Hermite-Hadamard Type Inequalities for Sub-Topical Functions

Mohammad Hossein Daryaei ${ }^{\text {a, }, *}$
${ }^{a}$ Department of Applied Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran.

Article Info

Article history:
Received 19 April 2023
Accepted 20 August 2023
Available online 22 November 2023
Communicated by Abbas Salemi

Keywords:
Abstract convexity, Hermite-Hadamard type inequalities, sub-topical function.

2010 MSC:
26A48, 26D07, 26B25.

Abstract

In this paper, we study Hermite-Hadamard type inequalities for sub-topical (increasing and plus sub-homogeneous) functions in the framework of abstract convexity. Some examples of such inequalities for functions defined on special domains are given. © (2023) Wavelets and Linear Algebra

[^0]
1. Introduction

Let f be a convex function defined on the segment $[a, b]$ of the real line. Then the following inequality holds:

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x \leq \frac{1}{2}(f(a)+f(b)) . \tag{1.1}
\end{equation*}
$$

These inequalities are well known as the Hermite-Hadamard inequalities (see [4]). There are many generalizations of these inequalities for classes of non-convex functions such as quasiconvex functions [8, 9], p-functions [8], ICAR (increasing and convex-along-rays) functions [3], IPH (increasing and positively homogeneous) functions [1] and \mathbb{B}-convex and \mathbb{B}^{-1}-convex functions [11].
For instance [9], if $f:[0,1] \longrightarrow \mathbb{R}$ is an arbitrary nonnegative quasiconvex function, then for any $u \in(0,1)$ one has

$$
\begin{equation*}
f(u) \leq \frac{1}{\min (u, 1-u)} \int_{0}^{1} f(x) \mathrm{d} x . \tag{1.2}
\end{equation*}
$$

If

$$
D=\left\{(x, y) \in \mathbb{R}_{+}^{2} \mid 0 \leq x \leq a, 0 \leq \frac{y}{x} \leq v\right\}
$$

that $a>0$ and $v>0$, then for each ICAR function f we have:

$$
f\left(\frac{a}{3}, \frac{v a}{3}\right) \leq \frac{1}{A(D)} \int_{D} f(x, y) \mathrm{d} x \mathrm{~d} y
$$

where $A(D)$ is the area of D.
The class of topical functions is another class of abstract convex functions that some HermiteHadamard inequalities for these functions were presented in [2]. For example, if $f: D \longrightarrow \mathbb{R}$ is a topical function that

$$
D=\left\{(x, y) \in \mathbb{R}^{2} \mid a \leq x \leq a+\delta, 0 \leq y \leq x-a\right\},
$$

where $a, \delta \in \mathbb{R}$ and $\delta \geq 3$, then

$$
f\left(\frac{1}{3} \delta+a, \frac{1}{3} \delta\right) \leq \frac{2}{\delta^{2}} \int_{D} f(x, y) \mathrm{d} x \mathrm{~d} y .
$$

The class of sub-topical functions is a natural extension of topical functions. These functions were introduced and examined in [5, 6, 7, 10]. In the present paper some Hermite-Hadamard type inequalities for sub-topical functions are given. Examples for particular domains are also presented.
This article has the following structure: In Section 2, we provide some preliminaries, definitions and results relative to sub-topical functions. In Section 3, we consider Hermite-Hadamard type inequalities for the class of sub-topical functions. Finally, some examples of such inequalities for functions defined on \mathbb{R}^{2} are given in Section 4.

2. Preliminaries

We assume that \mathbb{R}^{n} is equipped with coordinate-wise order relation. A function $f: \mathbb{R}^{n} \longrightarrow$ $\overline{\mathbb{R}}=[-\infty,+\infty]$ is said to be increasing if $f(x) \leq f(y)$ for each $x, y \in \mathbb{R}^{n}$ such that $x \leq y$. The function f is called plus sub-homogeneous if $f(x+\lambda \mathbf{1}) \leq f(x)+\lambda$ for all $x \in \mathbb{R}^{n}$ and all $\lambda \geq 0$, where $\mathbf{1}=(1, \ldots, 1) \in \mathbb{R}^{n}$. It is easy to see that f is plus sub-homogeneous if and only if $f(x+\lambda \mathbf{1}) \geq f(x)+\lambda$ for all $x \in \mathbb{R}^{n}$ and all $\lambda \leq 0$. The following definitions and results can be found in $[9,10]$.
Definition 2.1. A function $f: \mathbb{R}^{n} \longrightarrow \overline{\mathbb{R}}$ is called sub-topical if it is increasing and plus subhomogeneous.
Remark 2.2. A function $f: \mathbb{R}^{n} \longrightarrow \overline{\mathbb{R}}$ is called topical if it is increasing and $f(x+\lambda \mathbf{1})=f(x)+\lambda$ for all $x \in \mathbb{R}^{n}$ and all $\lambda \in \mathbb{R}$. It is clear that any topical function is sub-topical.
Lemma 2.3. Let $f: \mathbb{R}^{n} \longrightarrow \overline{\mathbb{R}}$ be a sub-topical function.
(i) If there exists $x \in \mathbb{R}^{n}$ such that $f(x)=+\infty$, then $f \equiv+\infty$.
(ii) If there exists $x \in \mathbb{R}^{n}$ such that $f(x)=-\infty$, then $f \equiv-\infty$.

