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1. Introduction

The concept of convexity and Q-convexity are important for various branches of mathematical

sciences. A question that received much interest is the following one: under what conditions a Q-
convex function is continuous? In 1905, Jensen proved that every Q-convex function f : (a,b) —
R which is bounded on interval (a, b) is continuous. In 1915, F. Bernstein and Doetsch proved that
every Q-convex function f : (a,b) — R which is bounded above on some open subinterval
of (a, b) is continuous. Results concerning various conditions for representation and continuity
of (Q-convex functions and their generalizations have been obtained in a number of papers (see
‘1,3,4,6,11]).
Let us fix our notation and terminology. As we know a subset U of a vector space X is (Q-convex
if Ax+ (1 —A)ye U foreach x,y € U and 1 € (0,1) N Q also U is Q-radial at a point a € U if for
every x € X there exists a number r, > 0 such that a + rx € U whenever r € Q (0, r,). A subset
B of a vector space X is said to be balanced if @B C B for every a € F with | @ |[< 1. Also B is said
to be symmetric if B = —B.

E-convexity is one of the generalizations of convexity, introduced by Youness ‘[16]’. However,
as pointed out by Yang ‘[15]’, some results and proofs in Youness ‘[16]’ seems to be incorrect.
Youness ‘[17] also discussed optimality criteria for E-convex programming problems. Subse-
quently, some mathematicians have investigated various aspects of this concept and its generaliza-
tion, and the reader can refer to the papers for more information see ‘[3, 4, 6, 7, 11, 12, 13, 17]".
Let X be a vector space. A set U C X is said to be an E-convex if there existsamap E : X — X
such that AE(x) + (1 — )E(y) € U for each x,y € U and 0 < 1 < 1. Clearly, every convex set is
E-convex if E is the identity map. A function ¢ : X — R is called an E-convex on a set U C X if
there exists a map E : X — X such that U is an E-convex, also for each x,y € U and 0 < 4 < 1,
CAEXx) + (1 — DE(Y)) < Ap(E(x)) + (1 — De(E(y)). It is clear that every convex function is
E-convex if E is the identity map.

In the present paper, we recall the class of E-(Q-convex sets, E-(Q-convex and E-additive functions.
Then, we extend Theorem 1.1 by M. Kuczma ‘[5]’, for an E-additive function.

M. Kuczma ‘[5]” proved the following theorem.

Theorem 1.1. Let X be a vector space over Q, Y be a subspace of X and S C X be a Q-convex and
Q-radial at 0. If ¢ : Y — R is an additive function with ¢ |yns < 1, then there exists an additive
function ¢ : X — R such that ¢ |y=p and ¢ |s< 1.

Recently, Mirzapour et al.‘[10] proved the classical theorems of Jensen, Bernstein-Doetsch,
Blumberg-Sierpinski, and Ostrowski for E-Q-convex function when vector spaces are over the real
numbers R.

Inspired by the above research, we extend such theorems over QQ and prove them.

2. Main results

Throughout this paper, X is a vector space and all vector spaces are over the field Q of rational
numbers. The notion of an E-(Q-convex is a natural generalization of that of an E-convex arising
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under the replacement of the field of scalars R by Q.

Definition 2.1. A subset U of X is an E-Q-convex if there exists a map E : X — X such that
AE(x) + (1 — D)E(y) € U for all x,y € U and every rational number 0 < 4 < 1.

Definition 2.2. A function ¢ : X — R is said to be an E-additive if there existsamap E : X — X
such that p(E(x) + E(y)) = ¢(E(x)) + ¢(E(y)), for all x,y € X.

Definition 2.3. A function ¢ : X — R is said to be an E-(Q-convex on a set U C X if there exists
amap E : X — X such that U is an E-Q-convex also for all x,y € U and every rational number
0< A< 1L e(AE(X) + (1 = DEY)) < Ap(E(x)) + (1 = De(E()).

It is evident that each E-convex function is an E-(Q-convex function, but the converse is not
true.

Example 2.4. Let f, E : R — R be defined by

ro=E0={3 158

Then, f is E-Q-convex on R but it is not E-convex.

Definition 2.5. ‘[5]" A subset A of X is a convex cone if for all x,y € A and the real number A > 0,
Ax+y€A.

