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Abstract
In this paper, we discuss some generalizations coming from
wavelet transform on Sobolev spaces. In particular, we intro-
duce the bounded localization operators on Sobolev spaces which
are related to multi-dimensional wavelet transform on Sobolev
spaces. Moreover, we propose the localization operators on
Sobolev spaces are in p-Schatten class and they are compact.
Finally, we give the boundedness and compactness of localiza-
tion operators on Sobolev spaces with two admissible wavelets.

c© (2023) Wavelets and Linear Algebra

1. Introduction and preliminaries

Wavelet analysis is a universal tool with a very rich mathematical content and great potential
for applications in various scientific fields. The localization operators were introduced and studied
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by Daubechies [3, 4]. This class of operators occurs in various branches of applied and pure
mathematics and has been studied by many authors. Localization operators are recognized as an
important new mathematical tool and have found many applications to the theory of differential
equations, quantum mechanics, time-frequency analysis, signal processing (see [9, 5]). The multi-
dimensional continuous wavelet transform on Sobolev space has been studied in [7] whereas in
this paper, we give a systematic study of localization operators on Sobolev space which related to
the multi-dimensional continuous wavelet transform.
The space of infinity differentiable functions on Rn denoted by C∞(Rn) accompanied by uniform
convergence on compact sets of functional sequences and all their derivatives. Let C∞c (Rn) be the
space of infinitely differentiable function on Rn with compact support. A tempered distribution
is a continuous linear functional on Schwartz spaces S. We recall that S is a Fréchet space with
topology defined by the norm:

‖φ‖[N,α] = supx∈Rn(1 + |x|)N∂αφ(x),

for multi-index α and N ∈ N. The space of tempered distributions is denoted by S′. This space is
identified with the set of distributions that extend continuously from C∞c to S. A locally integrable
function is said to be tempered if it is tempered as a distribution. Note that every compactly sup-
ported distribution is tempered (for more details see [6].)
For the reader’s convenience, we review the definition of Sobolev spaces and mention some prop-
erties of them. Suppose that k ∈ N and let Hk be the space of all f ∈ L2(Rn) whose distribution
derivatives ∂α f are L2-functions, for multi index α with |α| ≤ k. It has been shown that Hk is a
Hilbert space with the inner product

≺ f , g �k=
∑
|α|≤k

∫
Rn

(∂α f )(x)(∂αg)(x)dx,

for f , g ∈ Hk. It is more convenient to use an equivalent inner product defined in terms of the
Fourier transform. One can check that f ∈ Hk if and only if (1 + |ξ|2)k/2 f̂ ∈ L2(Rn) and that the
norms f 7→ (

∑
|α|≤k ‖∂

α f ‖22)1/2 and f 7→ ‖(1 + |ξ|2)k/2 f̂ ‖2 are equivalent. The latter norm makes
sense for any k ∈ R, the definition of Hk can be extended to all real k. Furthermore, for any
s ∈ R, the function ξ 7→ (1 + |ξ|2)s/2 is in C∞(Rn) and slowly increasing, so the map Js defined by
Js f = (1 + |ξ|2)s/2 f̂ )∨ is a continuous linear operator on S′, in which f̂ is the Fourier transform of
f and f ∨ is the inversion of the Fourier transform. Note that Js is isomorphism, since J−1

s = J−s.
Now, for any real s, by Hs(Rn) we denote the Sobolev space and define as:

Hs(Rn) = { f ∈ S′; Js f ∈ L2(Rn)}.

The inner product and norm on Hs(Rn) are given as:

≺ f , g �s=

∫
Rn

(1 + |ξ|2)s f̂ (ξ)ĝ(ξ)dξ,

and

‖ f ‖s =

[∫
Rn

(1 + |ξ|2)s| f̂ (ξ)|2dξ
]1/2

.

The following properties of Sobolev spaces are simple consequences of the definitions:
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i (i) The Fourier transform is a unitary isomorphism from Hs(Rn) to L2(Rn, µs) where dµs(ξ) =

(1 + |ξ|2)sdξ. In particular Hs(Rn) is a Hilbert space.

ii (ii) Schwartz space S is a dense subspace of Hs(Rn) for all s ∈ R.

iii (iii) Jt is a unitary isomorphism from Hs to Hs−t for all s, t ∈ R.

iv (iv) H0 = L2 and ‖.‖0 = ‖.‖2 (see [6, 8]).