It follows from Lemma 2.3 that a sub-topical function is either finite (i.e., finite-valued at each $x \in \mathbb{R}^{n}$) or identically $+\infty$ or $-\infty$. Now, we present the following simple examples.
Example 2.4. Let $a \in \mathbb{R}^{n}$ be such that $a \geq \mathbf{0}$ and $\langle a, \mathbf{1}\rangle \leq 1$. Then the linear function

$$
f(x)=\langle a, x\rangle, \quad\left(x \in \mathbb{R}^{n}\right),
$$

is sub-topical.
Example 2.5. Functions of the form

$$
f(x)=\frac{1}{\theta} \ln \left(\sum_{i=1}^{n} e^{\left\langle a_{i}, x\right\rangle}\right), \quad\left(x \in \mathbb{R}^{n}\right),
$$

where $a_{i} \in \mathbb{R}^{n}, a_{i} \geq \mathbf{0}, i=1,2, \ldots, n$, and $\theta \geq \max _{1 \leq i \leq n}\left\langle a_{i}, \mathbf{1}\right\rangle$, are sub-topical. Indeed, since the functions ln and exp are increasing, it is clear that the function f is increasing. To see that f is plus sub-homogeneous, let $x \in \mathbb{R}^{n}$ and $\lambda \geq 0$. Then

$$
\begin{aligned}
f(x+\lambda \mathbf{1}) & =\frac{1}{\theta} \ln \left(\sum_{i=1}^{n} e^{\left\langle a_{i}, x+\lambda \mathbf{1}\right\rangle}\right) \\
& =\frac{1}{\theta} \ln \left(\sum_{i=1}^{n} e^{\left\langle a_{i}, x\right\rangle} e^{\lambda\left\langle a_{i}, \mathbf{1}\right\rangle}\right) \\
& \leq \frac{1}{\theta} \ln \left(e^{\lambda \theta} \sum_{i=1}^{n} e^{\left\langle a_{i}, x\right\rangle}\right) \\
& =\frac{1}{\theta}\left(\ln \left(e^{\lambda \theta}\right)+\ln \left(\sum_{i=1}^{n} e^{\left\langle a_{i}, x\right\rangle}\right)\right) \\
& =\lambda+\frac{1}{\theta} \ln \left(\sum_{i=1}^{n} e^{\left\langle a_{i}, x\right\rangle}\right) \\
& =\lambda+f(x) .
\end{aligned}
$$

Example 2.6. Let $\left\{f_{i}\right\}_{1 \leq i \leq k}$ be a set of real valued sub-topical functions. Put

$$
f(x)=\min \left\{f_{1}(x), \ldots, f_{k}(x)\right\}, \quad F(x)=\max \left\{f_{1}(x), \ldots, f_{k}(x)\right\}, \quad\left(x \in \mathbb{R}^{n}\right)
$$

Then the functions f and F are sub-topical.
Let us mention some properties of the set $\boldsymbol{\Gamma}$ of all sub-topical functions $f: \mathbb{R}^{n} \longrightarrow \overline{\mathbb{R}}$.
(1) We have $\boldsymbol{\Gamma}+\mathbb{R}=\boldsymbol{\Gamma}$, that is, if $f \in \boldsymbol{\Gamma}$ and $c \in \mathbb{R}$, then $f+c \in \boldsymbol{\Gamma}$.
(2) $\boldsymbol{\Gamma}$ is a convex set.
(3) $\boldsymbol{\Gamma}$ is a complete lattice, that is, if $\left\{f_{\beta}\right\}_{\beta \in B}$ is an arbitrary family of elements of $\boldsymbol{\Gamma}$ and

$$
f(x)=\sup _{\beta \in B} f_{\beta}(x), \quad\left(x \in \mathbb{R}^{n}\right),
$$

then the function f belongs to $\boldsymbol{\Gamma}$.
(4) $\boldsymbol{\Gamma}$ is closed under the pointwise convergence of functions.

Remark 2.7. Every finite sub-topical function f is continuous on \mathbb{R}^{n}. Indeed, let $\left\{x_{k}\right\} \subset \mathbb{R}^{n}, x \in \mathbb{R}^{n}$, $x_{k} \longrightarrow x$ and $\epsilon>0$. Then, for sufficiently large k we have $x-\epsilon \mathbf{1} \leq x_{k} \leq x+\epsilon \mathbf{1}$, whence, since f is increasing and plus sub-homogeneous, we obtain

$$
f(x)-\epsilon \leq f(x-\epsilon \mathbf{1}) \leq f\left(x_{k}\right) \leq f(x+\epsilon \mathbf{1}) \leq f(x)+\epsilon .
$$

These inequalities imply the continuity of f at x.
Now, we recall some definitions from abstract convexity. Consider a set X and a set H of functions $h: X \longrightarrow \overline{\mathbb{R}}$. The function $f: X \longrightarrow \overline{\mathbb{R}}$ is called abstract convex with respect to H (or H-convex) if there exists a subset U of H such that

$$
f(x)=\sup _{h \in U} h(x), \quad(x \in X) .
$$

The set H is called the set of elementary functions. Consider the function $\varphi: \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R} \longrightarrow \mathbb{R}$ defined by

$$
\varphi(x, y, \alpha)=\min _{1 \leq i \leq n}\left\{\alpha, x_{i}+y_{i}\right\}, \quad\left(x, y \in \mathbb{R}^{n}, \alpha \in \mathbb{R}\right) .
$$

Let $(y, \alpha) \in \mathbb{R}^{n} \times \mathbb{R}$ be arbitrary. Denote by $\varphi_{(y, \alpha)}$ the function defined on \mathbb{R}^{n} by the formula $\varphi_{(y, \alpha)}(x)=\varphi(x, y, \alpha)$. It is clear that $\varphi_{(y, \alpha)}$ is a sub-topical function on \mathbb{R}^{n}. Let $X_{\varphi}=\left\{\varphi_{(y, \alpha)} \mid y \in\right.$ $\left.\mathbb{R}^{n}, \alpha \in \mathbb{R}\right\}$, then it is known that any function f defined on \mathbb{R}^{n} is sub-topical if and only if f is X_{φ}-convex. It is also known that the function $f: \mathbb{R}^{n} \longrightarrow \overline{\mathbb{R}}$ is sub-topical if and only if

$$
\begin{equation*}
f(x) \geq \varphi_{(-y, \alpha)}(x)+f(y+\alpha \mathbf{1})-\alpha, \quad \forall x, y \in \mathbb{R}^{n}, \forall \alpha \in \mathbb{R} . \tag{2.1}
\end{equation*}
$$

Formula (2.1) implies the following statement.
Proposition 2.8. Let f be a sub-topical function defined on $\mathbb{R}^{n}, U \subset \mathbb{R}^{n}, V \subset \mathbb{R}$ such that $0 \in V$, and $\Delta=U \times V$. Then the function

$$
f_{\Delta}(x)=\sup _{(y, \alpha) \in \Delta}\left(\varphi_{(-y, \alpha)}(x)+f(y+\alpha \mathbf{1})-\alpha\right), \quad\left(x \in \mathbb{R}^{n}\right)
$$

is sub-topical and it possesses the properties:
(i) $f_{\Delta}(x) \leq f(x)$ for all $x \in \mathbb{R}^{n}$.
(ii) $f_{\Delta}(x)=f(x)$ for all $x \in U$.