Lemma 2.6. Let E : X — X be a map such that E(K) is a convex cone of K for every subspace
K C X and let Y and Z be two subspaces of X with Z = Y + Qzq for some zo € X \ Y. If S C X is
a Q-convex and Q-radial at 0, E(Z) C E(Y) + Qzo and ¢ : Y — R is an E-additive function with
¢ lyns < 1, then there exists an E-additive function ¢ : Z — R such that ¢ |y= ¢ and ¢ |gz)ns < 1.

Proof. Consider the following sets A, B C Y X Q:

E —
A::{(y,r):er,r>0,MeS},

r

E
B::{(y,r):er,r>0,MeS}.

r

E(y) +
M € §. Consequently
r

Since S is Q-radial at O, there exists a rational number » > 0 such that
A, B # (. Put

a=sup{p(E(y)—r:(y,r) €A}

b =inf{r—g@(E(®)) : (y,r) € B}.
We show that a < b and therefore —0 < a < b < co. Assume towards a contradiction that a > b.
Then there exist (y,r) € A and (y’, s) € B such that o(E(y)) —r > b and o(E(y)) —r > s — o(E(Y")).
So ¢(E(y)) + ¢(E(y")) > r + s. On the other hand, we have

E(y)+E(y'): r E()’)-Zo+ s EQ)+zo
r+s r+s r r+s s ’
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Hence £ E(v
+
W+EQ) ¢
r+s
E(y)+ EQ
Since E(Y) is a convex cone of Y, we get M €Y NS, andso
r+s

‘P(E(y) + E(y’)) <l

r+s

Since r+ s € Q and ¢ is an E-additive function, ¢(E(y)) + ¢(E(y")) < r+s. This is a contradiction,
soa < b.
Set m € [a, b] and define ¢ : Z — R by

¢(z) z€Y
d)=q m 7=72
) +gm zeY +qz.

We claim that ¢ |gz)ns < 1. Let E(z) € E(Z) N S. By the hypothesis, E(z) = E(y) + gz for some
yeYand g e Q. If g > 0, then

1
5E()’) + 20
E(z) = f €s.
q

1 1
Since E(Y) is a cone, —E(y) = E(y’) for some y’ € Y, and so (y’, —) € B. Thus
q q

1
; ~PEC) Zb>m= 1= gp(EQ) > gm

= qp(E(Y')) +qgm < 1
= p(gEQ)) +gm < 1
= @(E(y)) + gm < 1
= $(E(Y) +qz0) < 1.

If ¢ < 0, then
1
——E(y) - 20
q—l e S.
q
A similar argument shows that
-E 1
go( (Y))+— <a<m,
q q

and so ¢(E(y)) + gm < 1. This establishes the claim. O]
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Theorem 2.7. Let E : X — X be a map such that, E(K) is a convex cone of K for every subspace
K C X and let Y and Z be two subspaces of X with Z = Y + Qg for some zo € X \ Y. If S C X
is Q-convex and Q-radial at 0, E(Z) C E(Y) + Qzp and ¢ : Y — R is an E-additive function
with ¢ |gyns< 1, then there exists an E-additive function ¢ : X — R such that ¢ |y= ¢ and
¢ lecons < 1.

Proof. Let F be the set of all pairs (Y, ¢’), where Y’ is a subspace of ¥, and ¢’ : ¥/ — R is an
E-additive function with ¢’ |[y= ¢ and ¢’ |gyHns < 1. It is immediately that we obtain a nonempty
poset, indeed (Y, ¢) € F. Suppose that Fo = {(Y,, ¢a)}eer 1s a chain in F. Then we set V= Uy Ye
and define 3 : ¥ - R by & |y,= ¢, for all @ € I. Then (Y,p) € F and (Y, Q) is clearly an upper
bound for the chain F,. By Zorns lemma, F has a maximal element, say (¥,ux; @max). Assume
towards a contradiction that Y,,,, # X. Then choose any yy € X \ Y, and put ¥ = Y,0c + Qyp.
So Y satisfies the condition of the preceding lemma with Y,,,, for Y and Y for Z. Then there exists
Y Y — R such that Yly,, = @mer and Ylgy,, ons < 1. Thus (Y,¢) € F and this contradicts

the maximality claimed for (¥,ux, ¥max)- Hence Y., = X and so by taking ¢ = ¢, the result
follows. O

Proposition 2.8. Let S be a Q-convex subset of R and Q-radial at some point in S. Then S is
an interval or there exists a discontinuous E-additive function ¢ : R — R such that ¢ is upper
bounded on S, where E : R — R is a function.