2. Main results

In this section, the multi-dimensional wavelet transform on Sobolev space Hs(Rn) is intro-
duced. It is shown that the multi-dimensional wavelet transform of Sobolev space Hs(Rn) into
H0,s(Rn × R+

0 × S n−1) is an isometry, for arbitrary real s. Also, the boundedness localization oper-
ators regarding this transform on Sobolev space are obtained.
Multi-dimensional wavelets may be derived from the similitude group of Rn(n > 1) denoted by
S IM(n) = Rn × (R+

0 × S O(n)), consisting of dilations, rotations and translations. This group has
the following natural action on a n-dimensional signal

fb,a,R(x) = [π(b, a,R) f ](x) = a−n/2 f (a−1R−1(x − b)), (2.1)

for all (b, a,R) ∈ S IM(n). In [1, Theorem 14.2.1], it has been shown that the operator defined in
(2.1) is a unitary irreducible representation of S IM(n) in L2(Rn). Also, this representation is square
integrable. A vector 0 , ψ ∈ L2(Rn) is called admissible if ≺ ψb,a,R, ψ �L2(Rn) is in L2(S IM(n)).
Moreover, one can check a vector ψ ∈ L2(Rn) is admissible if and only if, it satisfies

cψ = (2π)nAn−1

∫
Rn
|ψ̂(k)|2

dnk
|k|n

< ∞, (2.2)

where An−1 =
∏n−1

k=2
2πk/2

Γ(k/2) is the volume of S O(n−1). The admissible vector ψ is called an admissi-
ble wavelet if ‖ψ‖ = 1. The continuous wavelet transform corresponding to the wavelet ψ ∈ L2(Rn)
is defined as

Wψ f (b, a,R) = c−1/2
ψ ≺ ψb,a,R, f �, (2.3)

for all f ∈ L2(Rn). Note that if the wavelet ψ is axially symmetric i.e. S O(n−1)−invariant, then one
can replace everywhere S O(n) by S O(n)

S O(n−1) ' S n−1, the unit sphere in Rn. The rotation R becomes
R ≡ R($), $ ∈ S O(n − 1), and continuous wavelet transform leads to Wψ f (b, a, $) ∈ L2(X, dυ),
in which

X =
S IM(n)

S O(n − 1)
= Rn × (R+

0 × S n−1),

and dυ = da
an+1 d$db, is S IM(n)−invariant measure for X (for more details see [1]).

In the following, we assume that ψ ∈ L2(Rn) is an admissible wavelet and integrable. The multi-
dimensional continuous wavelet transform defined on the similitude group S IM(n) as:

Wψ f (b, a, $) = c−1/2
ψ ≺ ψb,a,$, f �, (2.4)
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where f ∈ L2(Rn) and ψb,a,$, cψ are as in (2.1) and (2.2), respectively. We now prove that for
f ∈ Hs(Rn), Wψ f is in L2((R+

0 × S n−1, da
an+1 d$),Hs(Rn)) in which,

L2((R+
0 × S n−1,

da
an+1 d$),Hs(Rn)) =

{ f ∈ Hs(Rn),
∫
R+

0×S n−1
‖ f (., a, $)‖2s

da
an+1 d$ < ∞}.

To this end, let ψ ∈ L2(Rn) be an admissible wavelet. For f ∈ Hs(Rn) we have,

Wψ f (b, a, $) = c−1/2
ψ ≺ ψb,a,$, f �

= c−1/2
ψ

∫
Rn
ψb,a,$(x) f (x)dx

= c−1/2
ψ

∫
Rn

a−n/2ψ(a−1$−1(x − b)) f (x)dx

= c−1/2
ψ

∫
Rn

D−aL$ψ(b − x) f (x)dx

= c−1/2
ψ (D−aL$ψ ∗ f )(b).