Proof. Since the function $\varphi_{(-y, \alpha)}(x)+f(y+\alpha \mathbf{1})-\alpha$ is sub-topical for any $(y, \alpha) \in \Delta$, and since the pointwise supremum of a family of sub-topical functions is sub-topical, so the function f_{Δ} is sub-topical.
According to Equation (2.1), It is clear that $f_{\Delta}(x) \leq f(x)$ for all $x \in \mathbb{R}^{n}$.
Now, let $x \in U$. Since $0 \in V$, so $(x, 0) \in \Delta$. Then

$$
f_{\Delta}(x) \geq \varphi_{(-x, 0)}(x)+f(x+0 \times \mathbf{1})-0=f(x) .
$$

This implies that $f_{\Delta}(x)=f(x)$.

3. Hermite-Hadamard Type Inequalities

Let $D \subset \mathbb{R}^{n}$ be a closed domain, that is, D is a bounded set such that $\operatorname{cl}(\operatorname{int} D)=D$. Let $Q(D)$ be the set of all points $(y, \alpha) \in D \times \mathbb{R}$ such that

$$
\frac{1}{A(D)} \int_{D} \varphi_{(-y, \alpha)}(x) \mathrm{d} x=1,
$$

where $A(D)=\int_{D} \mathrm{~d} x$.
Proposition 3.1. Assume that the set $Q(D)$ is nonempty and let f be a sub-topical function. Then the following inequality holds:

$$
\begin{equation*}
\sup _{(y, \alpha) \in D}(f(y+\alpha \mathbf{1})-\alpha) \leq \frac{1}{A(D)} \int_{D} f(x) \mathrm{d} x-1 . \tag{3.1}
\end{equation*}
$$

Proof. Since f is sub-topical, it follows from (2.1) that

$$
\varphi_{(-y, \alpha)}(x)+f(y+\alpha \mathbf{1})-\alpha \leq f(x), \quad \forall x, y \in D, \forall \alpha \in \mathbb{R} .
$$

Let $(y, \alpha) \in Q(D)$. It follows from the definition of $Q(D)$ that

$$
A(D)(1+f(y+\alpha \mathbf{1})-\alpha)=\int_{D}\left(\varphi_{(-y, \alpha)}(x)+f(y+\alpha \mathbf{1})-\alpha\right) \mathrm{d} x \leq \int_{D} f(x) \mathrm{d} x .
$$

Therefore

$$
f(y+\alpha \mathbf{1})+1-\alpha \leq \frac{1}{A(D)} \int_{D} f(x) \mathrm{d} x .
$$

This completes the proof.
Remark 3.2. For each $(y, \alpha) \in Q(D)$ we have also the following inequality, which is weaker than (3.1)

$$
\begin{equation*}
f(y+\alpha \mathbf{1})+1-\alpha \leq \frac{1}{A(D)} \int_{D} f(x) \mathrm{d} x . \tag{3.2}
\end{equation*}
$$

Note that if $f(x)=\varphi_{(-y, \alpha)}(x)$, then in (3.2) the equality holds. Indeed,

$$
\varphi_{(-y, \alpha)}(y+\alpha \mathbf{1})+1-\alpha=\alpha+1-\alpha=1=\frac{1}{A(D)} \int_{D} \varphi_{(-y, \alpha)}(x) \mathrm{d} x .
$$

Remark 3.3. We can generalize the inequality from the right-hand side of (1.1). Indeed, let f be a sub-topical function and $D \subset \mathbb{R}^{n}$ be a convex closed domain. By setting $\alpha=0$ in (2.1), we have $\varphi_{(-x, 0)}(y)+f(x) \leq f(y)$ for all $x, y \in D$. Now, let $y \in D$ be a minimal element of the set D (note that the point $y \in D$ is called a minimal point of the set D, if $x \in D$ and $x \leq y$ implies that $x=y$). So we get the following inequality:

$$
\begin{equation*}
\int_{D} f(x) \mathrm{d} x \leq f(y) A(D)+\int_{D} \max _{1 \leq i \leq n}\left\{0, x_{i}-y_{i}\right\} \mathrm{d} x . \tag{3.3}
\end{equation*}
$$

In the following, we characterize the set $Q(D)$, that D is a bounded closed interval of \mathbb{R}. Let $D=[a, b]$, that $a<b, l=b-a$ and $y \in D$. Let $(y, \alpha) \in Q(D)$, then $a<y+\alpha$. Indeed, if $y+\alpha \leq a$, then $\varphi_{(-y, \alpha)}(x)=\alpha$ for all $x \in D$. So,

$$
1=\frac{1}{A(D)} \int_{D} \varphi_{(-y, \alpha)}(x) \mathrm{d} x=\frac{1}{b-a} \int_{a}^{b} \alpha \mathrm{~d} x=\frac{1}{b-a}(b-a) \alpha=\alpha .
$$

We conclude that $y+1 \leq a$. But $a \leq y$, which yields $y+1 \leq y$, that is a contradiction. Hence $a<y+\alpha$.
Now, based on whether the point $y+\alpha$ belongs to the interval D or not, we consider two case:
case (i): $y+\alpha \geq b$.
In this case,

$$
\varphi_{(-y, \alpha)}(x)=x-y, \quad \forall x \in D .
$$

Then

$$
1=\frac{1}{b-a} \int_{a}^{b} \varphi_{(-y, \alpha)}(x) \mathrm{d} x=\frac{1}{b-a} \int_{a}^{b}(x-y) \mathrm{d} x=\frac{1}{2}(b+a)-y .
$$