Proof. By [5, Theorem 2], S is an interval or there exists a discontinuous additive function ¢ :
R — R where ¢ is upper bounded on S. Since every additive function is E-additive, the proof is
completed. [

Similar to the above theorem, by [5, Theorem 3], the following theorem is now immediate.

Theorem 2.9. Let S C R” be a Q-convex set and Q-radial at some point in S. Then either S
contains a ball or there exists a discontinuous E-additive function ¢ : R" — R such that ¢ is
upper bounded on S, where E : R" — R" is a function.

Theorem 2.10. Let E : R" — R" be an open map with 0 € E(R"), § C E(A) where A is an
open, E-Q-convex subset of R" . Suppose that ¢ : R" — R is an E-Q-convex function and upper
bounded on S. If S contains a ball, then ¢ is continuous at every interior point of S .

Proof. Suppose that E(x) is an interior point of §. We can find an open neighborhood W of 0 such
that E(xo) + (W N ER") c §. Put Wn E(R") := E(V) . We can assume that E(V) is symmetric
and balanced. Since ¢ is upper bounded on S, there exists M € R with ¢(y) < ¢(E(xp)) + M for
any y € E(xo) + E(V). Take & > 0. Then there exists 6 € (0,1) N Q, M < &. For any E(z) € E(V),
we have

E(x0) + 0E(z) = (1 = 6)E(xo) + 6(E(x0) + E(2)).

Since ¢ is an E-QQ-convex function, we obtain

P(E(xo) + 0E(2)) < (1 = 0)¢(E(x0)) + 6p(E(xo) + E(2)).
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So
@(E(xo) + 0E(2)) — p(E(x0)) < 6 (p(E(x0) + E(2)) — ¢(E(x0))) - (2.1)
By replacing E(z) with —E(z), we have
@(E(xp) = 0E(2)) — p(E(x0)) < 6 (p(E(x0) — E(2)) — ¢(E(x0))) - (2.2)
On the other hand,
E(xo) = % [E(xo) + 0E(2) + E(x0) — 6E(2)],

and since E(V) is symmetric and balanced, we obtain

()D(E()Co)) < QD(E(XO) + 0E(2)) + QD(E(X()) - 6E(Z)).

2 2
Therefore
©(E(x0)) — ¢(E(xo) + 0E(2)) < @(E(x0) — 0E(2)) — @(E(Xp)). (2.3)
By ‘(2.2)” and ‘(2.3)” we have
@(E(x0)) — ¢(E(xo) + 0E(2)) < 6((E(xo) — E(2)) — ¢(E(X0))). (2.4)

Now, by ‘(2.1)” and ‘(2.4)’ we have
| p(E(x0)) — ¢(E(x0) + 0E(2)) |
< omax{p(E(xo) + E(2)) — ¢(E(x0)), 9(E(x0) — E(2)) — p(E(x0))}
< E.M =&.
M

Therefore ¢ is continuous at E(x). O

Corollary 2.11. Let E : R" — R" be an open map with 0 € E(R"), A C R" be open, E-Q-convex.
Suppose that ¢ : A — R is an E-Q-convex function and upper bounded on E(A). Then ¢ is
continuous on E(A).

Proof. If we take S = E(A) in the previous theorem, then the result follows. L]

Theorem 2.12. Let E : R" — R" be an open map with 0 € E(R"), A ¢ R" be open and E-
Q-convex set and let E(R") be a convex cone. Suppose that T C E(A) and ¢ : A — R is an
E-Q-convex function, and upper bounded on E(T). If ¢ is discontinuous on E(A), then there exists
a discontinuous E-additive function  : R" — R such that ¥ is upper bounded on E(T).

