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Abstract
One of the popular methods of data clustering is spectral clus-
tering. The main step of this method is constructing a graph
representation of the data set and its similarity matrix. The sim-
ilarity matrices which are constructed based on some important
points not all data points, are among the main approaches. In
this paper, the stationary distribution for a random walk on a
weighted graph G is considered to find anchor points of the data
set. Then we build the similarity matrix based on the anchor
nodes and the weighted random walk transition matrix. After
that, spectral clustering is applied on the gained similarity ma-
trix. We propose the theoretical discussions and then we evalu-
ate our method on benchmarks.
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1. Introduction

Matrices and graphs have an essential role in representing data sets. A data set could be
represented as its corresponding similarity graph. A similarity graph is a graph whose set of nodes
represents the samples and the set of edges represents the similarities among them. Social networks
and biological processes such as the dynamics of epidemics[16, 13, 14] are all actively studied by
considering their correspondence graphs or matrices. Among different methods of analyzing a data
matrix representation, spectral clustering has been one the most popular methods. In this method,
first, a graph representation of the data set is constructed as a similarity matrix and then using
the eigenvectors of its laplacian matrix an appropriate clustering of data set is obtained. Hence,
one step in conventional spectral clustering methods is constructing the similarity graph. Some
common approaches for constructing the graph representation of the data set are fully connected
graph, k-nearest neighborhood graph and ε-neighborhood graph. Let X = {x1, . . . , xn} be a set of
data samples. We denote the set of k-nearest neighbor of x by N(x, k). In the k-nearest neighbor
graph two points xi and x j are connected if xi ∈ N(x j, k) or x j ∈ N(xi, k). In the ε-neighborhood
graphs, on the other hand, xi and x j are connected if and only if their distance is less than ε, where
the appropriate value for ε is chosen according to the data set. After finding the adjacent nodes,
the next step is assigning similarity or weights to the edges. Once the graph is constructed, we
could use its similarity matrix.

There have been introduced several methods to construct representation matrices and graphs
[2, 3, 4, 8, 9, 10, 19, 20]. In some recent methods, instead of considering all points actively in
the construction, the main points are considered. For example, in [2], the authors have proposed
the statistical methods to drop out some points. Also, some methods are introduced based on
anchor nodes. Anchor based methods have been applied in learning approaches like dimension
reduction, clustering and semisupervised learning [1, 7]. In these methods, a subset of data points
are considered as essential points which can represent the collective behavior of the entire data set.
Finding these set of points provides a better understanding of the data set.

Finding the set of anchor nodes is a challenging issue since there is no specific method. One
may consider statistical, global or social behavior and other methods to find anchor nodes. The
most important step in constructing the similarity matrix in anchor based methods is finding the
anchor nodes. In this area of research, two most commonly approaches for generating the an-
chors are random selection and k-means generation. The performance of random strategy cannot
be guaranteed. Although the k-means generation achieves good performance, it has high com-
putational cost [1]. In [18], the authors proposed an anchor generation method called Balanced
K-means based Hierarchical k-means (BKHK) which generates representative anchors with low
computational cost. In this paper, we propose a new method for finding anchor points based on
the stationary distribution of weighted random walks on a graph representation of data set. Then,
we consider the transition matrix of the random walk to define weights of edges and the similar-
ity matrix. Subsequently, we apply spectral clustering on the obtained matrix. We first briefly
introduce the traditional spectral clustering method. Then, we explain the proposed method for
finding anchor points and constructing the similarity matrix based on those points. We evaluate
our method on some benchmarks and compare it with the previous methods.
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2. Traditional Spectral Clustering Methods

Due to its ability in distinguishing clusters with different shapes, spectral clustering method,
as a popular graph-based method, has attracted the attention of researchers in recent years. Also,
unlike many clustering methods, which are sensitive to initial random points, the graph theory-
based spectral clustering method does not have this problem. Also, unlike almost all methods in
which the clustering process is applied directly on the original data, in spectral clustering method
clustering is done through the graph Laplacian eigenvectors. In a famous method introduced by Ng
et al. an embedding space is constructed by using top Laplacian eigenvectors [10]. Their method
can be summarized by the following steps:

1) Constructing a representation graph of data: The affinity matrix is constructed by consid-
ering the similarity graph. The most popular method for constructing the representation graph is
k-nearest neighbor graph. Denoting the set of k-nearest neighbor of x by N(x, k), in the k-nearest
neighbor graph two points xi and x j are connected if xi ∈ N(x j, k) or x j ∈ N(xi, k). This graph
could be a weighted graph and often the Gaussian kernel function is considered as the similarity
(i.e. weights of the edges) between connected nodes:

s(xi, x j) = exp(−‖xi − x j‖
2/(2σ2))

2) Finding top eigenvectors of the Laplacian matrix: The second step is extracting top k eigen-
vectors of the Laplacian matrix L = I − D−1S . In situations where the number of clusters is not
determined, the eigengap method can be used to find the number of clusters.

3) Applying k-means: First, a matrix in which the columns are the top k-eigenvectors of L is
constructed and then the k-means method is applied on the rows of the matrix to obtain the result.

3. Finding anchors based on weighted random walks

We start this section by giving a definition of a walk in a graph.

Definition 3.1. Let G = (V, E) be a graph. A walk in G is a sequence of vertices and edges in
which every vertex is incident to both the edges that come before and after it in the sequence. The
total number of edges covered in a walk is called as length of the walk.

A random walk on a graph G = (V, E) is known as a process that describes the position of
a walk with random steps. On the other words, it is a process that begins at some vertex, and
at each step moves to another vertex, randomly. It can be denoted by {ξt, t = 0, 1, 2, . . .}, where
ξt is a variable that describes the position of random walk after t steps. It could be considered
also as a special case of Markov chain. In the initial state, ξ0 is considered fixed or it could be
gained from an initial distribution P0. Then we may obtain the distribution of position after t steps
by Pt(i) = Pr(ξt = i). If G is unweighted, the vertex that the random walk selects for the next
step is chosen uniformly at random among the adjacent vertices of the current vertex. When G
is weighted, it moves to a vertex with probability proportional to the weight of the corresponding
edge. Random walks on weighted graphs are described in [12].

Consider a weighted graph G with n nodes. Let Ω be an n × n adjacent matrix of G which
is a symmetric matrix of weights where Ωi j is the weight of the edge that connects vi and v j, and
Ωii = 0.
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Definition 3.2. Let G be a weighted graph with the adjacent matrix Ω. The strength of the node vi

is defined as S i =
∑n

j=1 Ωi j.

Definition 3.3. If a walker is at node i after t steps, the single step transition probability is defined
as the probability of moving random walk to the node j in the next step. It is represented as πi j:

πi j = Pr(ξt+1 = j|ξt = i).

The transition probability matrix Π = (πi j) for weighted graph is calculated by πi j =
Ωi j

S i
, or we

may write simply
Π = S −1Ω, (3.1)

where S is a diagonal matrix in which the ith diagonal entry is the strength si of the ith node.

Definition 3.4. The t steps transition probability, represented by Pi j(t), is defined as the probability
for a walker to start from node i in t = 0 and reach node j in tth step:

Pi j(t) = Pr(ξt = j|ξ0 = i).

It is common that for the weighted graph the t steps transition probability be calculated Pi j(t +

1) =
∑n

m=1 Pim(t)πm j and consequently P(t + 1) = (ΠT )tP(0). Note that the transition matrix
Π = (πi j) is not always symmetric. However, we have the following lemma:

Lemma 3.5. Let S , P and Π be defined as above. We have:

i) S iπi j = S jπ ji.

ii) S iPi j(t) = S jP ji(t).

Definition 3.6. A stationary distribution for a random walk is a distribution, π, for which we have
πP = π.

One of the consequences of the above lemma is finding the stationary probability distribution
P∞j = limt→∞Pi j(t), that gives the probability to find the random walker in the node j when t → ∞.
It has been proved that this limit is independent of i [? ]. We have the following lemma.