So, $y=\frac{1}{2}(b+a)-1$. Since $a \leq y \leq b$, we conclude that $l \geq 2$. On the other hand, $y+\alpha \geq b$. This implies that $\alpha \geq \frac{1}{2} l+1$. It is easy to see that if $y=\frac{1}{2}(a+b)-1, l \geq 2$ and $\alpha \geq \frac{1}{2} l+1$, then $y \in D$, $y+\alpha \geq b$ and $\frac{1}{b-a} \int_{a}^{b} \varphi_{(-y, \alpha)}(x) \mathrm{d} x=1$, so $(y, \alpha) \in Q(D)$.
case (ii): $a<y+\alpha<b$.
We get

$$
\varphi_{(-y, \alpha)}(x)= \begin{cases}x-y, & a \leq x \leq y+\alpha \\ \alpha, & y+\alpha \leq x \leq b\end{cases}
$$

Then

$$
\begin{aligned}
1 & =\frac{1}{b-a} \int_{a}^{b} \varphi_{(-y, \alpha)}(x) \mathrm{d} x \\
& =\frac{1}{b-a}\left(\int_{a}^{y+\alpha}(x-y) \mathrm{d} x+\int_{y+\alpha}^{b} \alpha \mathrm{~d} x\right) \\
& =\frac{-1}{2(b-a)}\left(y^{2}+2(\alpha-a) y+\left(\alpha^{2}+a^{2}-2 \alpha b\right)\right)
\end{aligned}
$$

This implies that $\alpha>1$ and $y=a-\alpha+\sqrt{2 l(\alpha-1)}$. But $a \leq y \leq b$, so we must have $l>2$ and $l-\sqrt{l(l-2)} \leq \alpha \leq l+\sqrt{l(l-2)}$. Also, in this case $a<y+\alpha<b$. Therefore we get $\alpha<\frac{1}{2} l+1$.

Since $l>2$, it is easy to check that $\frac{1}{2} l+1<l+\sqrt{l(l-2)}$. Also $l>2$ implies that $\alpha>1$. Hence, in this case, $(y, \alpha) \in Q(D)$ if and only if $l>2, y=a-\alpha+\sqrt{2 l(\alpha-1)}$ and $l-\sqrt{l(l-2)} \leq \alpha<\frac{1}{2} l+1$. We have proved the following proposition.

Proposition 3.4. Let $D=[a, b]$ that $-\infty<a<b<\infty$, and $l=b-a$. We have the following assertions:
(i) $Q(D)=\emptyset$ if and only if $l<2$.
(ii) If $l=2$, then $Q(D)=\{(y, \alpha) \mid y=a, \alpha \geq 2\}$.
(iii) If $l>2$, then $Q(D)=\left\{(y, \alpha) \left\lvert\, y=\frac{1}{2}(a+b)-1\right., \alpha \geq \frac{1}{2} l+1\right\} \cup\{(y, \alpha) \mid y=a-\alpha+\sqrt{2 l(\alpha-1)}, l-$ $\left.\sqrt{l(l-2)} \leq \alpha<\frac{1}{2} l+1\right\}$.
Remark 3.5. Let f be a sub-topical function and consider the bounded closed interval $D=[a, b]$. If we set $y=a$, then by (3.3) we have

$$
\int_{a}^{b} f(x) \mathrm{d} x \leq f(a)(b-a)+\frac{1}{2}(b-a)^{2} .
$$

Now, we describe the set $Q(D)$, that D is a convex closed domain in \mathbb{R}^{2}. Let $(\bar{x}, \bar{y}) \in D$ and $\bar{\alpha} \in \mathbb{R}$. Consider the line $R=\left\{(x, y) \in \mathbb{R}^{2} \mid y=x+\gamma\right\}$, that $\gamma=\bar{y}-\bar{x}$. Set $S=\left\{(x, y) \in \mathbb{R}^{2} \mid\right.$ $x \geq \bar{x}+\bar{\alpha}, y \geq \bar{y}+\bar{\alpha}\}, S^{\prime}=\mathbb{R}^{2} \backslash \operatorname{int}(S), D_{1}=D \cap S, D_{2}=D \cap S^{\prime} \cap R^{+}$and $D_{3}=D \cap S^{\prime} \cap R^{-}$, that R^{+}and R^{-}are upper half-plane and lower half-plane defined by the line R, respectively; i.e., $R^{+}=\left\{(x, y) \in \mathbb{R}^{2} \mid y \geq x+\gamma\right\}$ and $R^{-}=\left\{(x, y) \in \mathbb{R}^{2} \mid y \leq x+\gamma\right\}$. Then we conclude that $D=D_{1} \cup D_{2} \cup D_{3}$ and $\operatorname{int}\left(D_{i}\right) \cap \operatorname{int}\left(D_{j}\right)=\emptyset$, for $i \neq j$. See Figure 1 .
Now, we define the function $g: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ by

$$
g(x, y)=\min \{\bar{\alpha}, x-\bar{x}, y-\bar{y}\}, \quad\left((x, y) \in \mathbb{R}^{2}\right)
$$

Then we conclude that

$$
g(x, y)= \begin{cases}\bar{\alpha}, & (x, y) \in D_{1}, \\ x-\bar{x}, & (x, y) \in D_{2}, \\ y-\bar{y}, & (x, y) \in D_{3} .\end{cases}
$$

Indeed, if $(x, y) \in D_{1}$, then $(x, y) \in D, x \geq \bar{x}+\bar{\alpha}$ and $y \geq \bar{y}+\bar{\alpha}$. So, $\bar{\alpha} \leq x-\bar{x}$ and $\bar{\alpha} \leq y-\bar{y}$. Therefore, we obtain that $g(x, y)=\bar{\alpha}$. If $(x, y) \in D_{2}$, then $(x, y) \in D, y \geq x+\gamma$ and $(x, y) \notin \operatorname{int}(S)$. Since $\gamma=\bar{y}-\bar{x}$, so

$$
\begin{equation*}
y-\bar{y} \geq x-\bar{x} . \tag{3.4}
\end{equation*}
$$

On the other hand, $(x, y) \notin \operatorname{int}(S)$, so we obtain that either $x \leq \bar{x}-\bar{\alpha}$ or $y \leq \bar{y}-\bar{\alpha}$. By using (3.4), in both cases we get $g(x, y)=x-\bar{x}$. If $(x, y) \in D_{3}$, by an argument similar to the previous case, we obtain that $g(x, y)=y-\bar{y}$.
In the sequel, for the convex closed domain $D \subset \mathbb{R}^{2}$, we need to define the following notations:

$$
x_{m}^{D}=\min _{(x, y) \in D} x, \quad x_{M}^{D}=\max _{(x, y) \in D} x,
$$

and

$$
y_{m}^{D}=\min _{(x, y) \in D} y, \quad y_{M}^{D}=\max _{(x, y) \in D} y .
$$

Figure 1: D is a convex closed domain in \mathbb{R}^{2}

Note that since D is a compact set and the functions x and y are continuous on D, these functions attain their minimum and maximum values on D. For example, $\left(x_{m}^{D}, y_{0}\right) \in D$, for some $y_{0} \in \mathbb{R}$.