And then

(Wψ f (., a, $))̂ (ξ) = c−1/2
ψ (D−aL$ψ ∗ f )̂ (ξ)

= c−1/2
ψ (D−aL$ψ)̂ (ξ)̂ f (ξ)

= c−1/2
ψ an/2ψ̂(−a$ξ) f̂ (ξ),

in which the operators Daψ(x) := 1
√

anψ(a−1x) and L$ψ(x) := ψ($−1x) are dilation and rotation
operators, respectively. So we have

(Wψ f (., a, $))̂ (ξ) = c−1/2
ψ an/2ψ̂(−a$ξ) f̂ (ξ). (2.5)

Moreover, in [7], we have shown that, for an admissible and integrable wavelet ψ ∈ L2(Rn), the
continuous wavelet transform, Wψ f is in L2((R+

0 ×S n−1, da
an+1 d$),Hs(Rn)), for f ∈ Hs(Rn). You can

see more details of the following proposition in [Proposition2.4, [7]].

Proposition 2.1. Let ψ ∈ L2(Rn) be admissible and integrable. For f ∈ Hs(Rn), the continuous
wavelet transform, Wψ f is in L2((R+

0 × S n−1, da
an+1 d$),Hs(Rn)).

Note that the inner product and the norm on L2((R+
0 × S n−1, da

an+1 d$),Hs(Rn)) are denoted by
≺≺,�� and ‖|, ‖| defined as following:

≺≺ ϕ, ψ ��=

∫
R+

0×S n−1
≺ ϕ(., a, $), ψ(., a, $) �s

da
an+1 d$,
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and
|||ϕ||| =

∫
R+

0×S n−1
‖ϕ(., a, $)‖2s

da
an+1 d$,

for ϕ, ψ in L2((R+
0 × S n−1, da

an+1 d$),H s(Rn)).

The inversion formula for the wavelet transform on the Sobolev spaces is given as follows. For an
admissible and integrable vector ψ ∈ L2(Rn), we have

≺≺ Wψ f ,Wψg �� =
1
cψ

∫
S IM(n)

(1 + |ξ|2)s f̂ (ξ)̂g(ξ)|ψ̂(aξ$)|2
da

an+1 d$)dξ

=
1
cψ

∫
Rn

∫
R+

0×S n−1
|ψ̂(a$ξ)|2(1 + |ξ|2)s f̂ (ξ)̂g(ξ)

da
an+1 d$)dξ

=
1
cψ

(
∫
Rn

|ψ̂(ξ)|2

|ξ|n
dξ) ≺ f , g �s

= ≺ f , g �s,

in which, f , g ∈ Hs(Rn). As an important consequence of the inversion formula is that, the contin-
uous multi-dimensional wavelet transform is an isometry from Hs(Rn) into H0,s(Rn × R+

0 × S n−1).

Corollary 2.2. The multi-dimensional continuous wavelet transform is an isometry from Hs(Rn)
into H0,s(Rn × R+

0 × S n−1). In particular, |||Wψ f ||| = ‖ f ‖s.

Proposition 2.3 (Proposition2.7, [7]). Let ϕ, ψ ∈ L2(Rn) be two admissible wavelets. For f , g ∈
Hs(Rn), we have,

≺≺ Wϕ f ,Wψg ��=
cϕ,ψ
√cϕcψ

≺ f , g �s,

in which cϕ,ψ =
∫
Rn |̂ϕ(ξ)||ψ̂(ξ)| dξ

|ξ|n
.

In the sequel, we extend the localization operators related to continuous wavelet transform
which defined on L2(Rn) to Sobolev space Hs(Rn) and we study their boundary properties and com-
paction. For admissible wavelet ψ in L2(Rn), a class of bounded linear operators Tψ,F : L2(Rn) →
L2(Rn) has been studied in [4] for all F ∈ Lp(Rn × Rn), 1 ≤ p ≤ ∞. The localization operators
Tψ,F are defined by

≺ Tψ,F f , g �=≺ F.Wψ f ,Wψg �,

for f , g ∈ L2(Rn). In this direction, some results for localization operators associated with the
representations of locally compact group G and Hilbert space H can be found in [9]. It has been
shown that for F ∈ Lp(G), 1 ≤ p ≤ ∞, the operator Tψ,F is bounded and

‖Tψ,F‖ ≤ (
1
cψ

)1/p‖F‖p.
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Moreover, the localization operator Tψ,F is in p-Schatten class S p and

‖Tψ,F‖S p ≤ (
4
cψ

)1/p‖F‖p,

for 1 ≤ p ≤ ∞. The constant 4
cψ

can be improved to 1
cψ

and obtain a lower bound for the norm
‖Tψ,F‖S 1 of localization operator Tψ,F : L2(Rn)→ L2(Rn), i.e

‖Tψ,F‖S 1 ≤ (
1
cψ

)‖F‖1.