Lemma 3.7. Let S and P be defined as before. Then P∞j =
S j∑n
l=1 S l

. Consequently, the stationary
distribution for a random walk on a weighted graph G is

P∞ = (
S 1∑n
l=1 S l

, . . . ,
S n∑n
l=1 S l

)T . (3.2)
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Algorithm 1 Spectral clustering by considering stationary distribution vector and transition matrix
Require: Data set X, l(number of anchor points), k, ε
Ensure: Clusters

1: Construct ε-neighborhood graph of data
2: for i = 1, . . . , n do
3: Compute strengths of xi according to definition 3.2
4: end for
5: Compute the transition matrix via Eq. 3.1
6: Compute the stationary distribution P∞ via Eq. 3.2
7: Find the set of l anchors,A
8: for i = 1, . . . , n do
9: Compute the k-nearest anchor points to xi, i.e. Nl(A, xi)

10: end for
11: Construct the similarity graph by Eq.4.1
12: Apply spectral clustering method

4. Spectral Clustering based on anchor nodes

In this section, we first introduce anchor nodes of weighted graph by considering stationary
distribution for a random walk on a weighted graph. Then, we construct a similarity graph based
on anchor nodes. Finally, we apply the spectral clustering method on the obtained similarity graph.

Let X = {x1, . . . , xn} be a data set. First we construct the ε-neighborhood graph for this data,
according to the following similarity matrix:

ai j =

exp(−‖xi − x j‖
2/(2σ2)) ‖xi − x j‖ < ε

0 else

Now, having the above similarity matrix we may find the stationary distribution for a random
walk on a weighted graph G by lemma 3.7 which is P∞ = ( S 1∑n

l=1 S l
, . . . , S n∑n

l=1 S l
)T . We expect that

anchor points have more probability for meeting a random walker. Hence, to choose k anchor
nodes, we consider the set A = {vi1 , . . . , vik}, where p∞i1 , . . . , p∞ik are the k largest amounts among
all P∞ entries.

Having anchor nodes, some ways of construction of similarity graphs based on these points are
well-known. One has been introduced in [7]. Here instead of considering conventional similarities
like Gaussian kernel similarity to find Knn anchor neighbors for each sample, we use random walk
property. LetA be the set of generated anchors. For a sample xi ∈ X, we consider Nl(A, xi) to be
the set of l anchor nodes that have more probability to reach them starting from xi. In other words,
Nl(A, xi) is the set of l anchors x j with the higher amount of πi j. In the graph construction we just
put edges between xi and the l anchors inNl(A, xi). For the connections between anchor nodes, if
there is any, we ignore the directions, i.e. two anchors xi and x j are connected if xi ∈ Nl(A, x j) or
x j ∈ Nl(A, xi); We also use the weight of the edge between an anchor point x j and a sample xi ,πi j,
to define similarity between nodes, however to have symmetric matrix we consider πi j+π ji

2 . Hence
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Table 1: The details of data sets used in our experiment

Dataset Samples Features Classes
Ecoli 336 343 8

Control 600 60 6
Iris 150 4 3

Glass 214 9 6

we have a similarity graph based on anchor nodes and random walk with the following similarity
matrix:

ai j =


πi j+π ji

2 xi, x j ∈ A, xi ∈ Nl(A, x j) or x j ∈ Nl(A, xi)
πi j+π ji

2 xi ∈ X −A, x j ∈ Nl(A, xi)
0 else

(4.1)

Now we can apply traditional spectral clustering on this graph. We summarize our method in
Algorithm 1.

5. Experiments

In this section, we have chosen four benchmarks to compare our method we some other famous
methods. The details of benchmarks are listed in the table ??.

5.1. Comparison Methods
Two classic clustering methods (traditional spectral clustering(SC)[10] and k-means [21]) and

four state-of-the-art clustering methods (Sparse Subspace Clustering (SSC)[11, 4], Low-Rank
Representation (LRR)[19, 20], Least Squares Regression (LSR)[5], and Subspace Segmentation
via Quadratic Programming [17]) are considered for comparison. The details of the comparison
methods are listed below:

- K-means is one of the classical and popular distance based clustering algorithms. In this
iterative algorithm, some points are chosen as the center points of clusters and then other
points are assigned to each cluster by considering their distances to the centers.

- SC is introduced in section 2.