Lemma 3.6. Let $((\bar{x}, \bar{y}), \bar{\alpha}) \in Q(D)$. Then $\bar{\alpha}>\min \left\{x_{m}^{D}-\bar{x}, y_{m}^{D}-\bar{y}\right\}$.
Proof. By contradiction, suppose that $\bar{\alpha} \leq \min \left\{x_{m}^{D}-\bar{x}, y_{m}^{D}-\bar{y}\right\}$. So, $\bar{\alpha} \leq x_{m}^{D}-\bar{x}$ and $\bar{\alpha} \leq y_{m}^{D}-\bar{y}$. By definition of x_{m}^{D} and y_{m}^{D}, we get

$$
\begin{equation*}
\bar{\alpha} \leq x-\bar{x} \quad \text { and } \quad \bar{\alpha} \leq y-\bar{y}, \quad \forall(x, y) \in D . \tag{3.5}
\end{equation*}
$$

This implies that $g(x, y)=\bar{\alpha}$ for all $(x, y) \in D$. Since $((\bar{x}, \bar{y}), \bar{\alpha}) \in Q(D)$, we have

$$
1=\frac{1}{A(D)} \int_{D} g(x, y) \mathrm{d} x \mathrm{~d} y=\frac{1}{A(D)} \int_{D} \bar{\alpha} \mathrm{~d} x \mathrm{~d} y=\frac{A(D)}{A(D)} \bar{\alpha}=\bar{\alpha}
$$

On the other hand, by setting $(x, y)=(\bar{x}, \bar{y})$ in (3.5), we obtain that $\bar{\alpha} \leq 0$, which is a contradiction. This completes the proof.

Remark 3.7. If we set

$$
\beta_{i}=\frac{A\left(D_{i}\right)}{A(D)}, \quad i=1,2,3
$$

then we have $0 \leq \beta_{i} \leq 1(i=1,2,3)$ and $\beta_{1}+\beta_{2}+\beta_{3}=1$. From Lemma 3.6, it is clear that if $((\bar{x}, \bar{y}), \bar{\alpha}) \in Q(D)$, then $\beta_{2}+\beta_{3}>0$.

In the following theorems, we characterize the set $Q(D)$, that $D \subset \mathbb{R}^{2}$ is a convex closed domain.
Note that for the set D, we assume that

$$
X_{D}=\frac{1}{A(D)} \int_{D} x \mathrm{~d} x \mathrm{~d} y \quad \text { and } \quad Y_{D}=\frac{1}{A(D)} \int_{D} y \mathrm{~d} x \mathrm{~d} y .
$$

Theorem 3.8. Let $((\bar{x}, \bar{y}), \bar{\alpha}) \in Q(D)$ and $\operatorname{set} \gamma=\bar{y}-\bar{x}$. Then we have

$$
\begin{equation*}
\left(\beta_{2}+\beta_{3}\right) \bar{x}=\beta_{1} \bar{\alpha}+\beta_{2} X_{D_{2}}+\beta_{3}\left(Y_{D_{3}}-\gamma\right)-1 . \tag{3.6}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
\frac{1}{A(D)} \int_{D} g(x, y) \mathrm{d} x \mathrm{~d} y & =\frac{1}{A(D)}\left(\int_{D_{1}} \bar{\alpha} \mathrm{~d} x \mathrm{~d} y+\int_{D_{2}}(x-\bar{x}) \mathrm{d} x \mathrm{~d} y+\int_{D_{3}}(y-\bar{y}) \mathrm{d} x \mathrm{~d} y\right) \\
& =\frac{1}{A(D)}\left(A\left(D_{1}\right) \bar{\alpha}+\int_{D_{2}} x \mathrm{~d} x \mathrm{~d} y-A\left(D_{2}\right) \bar{x}+\int_{D_{3}} y \mathrm{~d} x \mathrm{~d} y-A\left(D_{3}\right) \bar{y}\right) \\
& =\frac{1}{A(D)}\left(A\left(D_{1}\right) \bar{\alpha}+A\left(D_{2}\right) X_{D_{2}}-A\left(D_{2}\right) \bar{x}+A\left(D_{3}\right) Y_{D_{3}}-A\left(D_{3}\right) \bar{y}\right) \\
& =\beta_{1} \bar{\alpha}+\beta_{2} X_{D_{2}}-\left(\beta_{2}+\beta_{3}\right) \bar{x}+\beta_{3}\left(Y_{D_{3}}-\gamma\right) .
\end{aligned}
$$

But, $\frac{1}{A(D)} \int_{D} g(x, y) \mathrm{d} x \mathrm{~d} y=1$, so $\left(\beta_{2}+\beta_{3}\right) \bar{x}=\beta_{1} \bar{\alpha}+\beta_{2} X_{D_{2}}+\beta_{3}\left(Y_{D_{3}}-\gamma\right)-1$.
In the following, we present the converse of Theorem 3.8.
Theorem 3.9. Let $(\bar{x}, \bar{y}) \in D$ and set $\gamma=\bar{y}-\bar{x}$. Consider the line $R=\left\{(x, y) \in \mathbb{R}^{2} \mid y=x+\gamma\right\}$. Assume that $\bar{\alpha}>\min \left\{x_{m}^{D}-\bar{x}, y_{m}^{D}-\bar{y}\right\}$ is such that $\left(\beta_{2}+\beta_{3}\right) \bar{x}=\beta_{1} \bar{\alpha}+\beta_{2} X_{D_{2}}+\beta_{3}\left(Y_{D_{3}}-\gamma\right)-1$. Then $((\bar{x}, \bar{y}), \bar{\alpha}) \in Q(D)$.

