow \mathbb{R}$ which is bounded on some open subinterval of (a, b) is continuous. Results concerning various conditions for representation and continuity of \mathbb{Q} -convex functions and their generalizations have been obtained in a number of papers (see '[1, 3, 4, 6, 11]').

Let us fix our notation and terminology. As we know a subset U of a vector space X is \mathbb{Q} -convex if $\lambda x + (1 - \lambda)y \in U$ for each $x, y \in U$ and $\lambda \in (0, 1) \cap \mathbb{Q}$ also U is \mathbb{Q} -radial at a point $a \in U$ if for every $x \in X$ there exists a number $r_x > 0$ such that $a + rx \in U$ whenever $r \in \mathbb{Q} \cap (0, r_x)$. A subset B of a vector space X is said to be balanced if $\alpha B \subseteq B$ for every $\alpha \in \mathbb{F}$ with $|\alpha| \leq 1$. Also B is said to be symmetric if B = -B.

E-convexity is one of the generalizations of convexity, introduced by Youness '[16]'. However, as pointed out by Yang '[15]', some results and proofs in Youness '[16]' seems to be incorrect. Youness '[17]' also discussed optimality criteria for E-convex programming problems. Subsequently, some mathematicians have investigated various aspects of this concept and its generalization, and the reader can refer to the papers for more information see '[3, 4, 6, 7, 11, 12, 13, 17]'. Let *X* be a vector space. A set $U \subseteq X$ is said to be an *E*-convex if there exists a map $E : X \to X$ such that $\lambda E(x) + (1 - \lambda)E(y) \in U$ for each $x, y \in U$ and $0 \leq \lambda \leq 1$. Clearly, every convex set is *E*-convex if *E* is the identity map. A function $\varphi : X \to \mathbb{R}$ is called an *E*-convex on a set $U \subset X$ if there exists a map $E : X \to X$ such that U is an *E*-convex, also for each $x, y \in U$ and $0 \leq \lambda \leq 1$, $\varphi(\lambda E(x) + (1 - \lambda)E(y)) \leq \lambda \varphi(E(x)) + (1 - \lambda)\varphi(E(y))$. It is clear that every convex function is *E*-convex if *E* is the identity map.

In the present paper, we recall the class of E- \mathbb{Q} -convex sets, E- \mathbb{Q} -convex and E-additive functions. Then, we extend Theorem 1.1 by M. Kuczma '[5]', for an E-additive function.

M. Kuczma '[5]' proved the following theorem.

Theorem 1.1. Let X be a vector space over \mathbb{Q} , Y be a subspace of X and $S \subseteq X$ be a \mathbb{Q} -convex and \mathbb{Q} -radial at 0. If $\varphi : Y \to \mathbb{R}$ is an additive function with $\varphi \mid_{Y \cap S} \leq 1$, then there exists an additive function $\phi : X \to \mathbb{R}$ such that $\phi \mid_{Y} = \varphi$ and $\phi \mid_{S} \leq 1$.

Recently, Mirzapour et al. '[10]' proved the classical theorems of Jensen, Bernstein-Doetsch, Blumberg-Sierpinski, and Ostrowski for E- \mathbb{Q} -convex function when vector spaces are over the real numbers \mathbb{R} .

Inspired by the above research, we extend such theorems over \mathbb{Q} and prove them.

2. Main results

Throughout this paper, X is a vector space and all vector spaces are over the field \mathbb{Q} of rational numbers. The notion of an *E*- \mathbb{Q} -convex is a natural generalization of that of an *E*-convex arising

under the replacement of the field of scalars \mathbb{R} by \mathbb{Q} .

Definition 2.1. A subset *U* of *X* is an *E*- \mathbb{Q} -convex if there exists a map $E : X \to X$ such that $\lambda E(x) + (1 - \lambda)E(y) \in U$ for all $x, y \in U$ and every rational number $0 \leq \lambda \leq 1$.