Proof. Let ¢ |gy< M and S = {E(x) : x € A, o(E(x)) < M}. It is easy to see that E(T) C S.
Suppose that E(x), E(y) € S and A € [0, 1] N Q. Then

P(AE(x) + (1 = DE(Y)) < Ap(E(X)) + (1 - De(E() < M.
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So § is Q-convex. Since ¢ is discontinuous, it follows from Corollary 2.11 that S contains no
ball. Now, we show that S is Q-radial at some point E(xy) € S. Let x € R". Since E is open
and E(R") is convex cone with nonempty interior, R" = E(R") — E(R"). Then there exist y;,y, €
R", x = E(y;) — E(y,). Also A is open, thus there exists a rational number y > 0 such that
E(xo) +y(E(y1) — E(y2)) € E(A). Then

P(E(xo) + Y(E(y1) — E(y2))) =¢ [(1 - %) E(xo) + %(E(XO) +y(E() — E(y2)

< (1 - %) O(E(xo) + %cp [E(x0) + Y(E(v) — E))].
for any a € (0,y) N Q. So
lim supg(E(xo) + YE) = EG2) < ¢(E() < M.

So for a small rational number «, p(E(x) + a(E(y;) — E(y2))) < M, hence S is QQ-radial at E(x).
Since S contains no ball, we conclude from Theorem 2.9 that there is a discontinuous E-additive
function ¢ : R” — R such that ¢ is upper bounded on E(T). ]

References

[1] M. Aghajani and K. Nourouzi, The continuity of Q.- homogeneous superadditive correspondences, J. Nonlinear
Convex Anal., 16 (2015), 1899-1904.

[2] X. Chen, Some properties of semi-E-convex functions, J. Math. Anal. Appl., 275(1) (2002), 251-262.

[3] A. Hussain and A. Igbal, Quasi strongly -convex functions with applications, Non-linear Funct. Anal. Appl., 26
(2021), 1077-1089.

[4] A.Igbal, and I. Ahmad, Strong geodesic convex functions of order m, Numer. Funct. Anal. Optim., 40 (2019),
1840-1846.

[5] M.E. Kuczma, On discontinuous additive function, Fund. Math., 66 (1970), 383-392.

[6] S.N. Majeed and M.I. Abd Al-Majeed, On convex functions, E-convex functions and their generalizations: appli-
cations to non-linear optimization problems, Int. J. Pure Appl. Math., 116 (2017), 655-673.

[7] S.N. Majeed, On strongly E-convex sets and strongly E-convex cone sets, J. AL-Qadisiyah Comput. Sci. Math.,
11 (2019), 52-59.

[8] G.G. Magaril-llyaev and V.M. Tikhomirov, Convex Analysis: Theory and Applications, AMS, Providence, R.I.,
Transl. of Math. Monographs, 2003.

[9] M.R. Mehdi, On convex functions, J. London Math. Soc., 39 (1964), 321-326.

[10] F. Mirzapour, A. Mirzapour and M. Meghdadi, Generalization of some important theorems to E-midconvex
functions, Appl. Math. Lett., 24(8) (2011), 1384—1388.

[11] P. Najmadi and M. Aghajani, Some families of sublinear correspondences, J. Appl. Anal., 25(1) (2019), 91-95.

[12] W. Saleh, HermiteHadamard type inequality for (E, F)-convex functions and geodesic (E, F)-convex functions,
Rairo-Oper. Res., 56 (2022), 4181-4189.

[13] M. Soleimani-damaneh, E-convexity and its generalizations, Int. J. Comput. Math., 88 (2011), 3335-3349.

[14] Y.R. Syau and E.S. Lee, Some properties of E-convex functions, Appl. Math. Lett., 18 (2005), 1074-1080.

[15] X.M. Yang, E-convex sets, E-convex functions and E-convex programming, J. Optim. Theory Appl., 109 (2001),
699-704.

[16] E.A. Youness, E-convex functions and E-convex programming, J. Optim. Theory Appl., 102(2) (1999), 439—450.

[17] E.A. Youness, Optimality criteria in E-convex programming, Chaos Solitons Fractals, 12 (2001), 1737-1745.

[18] B.C. Joshi and Pankaj, Mathematical programs involving E-convex functions, Scientific Bulletin. upb. ro., 83(2)
(2011), 77-86.



	Introduction
	Main results