Proof. By an argument similar to the proof of Theorem 3.8, we have

$$
\frac{1}{A(D)} \int_{D} g(x, y) \mathrm{d} x \mathrm{~d} y=\beta_{1} \bar{\alpha}+\beta_{2} X_{D_{2}}-\left(\beta_{2}+\beta_{3}\right) \bar{x}+\beta_{3}\left(Y_{D_{3}}-\gamma\right) .
$$

So by hypothesis, we get $\frac{1}{A(D)} \int_{D} g(x, y) \mathrm{d} x \mathrm{~d} y=1$, thus $((\bar{x}, \bar{y}), \bar{\alpha}) \in Q(D)$.
Based on that some of β_{i} may be zero or not, we can deduce some special cases from Theorem 3.9, that in the following we present these cases.

Corollary 3.10. Let $\gamma \in \mathbb{R}$ and set $\bar{x}=Y_{D}-\gamma-1$ and $\bar{y}=Y_{D}-1$. Let $D \subset R^{-}=\left\{(x, y) \in \mathbb{R}^{2} \mid y \leq\right.$ $x+\gamma\}$. If $(\bar{x}, \bar{y}) \in D$, then $((\bar{x}, \bar{y}), \bar{\alpha}) \in Q(D)$ for all $\bar{\alpha} \geq y_{M}^{D}-\bar{y}$.
Proof. Since $D \subset R^{-}$, we obtain that $\operatorname{int}\left(D_{2}\right)=\emptyset$. This implies that $\beta_{2}=0$. Let $\bar{\alpha} \geq y_{M}^{D}-\bar{y}$. So we get $\operatorname{int}\left(D_{1}\right)=\emptyset$ and therefore $\beta_{1}=0$. On the other hand, we have $\beta_{1}+\beta_{2}+\beta_{3}=1$. So $\beta_{3}=1$. Hence we obtain that $((\bar{x}, \bar{y}), \bar{\alpha})$ satisfies in Equation (3.6). Note that since $\operatorname{int}(D) \neq \emptyset$, we get $y_{M}^{D}>y_{m}^{D}$. This implies that $y_{M}^{D}-\bar{y}>\min \left\{x_{m}^{D}-\bar{x}, y_{m}^{D}-\bar{y}\right\}$. By Theorem 3.9, we deduce that $((\bar{x}, \bar{y}), \bar{\alpha}) \in Q(D)$.

The proof of the following corollary is similar to the Corollary 3.10, so we omit it.
Corollary 3.11. Let $\gamma \in \mathbb{R}$ and set $\bar{x}=X_{D}-1$ and $\bar{y}=X_{D}+\gamma-1$. Let $D \subset R^{+}=\left\{(x, y) \in \mathbb{R}^{2} \mid y \geq\right.$ $x+\gamma\}$. If $(\bar{x}, \bar{y}) \in D$, then $((\bar{x}, \bar{y}), \bar{\alpha}) \in Q(D)$ for all $\bar{\alpha} \geq x_{M}^{D}-\bar{x}$.

Corollary 3.12. Let $\gamma \in \mathbb{R}$ and assume the line $R=\left\{(x, y) \in \mathbb{R}^{2} \mid y=x+\gamma\right\}$ is such that $\operatorname{int}\left(D_{i}\right) \neq \emptyset$ for $i=2,3$. Set $\bar{x}=\beta_{2} X_{D_{2}}+\beta_{3}\left(Y_{D_{3}}-\gamma\right)-1$ and $\bar{y}=\bar{x}+\gamma . \operatorname{If}(\bar{x}, \bar{y}) \in D$, then we have $((\bar{x}, \bar{y}), \bar{\alpha}) \in Q(D)$ for all $\bar{\alpha} \geq \min \left\{x_{M}^{D}-\bar{x}, y_{M}^{D}-\bar{y}\right\}$.

Proof. Since $\operatorname{int}\left(D_{i}\right) \neq \emptyset$ for $i=2,3$, we get $\beta_{i} \neq 0$ for $i=2,3$. Now, let $\bar{\alpha} \geq \min \left\{x_{M}^{D}-\bar{x}, y_{M}^{D}-\bar{y}\right\}$. This implies that $\beta_{1}=0$. So $\beta_{2}+\beta_{3}=1$. Therefore by hypothesis, $\left.(\bar{x}, \bar{y}), \bar{\alpha}\right)$ satisfies in Equation (3.6). Hence Theorem 3.9 implies that $((\bar{x}, \bar{y}), \bar{\alpha}) \in Q(D)$.

Corollary 3.13. Let $(\bar{x}, \bar{y}) \in D$ and set $\gamma=\bar{y}-\bar{x}$. Let $D \subset R^{-}=\left\{(x, y) \in \mathbb{R}^{2} \mid y \leq x+\gamma\right\}$. Assume $\min \left\{x_{m}^{D}-\bar{x}, y_{m}^{D}-\bar{y}\right\}<\bar{\alpha}<y_{M}^{D}-\bar{y}$ is such that $\beta_{3} \bar{x}=\beta_{1} \bar{\alpha}+\beta_{3}\left(Y_{D_{3}}-\gamma\right)-1$. Then $((\bar{x}, \bar{y}), \bar{\alpha}) \in Q(D)$.

Proof. Since $D \subset R^{-}$, we get $\operatorname{int}\left(D_{2}\right)=\emptyset$. So $\beta_{2}=0$. Now, let $\min \left\{x_{m}^{D}-\bar{x}, y_{m}^{D}-\bar{y}\right\}<\bar{\alpha}<$ $y_{M}^{D}-\bar{y}$. This implies that $\operatorname{int}\left(D_{i}\right) \neq \emptyset$ for $i=1,3$. So $\beta_{i}>0$ for $i=1,3$. On the other hand $\beta_{3} \bar{x}=\beta_{1} \bar{\alpha}+\beta_{3}\left(Y_{D_{3}}-\gamma\right)-1$, therefore we conclude that $((\bar{x}, \bar{y}), \bar{\alpha})$ satisfies in Equation (3.6). Hence Theorem 3.9 implies that $((\bar{x}, \bar{y}), \bar{\alpha}) \in Q(D)$.