Definition 2.2. A function $\varphi : X \to \mathbb{R}$ is said to be an *E*-additive if there exists a map $E : X \to X$ such that $\varphi(E(x) + E(y)) = \varphi(E(x)) + \varphi(E(y))$, for all $x, y \in X$.

Definition 2.3. A function $\varphi : X \to \mathbb{R}$ is said to be an *E*- \mathbb{Q} -convex on a set $U \subset X$ if there exists a map $E : X \to X$ such that *U* is an *E*- \mathbb{Q} -convex also for all $x, y \in U$ and every rational number $0 \leq \lambda \leq 1, \varphi(\lambda E(x) + (1 - \lambda)E(y)) \leq \lambda \varphi(E(x)) + (1 - \lambda)\varphi(E(y)).$

It is evident that each *E*-convex function is an E- \mathbb{Q} -convex function, but the converse is not true.

Example 2.4. Let $f, E : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = E(x) = \begin{cases} 0 & x \in \mathbb{Q} \\ 2 & x \notin \mathbb{Q}. \end{cases}$$

Then, f is E- \mathbb{Q} -convex on \mathbb{R} but it is not E-convex.

Definition 2.5. '[5]' A subset *A* of *X* is a convex cone if for all $x, y \in A$ and the real number $\lambda > 0$, $\lambda x + y \in A$.

Lemma 2.6. Let $E : X \to X$ be a map such that E(K) is a convex cone of K for every subspace $K \subseteq X$ and let Y and Z be two subspaces of X with $Z = Y + \mathbb{Q}z_0$ for some $z_0 \in X \setminus Y$. If $S \subseteq X$ is a \mathbb{Q} -convex and \mathbb{Q} -radial at 0, $E(Z) \subseteq E(Y) + \mathbb{Q}z_0$ and $\varphi : Y \to \mathbb{R}$ is an E-additive function with $\varphi \mid_{Y \cap S} \leq 1$, then there exists an E-additive function $\phi : Z \to \mathbb{R}$ such that $\phi \mid_{Y = \varphi} q$ and $\phi \mid_{E(Z) \cap S} \leq 1$.

Proof. Consider the following sets $A, B \subset Y \times \mathbb{Q}$:

$$A := \left\{ (y, r) : y \in Y, r > 0, \frac{E(y) - z_0}{r} \in S \right\},$$
$$B := \left\{ (y, r) : y \in Y, r > 0, \frac{E(y) + z_0}{r} \in S \right\}.$$

Since *S* is Q-radial at 0, there exists a rational number r > 0 such that $\frac{E(y) \pm z_0}{r} \in S$. Consequently $A, B \neq \emptyset$. Put

$$a = \sup \{\varphi(E(y)) - r : (y, r) \in A\}$$
$$b = \inf \{r - \varphi(E(y)) : (y, r) \in B\}.$$

We show that $a \le b$ and therefore $-\infty < a \le b < \infty$. Assume towards a contradiction that a > b. Then there exist $(y, r) \in A$ and $(y', s) \in B$ such that $\varphi(E(y)) - r > b$ and $\varphi(E(y)) - r > s - \varphi(E(y'))$. So $\varphi(E(y)) + \varphi(E(y')) > r + s$. On the other hand, we have

$$\frac{E(y) + E(y')}{r+s} = \frac{r}{r+s} \frac{E(y) - z_0}{r} + \frac{s}{r+s} \frac{E(y') + z_0}{s}.$$

Hence

$$\frac{E(y) + E(y')}{r+s} \in S.$$

Since E(Y) is a convex cone of Y, we get $\frac{E(y) + E(y')}{r+s} \in Y \cap S$, and so

$$\varphi\left(\frac{E(y)+E(y')}{r+s}\right) \leqslant 1.$$

Since $r + s \in \mathbb{Q}$ and φ is an *E*-additive function, $\varphi(E(y)) + \varphi(E(y')) \leq r + s$. This is a contradiction, so $a \leq b$.