- SSC is a kind of subspace clustering methods in which points are represented in low-
dimensional subspaces. The algorithm of this approach looks for a sparse coefficient matrix
and the sparsity is imposed by ‖.‖1 on coefficient matrix.

- LRR is a kind of subspaces clustering approaches in which clusters are determined by using
the low-rank self-expression of data.

- LSR uses the data global construction as well as relationships among the data points. In this
method the block diagonal structure of the similarity matrix is constructed to find clusters.
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- SSQP is a subspace segmentation method via quadratic programming achieve multiple clus-
ters from multiple subspace as subspace partitioning of the quadratic programming.

5.2. Experimental setting
In the experiment, we employed three evaluation metrics (such as clustering ACCuracy (ACC),

Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI)[15]) to evaluate the clus-
tering performance of the methods. The codes of evaluation metric is downloaded from Kang’s
GitHub [6]. We set the range of parameters (i.e., σ and k) in our method as σ ∈ {1, 10, 100} and
k ∈ {5, 10, 15, 20}, Also we consider number of anchors as about half of data points and the ε is
chosen about 1/2 or 3/4 of the maximum distances between points.

In the following we briefly introduce ACC, NMI and ARI.

- ACC computes the percentage of samples in correct clusters, and defined as:

ACC =
Ncor

N
,

where N is the number of all samples and Ncor is the number of samples in correct clusters.

- NMF is used for measuring the correlation between the two variables

NMI =
2M(Xi, X j)

E(Xi) + E(X j)

where M denotes mutual information between two variables, and E represents the entropy
of a variable.

- ARI computes the similarity between the prediction and the standard results. It is the ad-
justed form of RI and defined as:

ARI =
RI − E[RI]

max(RI) − E[RI]

5.3. Experimental analysis of the results
We have brought the clustering results of all the methods on the real data sets in Table ??.

We have used the results of comparison methods in [3] for previous methods. The following
observations are noticeable. Our proposed method has often achieved the best performance, among
the other methods, i.e. SC, k-means, LRR, LSR, SSC, and SSQP.

The accuracy of our method improved on average by 10 percent compared to the all compari-
son methods on all four data sets. This range of improvement has also accurd in NMI for three data
sets Iris, Glass and Ecoli; For Control the NMI is not the highest amount in our method, however
it measure is acceptable. ARI measure improvement is like NMI. It has been improved well com-
pared with all methods in three data sets Iris, Glass and Ecoli; Also it is has a good improvement
for Control compared with all methods except SC.
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Table 2: Performance (ACC, NMI and ARI) on 4 data sets

data/method (K-Means) SC LRR LSR SSC SSQP Ours
ACC 72.53 90.67 80.00 80.00 80.00 85.33 95.69

Iris NMI 64.19 78.38 64.59 64.59 63.08 71.18 86.33
ARI 57.74 75.83 56.35 56.35 57.62 65.79 88.58
ACC 44.39 64.49 50.93 50.89 50.47 51.68 66.36

Glass NMI 33.60 55.85 32.94 38.94 32.67 33.24 59.49
ARI 20.08 42.61 21.20 21.20 22.69 23.01 45.87
ACC 49.46 53.44 56.55 57.04 62.82 55.03 65.62

Ecoli NMI 46.96 50.83 47.12 46.92 46.14 46.28 53.12
ARI 37.67 39.71 38.36 38.58 37.07 35.83 43.94
ACC 56.83 66.20 25.17 57.17 70.50 60.17 74.32

Control NMI 70.11 76.13 20.20 72.21 66.53 71.55 71.71
ARI 51.94 65.39 60.99 60.81 52.95 59.75 61.24

5.4. Parameters sensitivity
Two main parameters need to be adjusted in our proposed algorithm, number of anchor nodes,

l and number of chosen nearest anchor nodes to each node, k. Two other parameter are sensitive
however the sensitivity of σ in Gussian kernel function has been discussed in past articles as well
as ε for constructing ε-neighbor hood graphs. In this section, we changed the values of l and k by
setting the range of k as k ∈ {5, 10, 15, 20} and setting l to be half or quarter of the samples. We
investigate the variations of the clustering accuracy of our method by changing these parameters.
We have shown the results on Ecoil and Control data sets in Figures 1 and 2. The results showed
that our method is sensitive to parameters setting. Moreover, the parameter l is more sensitive than
the parameter k in our method.
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Figure 1: Acc w.r.t. k and l on Ecoli data