Now, let ψ be an admissible wavelet and F ∈ Lp(S IM(n)), 1 ≤ p ≤ ∞. The localization op-
erator T̃ψ,F on Sobolev spaces is given through T̃ψ,F := J−sTψ,F Js, in which Js, J−s are unitary
isomorphisms Js : Hs → H0 and J−s : H0 → Hs, respectively. Therefore, we can introduce the
localization operator on Sobolev space as follows:

≺ T̃ψ,F f , g �s = ≺ JsT̃ψ,F f , Jsg �2

= ≺ Tψ,F Js f , Jsg �2

=
1
cψ

∫
S IM(n)

F(b, a, $) ≺ ψb,a,$, Js f �2≺ Jsg, ψb,a,$ �2 db
da

an+1 d$.

In the following proposition we show that the localization operator T̃ψ,F : Hs(Rn) → Hs(Rn) is
bounded.

Proposition 2.4. Assume that ψ is an admissible wavelet and F ∈ Lp(S IM(n)). Then T̃ψ,F on
Hs(Rn) is a bounded linear operator and

‖T̃ψ,F f ‖s ≤ (
1
cψ

)1/p‖F‖p‖ f ‖s.

Proof. Consider ψ is an admissible wavelet and TF,ψ is the localization opeator on L2(Rn). For
f ∈ Hs(Rn), we have

‖T̃ψ,F f ‖s = ‖Js(T̃ψ,F) f ‖2

= ‖JsJ−sTψ,F Js f ‖2

= ‖Tψ,F Js f ‖2

≤ ‖Tψ,F‖‖Js f ‖2

≤ ‖Tψ,F‖‖ f ‖s

≤ (
1
cψ

)1/p‖F‖p‖ f ‖s.

Therefore, the linear operator T̃ψ,F : Hs(Rn)→ Hs(Rn) is bounded.
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Proposition 2.5. Let ψ be an admissible wavelet and F ∈ L1(S IM(n)). Then T̃ψ,F : Hs(Rn) →
Hs(Rn) is in S 1 and

‖T̃ψ,F‖S 1 ≤
4
cψ
‖F‖1.

Proof. Let {ϕk} be an orthonormal basis for Hs(Rn). Then we have

‖T̃ψ,F‖S 1 =

∞∑
k=1

≺ T̃ψ,Fϕk, ϕk �s

=

∞∑
k=1

≺ JsT̃ψ,Fϕk, Jsϕk �2

=

∞∑
k=1

≺ JsJ−sTψ,F Jsϕk, Jsϕk �2

=

∞∑
k=1

≺ Tψ,F Jsϕk, Jsϕk �2

= ‖Tψ,F‖S 1

≤
4
cψ
‖F‖1.

Remark 2.6. Since Js is an unitary isometry, so Jsϕk is an orthonormal basis for H0 = L2. More-
over, by interpolation theorem, for F ∈ Lp(S IM(n)), 1 ≤ p < ∞, we have

‖T̃ψ,F‖S p ≤ (
4
cψ

)1/p‖F‖p.

That is T̃ψ,F is in Schatten P-class.

Theorem 2.7. Let F ∈ Lp(S IM(n)), 1 ≤ p < ∞. Then the localization operator T̃ψ,F : Hs(Rn) →
Hs(Rn) is compact.

Proof. Since the localization operator Tψ,F on L2(Rn) is compact and Js is unitary isomorphism,
so T̃ψ,F is a compact operator.

It turns out that it is possible and indeed natural to consider more general localization operators
T̃F,ϕ,ψ on Sobolev space Hs(Rn) associated with the functions F in Lp(S IM(n)), 1 ≤ p ≤ ∞ and
two admissible wavelets ϕ, ψ. We follow Wong in [9], suppose ϕ, ψ are two admissible wavelets,
TF,ψ,ϕ is the Daubecheis operator on L2(Rn). Then, we define the two-wavelet localization operator
T̃F,ϕ,ψ on Hs(Rn) by

≺ T̃F,ϕ,ψ f , g �s = ≺ TF,ϕ,ψJs f , Jsg �s

=
1

cψ,ϕ

∫
S IM(n)

F(b, a, $) ≺ ψb,a,$, Js f �≺ Jsg, ϕb,a,$ � db
da

an+1 d$,
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in which cϕ,ψ =
∫
Rn |̂ϕ(ξ)||ψ̂(ξ)| dξ

|ξ|n
.