The proof of the following corollary is similar to the Corollary 3.13 , so we omit it.
Corollary 3.14. Let $(\bar{x}, \bar{y}) \in D$ and set $\gamma=\bar{y}-\bar{x}$. Let $D \subset R^{+}=\left\{(x, y) \in \mathbb{R}^{2} \mid y \geq x+\gamma\right\}$. Assume $\min \left\{x_{m}^{D}-\bar{x}, y_{m}^{D}-\bar{y}\right\}<\bar{\alpha}<x_{M}^{D}-\bar{x}$ be such that $\beta_{2} \bar{x}=\beta_{1} \bar{\alpha}+\beta_{2} X_{D_{2}}-1$. Then $((\bar{x}, \bar{y}), \bar{\alpha}) \in Q(D)$.

4. Examples

In this section, we present some examples.
Example 4.1. Let $D \subset \mathbb{R}^{2}$ be the square with vertices $(a, 0),(0, a),(a, 2 a)$ and $(2 a, a)$, that is

$$
D=\{(x, y) \mid 0 \leq x \leq a,-x+a \leq y \leq x+a\} \cup\{(x, y) \mid a \leq x \leq 2 a, x-a \leq y \leq-x+3 a\},
$$

where $a \geq 4$. Consider the line $R=\left\{(x, y) \in \mathbb{R}^{2} \mid y=x+\gamma\right\}$ that $|\gamma| \leq \sqrt{a^{2}-4 a}$ This line passes through the interior of the set D and divides D into two parts.

We are looking for a point $((\bar{x}, \bar{y}), \bar{\alpha}) \in Q(D)$ that $(\bar{x}, \bar{y}) \in D \cap R$ and $\operatorname{int}\left(D_{1}\right)=\emptyset$. First, we must calculate $X_{D_{2}}$ and $Y_{D_{3}}$. It is clear that $A(D)=2 a^{2}, A\left(D_{2}\right)=a(a-\gamma)$ and $A\left(D_{3}\right)=a(a+\gamma)$. We have

$$
X_{D_{2}}=\frac{1}{A\left(D_{2}\right)} \int_{D_{2}} x \mathrm{~d} x \mathrm{~d} y=\frac{1}{4}(3 a-\gamma)
$$

and

$$
Y_{D_{3}}=\frac{1}{A\left(D_{3}\right)} \int_{D_{3}} y \mathrm{~d} x \mathrm{~d} y=\frac{1}{4}(3 a+\gamma) .
$$

On the other hand, we have $\beta_{2}=\frac{a-\gamma}{2 a}$ and $\beta_{3}=\frac{a+\gamma}{2 a}$. Now, according to Corollary 3.12, we put

$$
\begin{aligned}
\bar{x} & =\beta_{2} X_{D_{2}}+\beta_{3}\left(Y_{D_{3}}-\gamma\right)-1 \\
& =\frac{a-\gamma}{2 a} \frac{3 a-\gamma}{4}+\frac{a+\gamma}{2 a}\left(\frac{3 a+\gamma}{4}-\gamma\right)-1 \\
& =-\frac{1}{4 a} \gamma^{2}-\frac{1}{2} \gamma+\frac{3}{4} a-1
\end{aligned}
$$

and $\bar{y}=\bar{x}+\gamma$. By hypothesis, we have $|\gamma| \leq \sqrt{a^{2}-4 a}$. By a simple calculation, this implies that $(\bar{x}, \bar{y}) \in D$. But $x_{M}^{D}=y_{M}^{D}=2 a$, so it follows from Corollary 3.12 that $((\bar{x}, \bar{y}), \bar{\alpha}) \in Q(D)$ for any $\bar{\alpha} \geq \min \{2 a-\bar{x}, 2 a-\bar{y}\}$ (a simple calculation shows that $((\bar{x}, \bar{y}), \bar{\alpha}) \in Q(D)$ for any $\left.\bar{\alpha} \geq \frac{1}{4 a} \gamma^{2}+\frac{3}{4} a+1\right)$. It follows from Remark 3.2 that the following inequality holds for each sub-topical function f :

$$
f\left(-\frac{1}{4 a} \gamma^{2}-\frac{1}{2} \gamma+\frac{3}{4} a-1+\bar{\alpha},-\frac{1}{4 a} \gamma^{2}+\frac{1}{2} \gamma+\frac{3}{4} a-1+\bar{\alpha}\right)-\bar{\alpha}+1 \leq \frac{1}{a^{2}} \int_{D} f(x, y) \mathrm{d} x \mathrm{~d} y
$$

for each $\bar{\alpha} \geq \frac{1}{4 a} \gamma^{2}+\frac{3}{4} a+1$.
Example 4.2. Now we consider the set $D \subset \mathbb{R}^{2}$ as a solid half-disk with radius a. In other words, D in polar coordinates has the following form:

$$
D=\left\{(r, \theta) \mid 0 \leq r \leq a,-\frac{3 \pi}{4} \leq \theta \leq \frac{\pi}{4}\right\} .
$$

We assume that $a \geq \frac{3 \sqrt{2} \pi}{3 \pi-4}$. Consider the line $R=\left\{(x, y) \in \mathbb{R}^{2} \mid y=x\right\}$ (so $D \subset R^{-}=\{(x, y) \in$ $\left.\mathbb{R}^{2} \mid y \leq x\right\}$). We are looking for a point $((\bar{x}, \bar{y}), \bar{\alpha}) \in Q(D)$ that $(\bar{x}, \bar{y}) \in D \cap R$ and $\operatorname{int}\left(D_{1}\right)=\emptyset$. According to Corollary 3.10, we must calculate Y_{D}. We have $A(D)=\frac{\pi}{2} a^{2}$ and

$$
Y_{D}=\frac{1}{A(D)} \int_{D} y \mathrm{~d} x \mathrm{~d} y=-\frac{2 \sqrt{2}}{3 \pi} a .
$$