Figure 2: Acc w.r.t. k and l on Control data



Vaziri, Jamshidi, Motallebi/ Wavelets and Linear Algebra 10(2) (2023) 29- 38 38

[8] H. Motallebi and M. Jamshidi, A distance scaling method to improve spectral clustering of data with different
densities, International Journal of Data Science, 6(4) (2022), 328–347.

[9] H. Motallebi, R. Nasihatkon and M. Jamshidi, A local mean-based distance measure for spectral clustering,
Pattern Analysis and Applications, 25 (2022), 351–359.

[10] A.Y. Ng, M.I. Jordan and Y. Weiss, On spectral clustering: Analysis and an algorithm, Advances in Neural
Information Processing Systems, 14 (2001), 849–856.

[11] X. Peng, J. Feng, J.T. Zhou, Y. Lei and Sh. Yan, Deep sparse subspace clustering, Computer vision and pattern
recognition, (2017), arXiv:1709.08374 [cs.CV].

[12] A.P. Riascos and J.L. Mateos, Random walks on weighted networks: Exploring local and non-local navigation
strategies, arXiv: Statistical Mechanics, (2019), 1–21.

[13] F. Saberi-Movahed, M. Mohammadifard, A. Mehrpooya, M. Rezaei-Ravari, K. Berahmand, M. Rostami, S.
Karami, M. Najafzadeh, D. Hajinezhad, M. Jamshidi, F. Abedi, M. Mohammadifard, E. Farbod, F. Safavi, M.
Dorvash, N. Mottaghi-Dastjerdi, Sh. Vahedi, M. Eftekhari, F. Saberi-Movahed, H. Alinejad-Rokny, Sh. S. Band
and Iman Tavassoly, Decoding clinical biomarker space of covid-19: exploring matrix factorization-based feature
selection methods, Computers in Biology and Medicine, 146 (2022), 105426.

[14] F. Saberi-Movahed, M. Rostami, K. Berahmand, S. Karami, P. Tiwari, M. Oussalah and Sh.S. Band, Dual
Regularized Unsupervised Feature Selection Based on Matrix Factorization and Minimum Redundancy with
application in gene selection, Knowledge-Based Systems, 256(28) (2022), 109884.

[15] J.M. Santos and M. Embrechts, On the use of the adjusted Rand index as a metric for evaluating supervised
classification, Artificial Neural Networks-ICANN, (2009), 175–184.

[16] P. Satorras, C. Castellano, P.V. Mieghem and A. Vespignani, Epidemic processes in complex networks, Reviews
of Modern Physics, 87 (2015), 925–979.

[17] Sh. Wang, X. Yuan, T. Yao, Sh. Yan and J. Shen, Efficient subspace segmentation via quadratic programming,
AAAI conference on artificial intelligence, (2011), 519–524.

[18] W. Zhu, F. Nie and X. Li, Fast spectral clustering with efficient large graph construction, IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), (2017), 2492–2496.

[19] X. Zhu, Sh. Zhang, R. Hu, Y. Zhu and J. Song, Local and global structure preservation for robust unsupervised
spectral feature selection, IEEE Trans Knowl Data Eng., 30(3) (2018), 517–529.

[20] X. Zhu, Sh. Zhang, Y. Li, J. Zhang and L. Yang, Low-rank sparse subspace for spectral clustering, IEEE Trans-
actions on Knowledge and Data Engineering, 31(8) (2019), 1532–1543.

[21] J. Zhu and H. Wang, An improved K-means clustering algorithm, IEEE International Conference on Information
Management and Engineering, 9(1) (2010), 44–46.


	Introduction
	Traditional Spectral Clustering Methods
	Finding anchors based on weighted random walks
	Spectral Clustering based on anchor nodes
	Experiments
	Comparison Methods
	Experimental setting
	Experimental analysis of the results
	Parameters sensitivity