Set $m \in [a, b]$ and define $\phi : Z \to \mathbb{R}$ by

$$\phi(z) = \begin{cases} \varphi(z) & z \in Y \\ m & z = z_0 \\ \varphi(y) + qm & z \in Y + qz_0. \end{cases}$$

We claim that $\phi \mid_{E(Z) \cap S} \leq 1$. Let $E(z) \in E(Z) \cap S$. By the hypothesis, $E(z) = E(y) + qz_0$ for some $y \in Y$ and $q \in \mathbb{Q}$. If q > 0, then

$$E(z) = \frac{\frac{1}{q}E(y) + z_0}{\frac{1}{q}} \in S.$$

Since $E(Y)$ is a cone, $\frac{1}{q}E(y) = E(y')$ for some $y' \in Y$, and so $\left(y', \frac{1}{q}\right) \in B.$ Thus
 $\frac{1}{q} - \varphi(E(y')) \ge b > m \Rightarrow 1 - q\varphi(E(y')) > qm$
 $\Rightarrow q\varphi(E(y')) + qm < 1$
 $\Rightarrow \varphi(E(y)) + qm < 1$
 $\Rightarrow \varphi(E(y)) + qm < 1$
 $\Rightarrow \phi(E(y) + qz_0) < 1.$

If q < 0, then

$$\frac{-\frac{1}{q}E(y) - z_0}{-\frac{1}{q}} \in S$$

A similar argument shows that

$$\varphi\left(\frac{-E(y)}{q}\right) + \frac{1}{q} \leqslant a < m,$$

and so $\varphi(E(y)) + qm < 1$. This establishes the claim.

Theorem 2.7. Let $E : X \to X$ be a map such that, E(K) is a convex cone of K for every subspace $K \subseteq X$ and let Y and Z be two subspaces of X with $Z = Y + \mathbb{Q}z_0$ for some $z_0 \in X \setminus Y$. If $S \subseteq X$ is \mathbb{Q} -convex and \mathbb{Q} -radial at 0, $E(Z) \subseteq E(Y) + \mathbb{Q}z_0$ and $\varphi : Y \to \mathbb{R}$ is an E-additive function with $\varphi \mid_{E(Y)\cap S} \leq 1$, then there exists an E-additive function $\phi : X \to \mathbb{R}$ such that $\phi \mid_{Y} = \varphi$ and $\phi \mid_{E(X)\cap S} \leq 1$.

Proof. Let *F* be the set of all pairs (Y', φ') , where *Y'* is a subspace of *Y*, and $\varphi' : Y' \to \mathbb{R}$ is an *E*-additive function with $\varphi'|_{Y} = \varphi$ and $\varphi'|_{E(Y')\cap S} \leq 1$. It is immediately that we obtain a nonempty poset, indeed $(Y, \varphi) \in F$. Suppose that $F_0 = \{(Y_\alpha, \varphi_\alpha)\}_{\alpha \in I}$ is a chain in *F*. Then we set $\tilde{Y} := \bigcup_{\alpha \in I} Y_\alpha$ and define $\tilde{\varphi} : \tilde{Y} \to \mathbb{R}$ by $\tilde{\varphi}|_{Y_\alpha} = \varphi_\alpha$ for all $\alpha \in I$. Then $(\tilde{Y}, \tilde{\varphi}) \in F$ and $(\tilde{Y}, \tilde{\varphi})$ is clearly an upper bound for the chain F_0 . By Zorns lemma, *F* has a maximal element, say (Y_{max}, φ_{max}) . Assume towards a contradiction that $Y_{max} \neq X$. Then choose any $y_0 \in X \setminus Y_{max}$ and put $Y = Y_{max} + \mathbb{Q}y_0$. So *Y* satisfies the condition of the preceding lemma with Y_{max} for *Y* and *Y* for *Z*. Then there exists $\psi : Y \to \mathbb{R}$ such that $\psi|_{Y_{max}} = \varphi_{max}$ and $\psi|_{E(Y_{max})\cap S} \leq 1$. Thus $(Y, \psi) \in F$ and this contradicts the maximality claimed for (Y_{max}, φ_{max}) . Hence $Y_{max} = X$ and so by taking $\phi = \varphi_{max}$ the result follows.