Proposition 2.8. Let F be a symbol in L1(S IM(n)) and ϕ ∈ L∞(Rn), ψ ∈ L1(Rn). Then T̃F,ϕ,ψ :
Hs(Rn)→ Hs(Rn) is a bounded linear operator and

‖T̃F,ϕ,ψ‖ ≤ ‖ϕ‖∞‖ψ‖1‖F‖1.

Proof. Let ϕ, ψ be two admissible wavelets. For f , g ∈ Hs(Rn) we have,

| ≺ T̃F,ϕ,ψ f , g �s | = | ≺ TF,ϕ,ψJs f , Jsg �2 |

≤ ‖ϕ‖∞‖ψ‖1‖F‖1‖Js f ‖2‖Jsg‖2

≤ ‖ϕ‖∞‖ψ‖1‖F‖1‖ f ‖s‖g‖s.

Therefore,
‖T̃F,ϕ,ψ‖ ≤ ‖ϕ‖∞‖ψ‖1‖F‖1.

Proposition 2.9. Let F ∈ L1(S IM(n)), ϕ ∈ Lp(Rn) and ψ ∈ Lq(Rn), where q is the conjugate of
p, for 1 ≤ p ≤ ∞. Then the localization operator T̃F,ϕ,ψ : Hs(Rn) → Hs(Rn) is a bounded linear
operator and we have

‖T̃F,ϕ,ψ‖ ≤ ‖ϕ‖p‖ψ‖q‖F‖1. (2.6)

Proof. Let ϕ ∈ Lp(Rn), ψ ∈ Lq(Rn) . For f , g ∈ Hs(Rn) we have,

| ≺ T̃F,ϕ,ψ f , g �s | = | ≺ TF,ϕ,ψJs f , Jsg �2 |

≤ ‖ϕ‖p‖ψ‖q‖F‖1‖Js f ‖2‖Jsg‖2

≤ ‖ϕ‖p‖ψ‖q‖F‖1‖ f ‖s‖g‖s.

Therefore,
‖T̃F,ϕ,ψ‖ ≤ ‖ϕ‖p‖ψ‖q‖F‖1.

Theorem 2.10. Let F be in L1(S IM(n)) and ϕ, ψ ∈ L∞(Rn) ∩ L1(Rn). Then the bounded linear
operator T̃F,ϕ,ψ on Hs(Rn) is compact.

Proof. Let { fn}
∞
n=1 be a sequence of functions in Hs(Rn) such that fn → 0 weakly in Hs(Rn) as

n → ∞. Since Js is unitary isomorphism, so Js fn → 0 weakly in L2(Rn). Then TF,ϕ,ψJs fn → 0.
Therefore, T̃F,ϕ,ψ fn → 0. Thus the proof is complete.



Esmaeelzadeh/ Wavelets and Linear Algebra 10(2) (2023) 19- 27 27

References

[1] S.T. Ali, J-P. Antoine and J-P. Gazeau, Coherent States, Wavelets and Their Generalizations, Springer-Verlag,
New York, 2000.

[2] J-P. Aubin, Applied Functional Analysis, New York, John Wiley, CRC Press, 2000.
[3] I. Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Transactions on

Information Theory, 36(5) (1990), 961–1005.
[4] I. Daubechies, Time-frequency localization operators: a geometric phase space approach, IEEE Trans. Inform.

Theory, 34, (1988), 605–612.
[5] F. De Mari, H.G. Feichtinger and K. Nowak, Uniform eigenvalue estimates for time-frequency localization oper-

ators, J. London. Math. Soc., 7(2) (2021), 211–218.
[6] G.B. Folland, Real Analysis: Modern Techniques and Their Applications, New York, John Wiley, 1999.
[7] F. Esmaeelzadeh, Multi-dimensional wavelets on Sobolev spaces, Khayyam Journal of Mathematics, 65(3)

(2021), 720–732.
[8] W. Rudin, Functional Analysis, Tata McGraw-Hill, New York, 1973.
[9] M.W. Wong, Wavelet Transform and Localization Operator, Verlag, Basel- Boston- Berlin, 2002.


	Introduction and preliminaries
	Main results