Therefore $(\bar{x}, \bar{y})=\left(-\frac{2 \sqrt{2}}{3 \pi} a-1,-\frac{2 \sqrt{2}}{3 \pi} a-1\right)$. Since $a \geq \frac{3 \sqrt{2 \pi}}{3 \pi-4}$, we conclude that $(\bar{x}, \bar{y}) \in D$. But, $y_{M}^{D}=\frac{a}{\sqrt{2}}$. It follows from Corollary 3.10 that $((\bar{x}, \bar{y}), \bar{\alpha}) \in Q(D)$ for any $\bar{\alpha} \geq\left(\frac{1}{\sqrt{2}}+\frac{2 \sqrt{2}}{3 \pi}\right) a+1$. It follows from Remark 3.2 that the following inequality holds for each sub-topical function f :

$$
f\left(-\frac{2 \sqrt{2}}{3 \pi} a-1+\bar{\alpha},-\frac{2 \sqrt{2}}{3 \pi} a-1+\bar{\alpha}\right)-\bar{\alpha}+1 \leq \frac{2}{\pi a^{2}} \int_{D} f(x, y) \mathrm{d} x \mathrm{~d} y
$$

for each $\bar{\alpha} \geq\left(\frac{1}{\sqrt{2}}+\frac{2 \sqrt{2}}{3 \pi}\right) a+1$.
Example 4.3. Let $a>3$. We will now consider the square in \mathbb{R}^{2} formed by the points $(0,0),(0, a)$, $(a, 0)$ and (a, a) as vertices, which we denoted as D.

Consider the line $R=\left\{(x, y) \in \mathbb{R}^{2} \mid y=x\right\}$. We are looking for a point $((\bar{x}, \bar{y}), \bar{\alpha}) \in Q(D)$ that $(\bar{x}, \bar{y}) \in D \cap R$ and $\operatorname{int}\left(D_{1}\right) \neq \emptyset$. Let $\bar{x} \in\left[0, \frac{a}{3}-1\right)$ be arbitrary. So $(\bar{x}, \bar{x}) \in R \cap D$. Now let
$\bar{\alpha}$ be such that $\operatorname{int}\left(D_{1}\right) \neq \emptyset$. We have $A(D)=a^{2}, A\left(D_{1}\right)=(a-(\bar{x}+\bar{\alpha}))^{2}$ and $A\left(D_{2}\right)=A\left(D_{3}\right)=$ $\frac{1}{2}\left(a^{2}-(a-(\bar{x}+\bar{\alpha}))\right)^{2}$. So we get

$$
X_{D_{2}}=\frac{1}{A\left(D_{2}\right)} \int_{D_{2}} x \mathrm{~d} x \mathrm{~d} y=\frac{1}{3} \frac{3 a(\bar{x}+\bar{\alpha})-2(\bar{x}+\bar{\alpha})^{2}}{2 a-(\bar{x}+\bar{\alpha})}
$$

and

$$
Y_{D_{3}}=\frac{1}{A\left(D_{3}\right)} \int_{D_{3}} y \mathrm{~d} x \mathrm{~d} y=\frac{1}{3} \frac{3 a(\bar{x}+\bar{\alpha})-2(\bar{x}+\bar{\alpha})^{2}}{2 a-(\bar{x}+\bar{\alpha})}
$$

According to Theorem 3.9, we must have $\left(\beta_{2}+\beta_{3}\right) \bar{x}=\beta_{1} \bar{\alpha}+\beta_{2} X_{D_{2}}+\beta_{3} Y_{D_{3}}-1$. Substituting the quantities in this equation and simplifying, gives $(\bar{\alpha}+(\bar{x}-a))^{3}=-a^{3}+3 a^{2}(\bar{x}+1)$. Therefore

$$
\bar{\alpha}=a-\bar{x}+\sqrt[3]{-a^{3}+3 a^{2}(\bar{x}+1)}
$$

Note that since $\bar{x} \in\left[0, \frac{a}{3}-1\right)$, we get $0<\bar{x}+\bar{\alpha}<a$. This implies that $\operatorname{int}\left(D_{1}\right) \neq \emptyset$. Summarizing, we have $\left((\bar{x}, \bar{x}), a-\bar{x}+\sqrt[3]{-a^{3}+3 a^{2}(\bar{x}+1)}\right) \in Q(D)$ for each $\bar{x} \in\left[0, \frac{a}{3}-1\right)$.
On the other hand, the minimal point of the set D is $(0,0)$. So (3.3) implies the following inequality:

$$
\int_{D} f(x) \mathrm{d} x \leq a^{2} f(0,0)+\frac{2}{3} a^{3} .
$$

References

[1] G.R. Adilov and S. Kemali, Hermite-Hadamard type inequalities for increasing positively homogeneous functions, J. Inequal. Appl., 2007(1) (2007), 1-10.
[2] M.H. Daryaei and A. Doagooei, Topical functions: Hermite-Hadamard type inequalities and Kantorovich duality, Math. Inequal. Appl., 21(3) (2018), 779-793.
[3] S.S. Dragomir, J. Dutta and A.M. Rubinov, Hermite-Hadamard type inequalities for increasing convex-along-rays functions, Analysis, 24(2) (2004), 171-181.
[4] S.S. Dragomir, J. Pečarić and L.-E. Persson, Some inequalities of Hadamard type, Soochow Journal of Mathematics, 21(3) (1995), 335-341.
[5] A. Doagooei, Maximal elements of sub-topical functions with applications to global optimization, Bull. Iranian Math. Soc., 42 (2016), 31-41.
[6] A. Doagooei, Sub-topical functions and plus-co-radiant sets, Optimization, 65 (2016), 107-119.
[7] H. Mohebi and M. Samet, Abstract convexity of topical functions, J. Global Optim., 58 (2014), 365-375.
[8] Ch.EM. Pearce and A.M. Rubinov, P-functions, quasi-convex functions, and Hadamard-type inequalities, J. Math. Anal. Appl., 240(1) (1999), 92-104.
[9] A.M. Rubinov, Abstract Convexity and Global Optimization, Kluwer Academic Publishers, Dordrecht, 2000.
[10] A.M. Rubinov and I. Singer, Topical and sub-topical functions, downward sets and abstract convexity, Optimization, 50 (2001), 307-351.
[11] I. Yesilce and G. Adilov, Hermite-Hadamard inequalities for \mathbb{B}-convex and \mathbb{B}^{-1}-convex functions, International Journal of Nonlinear Analysis and Applications, 8(1) (2017), 225-233.

[^0]: *Corresponding author
 Email address: daryaei@uk.ac.ir (Mohammad Hossein Daryaei)