Proposition 2.8. Let *S* be a \mathbb{Q} -convex subset of \mathbb{R} and \mathbb{Q} -radial at some point in *S*. Then *S* is an interval or there exists a discontinuous *E*-additive function $\phi : \mathbb{R} \to \mathbb{R}$ such that ϕ is upper bounded on *S*, where $E : \mathbb{R} \to \mathbb{R}$ is a function.

Proof. By [5, Theorem 2], *S* is an interval or there exists a discontinuous additive function ϕ : $\mathbb{R} \to \mathbb{R}$ where ϕ is upper bounded on *S*. Since every additive function is *E*-additive, the proof is completed.

Similar to the above theorem, by [5, Theorem 3], the following theorem is now immediate.

Theorem 2.9. Let $S \subseteq \mathbb{R}^n$ be a \mathbb{Q} -convex set and \mathbb{Q} -radial at some point in S. Then either S contains a ball or there exists a discontinuous E-additive function $\phi : \mathbb{R}^n \to \mathbb{R}$ such that ϕ is upper bounded on S, where $E : \mathbb{R}^n \to \mathbb{R}^n$ is a function.

Theorem 2.10. Let $E : \mathbb{R}^n \to \mathbb{R}^n$ be an open map with $0 \in E(\mathbb{R}^n)$, $S \subseteq E(\Delta)$ where Δ is an open, E- \mathbb{Q} -convex subset of \mathbb{R}^n . Suppose that $\varphi : \mathbb{R}^n \to \mathbb{R}$ is an E- \mathbb{Q} -convex function and upper bounded on S. If S contains a ball, then φ is continuous at every interior point of S.

Proof. Suppose that $E(x_0)$ is an interior point of *S*. We can find an open neighborhood *W* of 0 such that $E(x_0) + (W \cap E(\mathbb{R}^n)) \subset S$. Put $W \cap E(\mathbb{R}^n) := E(V)$. We can assume that E(V) is symmetric and balanced. Since φ is upper bounded on *S*, there exists $M \in \mathbb{R}$ with $\varphi(y) < \varphi(E(x_0)) + M$ for any $y \in E(x_0) + E(V)$. Take $\varepsilon > 0$. Then there exists $\delta \in (0, 1) \cap \mathbb{Q}$, $\delta M < \varepsilon$. For any $E(z) \in E(V)$, we have

$$E(x_0) + \delta E(z) = (1 - \delta)E(x_0) + \delta(E(x_0) + E(z)).$$

Since φ is an *E*-Q-convex function, we obtain

$$\varphi(E(x_0) + \delta E(z)) \leqslant (1 - \delta)\varphi(E(x_0)) + \delta\varphi(E(x_0) + E(z)).$$

So

$$\varphi(E(x_0) + \delta E(z)) - \varphi(E(x_0)) \leq \delta\left(\varphi(E(x_0) + E(z)) - \varphi(E(x_0))\right).$$
(2.1)

By replacing E(z) with -E(z), we have

$$\varphi(E(x_0) - \delta E(z)) - \varphi(E(x_0)) \leq \delta\left(\varphi(E(x_0) - E(z)) - \varphi(E(x_0))\right).$$
(2.2)

On the other hand,

$$E(x_0) = \frac{1}{2} \left[E(x_0) + \delta E(z) + E(x_0) - \delta E(z) \right],$$

and since E(V) is symmetric and balanced, we obtain

$$\varphi(E(x_0)) \leqslant \frac{\varphi(E(x_0) + \delta E(z))}{2} + \frac{\varphi(E(x_0) - \delta E(z))}{2}$$

Therefore

$$\varphi(E(x_0)) - \varphi(E(x_0) + \delta E(z)) \leqslant \varphi(E(x_0) - \delta E(z)) - \varphi(E(x_0)).$$
(2.3)

By '(2.2)' and '(2.3)' we have

$$\varphi(E(x_0)) - \varphi(E(x_0) + \delta E(z)) \leqslant \delta(\varphi(E(x_0) - E(z)) - \varphi(E(x_0))).$$
(2.4)

Now, by (2.1)' and (2.4)' we have

$$\begin{aligned} |\varphi(E(x_0)) - \varphi(E(x_0) + \delta E(z))| \\ &\leqslant \delta max \{\varphi(E(x_0) + E(z)) - \varphi(E(x_0)), \varphi(E(x_0) - E(z)) - \varphi(E(x_0))\} \\ &< \frac{\varepsilon}{M}.M = \varepsilon. \end{aligned}$$

Therefore φ is continuous at $E(x_0)$.

Corollary 2.11. Let $E : \mathbb{R}^n \to \mathbb{R}^n$ be an open map with $0 \in E(\mathbb{R}^n)$, $\Delta \subseteq \mathbb{R}^n$ be open, E-Q-convex. Suppose that $\varphi : \Delta \to \mathbb{R}$ is an E-Q-convex function and upper bounded on $E(\Delta)$. Then φ is continuous on $E(\Delta)$.

Proof. If we take $S = E(\Delta)$ in the previous theorem, then the result follows.

Theorem 2.12. Let $E : \mathbb{R}^n \to \mathbb{R}^n$ be an open map with $0 \in E(\mathbb{R}^n)$, $\Delta \subset \mathbb{R}^n$ be open and E-Q-convex set and let $E(\mathbb{R}^n)$ be a convex cone. Suppose that $T \subseteq E(\Delta)$ and $\varphi : \Delta \to \mathbb{R}$ is an E-Q-convex function, and upper bounded on E(T). If φ is discontinuous on $E(\Delta)$, then there exists a discontinuous E-additive function $\psi : \mathbb{R}^n \to \mathbb{R}$ such that ψ is upper bounded on E(T).

Proof. Let $\varphi \mid_{E(T)} \leq M$ and $S = \{E(x) : x \in \Delta, \varphi(E(x)) < M\}$. It is easy to see that $E(T) \subseteq S$. Suppose that $E(x), E(y) \in S$ and $\lambda \in [0, 1] \cap \mathbb{Q}$. Then

$$\varphi(\lambda E(x) + (1 - \lambda)E(y)) \leq \lambda \varphi(E(x)) + (1 - \lambda)\varphi(E(y)) < M.$$

68

So *S* is Q-convex. Since φ is discontinuous, it follows from Corollary 2.11 that *S* contains no ball. Now, we show that *S* is Q-radial at some point $E(x_0) \in S$. Let $x \in \mathbb{R}^n$. Since *E* is open and $E(\mathbb{R}^n)$ is convex cone with nonempty interior, $\mathbb{R}^n = E(\mathbb{R}^n) - E(\mathbb{R}^n)$. Then there exist $y_1, y_2 \in \mathbb{R}^n$, $x = E(y_1) - E(y_2)$. Also Δ is open, thus there exists a rational number $\gamma > 0$ such that $E(x_0) + \gamma(E(y_1) - E(y_2)) \in E(\Delta)$. Then

$$\varphi(E(x_0) + \gamma(E(y_1) - E(y_2))) = \varphi\left[\left(1 - \frac{\alpha}{\gamma}\right)E(x_0) + \frac{\alpha}{\gamma}(E(x_0) + \gamma(E(y_1) - E(y_2)))\right]$$
$$\leqslant \left(1 - \frac{\alpha}{\gamma}\right)\varphi(E(x_0) + \frac{\alpha}{\gamma}\varphi\left[E(x_0) + \gamma((E(y_1) - E(y_2)))\right],$$

for any $\alpha \in (0, \gamma) \cap \mathbb{Q}$. So

$$\lim_{\alpha \to 0} \sup \varphi(E(x_0) + \gamma(E(y_1) - E(y_2))) \leq \varphi(E(x_0)) < M.$$

So for a small rational number α , $\varphi(E(x_0) + \alpha(E(y_1) - E(y_2))) < M$, hence *S* is Q-radial at $E(x_0)$. Since *S* contains no ball, we conclude from Theorem 2.9 that there is a discontinuous *E*-additive function $\psi : \mathbb{R}^n \to \mathbb{R}$ such that ψ is upper bounded on E(T).

References

- M. Aghajani and K. Nourouzi, The continuity of Q₊- homogeneous superadditive correspondences, J. Nonlinear Convex Anal., 16 (2015), 1899–1904.
- [2] X. Chen, Some properties of semi-*E*-convex functions, J. Math. Anal. Appl., 275(1) (2002), 251–262.
- [3] A. Hussain and A. Iqbal, Quasi strongly -convex functions with applications, *Non-linear Funct. Anal. Appl.*, 26 (2021), 1077–1089.
- [4] A. Iqbal, and I. Ahmad, Strong geodesic convex functions of order m, *Numer. Funct. Anal. Optim.*, **40** (2019), 1840–1846.
- [5] M.E. Kuczma, On discontinuous additive function, Fund. Math., 66 (1970), 383–392.
- [6] S.N. Majeed and M.I. Abd Al-Majeed, On convex functions, E-convex functions and their generalizations: applications to non-linear optimization problems, *Int. J. Pure Appl. Math.*, **116** (2017), 655–673.
- [7] S.N. Majeed, On strongly E-convex sets and strongly E-convex cone sets, J. AL-Qadisiyah Comput. Sci. Math., 11 (2019), 52–59.
- [8] G.G. Magaril-Ilyaev and V.M. Tikhomirov, *Convex Analysis: Theory and Applications*, AMS, Providence, R.I., Transl. of Math. Monographs, 2003.
- [9] M.R. Mehdi, On convex functions, J. London Math. Soc., 39 (1964), 321–326.
- [10] F. Mirzapour, A. Mirzapour and M. Meghdadi, Generalization of some important theorems to *E*-midconvex functions, *Appl. Math. Lett.*, **24**(8) (2011), 1384–1388.
- [11] P. Najmadi and M. Aghajani, Some families of sublinear correspondences, J. Appl. Anal., 25(1) (2019), 91–95.
- [12] W. Saleh, HermiteHadamard type inequality for (E, F)-convex functions and geodesic (E, F)-convex functions, *Rairo-Oper. Res.*, **56** (2022), 4181–4189.
- [13] M. Soleimani-damaneh, E-convexity and its generalizations, Int. J. Comput. Math., 88 (2011), 3335–3349.
- [14] Y.R. Syau and E.S. Lee, Some properties of *E*-convex functions, *Appl. Math. Lett.*, **18** (2005), 1074–1080.
- [15] X.M. Yang, *E*-convex sets, *E*-convex functions and *E*-convex programming, *J. Optim. Theory Appl.*, **109** (2001), 699–704.
- [16] E.A. Youness, *E*-convex functions and *E*-convex programming, *J. Optim. Theory Appl.*, **102**(2) (1999), 439–450.
- [17] E.A. Youness, Optimality criteria in E-convex programming, Chaos Solitons Fractals, 12 (2001), 1737–1745.
- [18] B.C. Joshi and Pankaj, Mathematical programs involving E-convex functions, *Scientific Bulletin. upb. ro.*, 83(2) (2011), 77–86.