

cK-frames and cK-Riesz bases in Hilbert spaces

Azam Shekari^a, Mohammad Reza Abdollahpour^{a,*}

^aDepartment of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran.

ARTICLE INFO

Article history: Received 13 March 2022 Accepted 17 June 2023 Available online 22 November 2023 Communicated by Rajab Ali Kamyabi-Gol

Keywords:

cK-frame, cK-Riesz bases, cK-dual, Riesz-type cK-frame.

2010 MSC: 42C15, 42C40, 41A58.

1. Introduction

Duffin and Schaeffer introduced the concept of discrete frames in Hilbert spaces in 1952 to study some deep problems in nonharmonic Fourier series [11]. These frames were reintroduced and developed in 1986 by Daubechies et al. [9], and became more popular from then on. A

Email addresses: Azamshekari67@yahoo.com; a.shekari@uma.ac.ir (Azam Shekari), mrabdollahpour@yahoo.com; m.abdollah@uma.ac.ir (Mohammad Reza Abdollahpour)

http://doi.org/10.22072/wala.2023.550565.1372 © (2023) Wavelets and Linear Algebra

Abstract

In this paper, we prove some new results about cK-frames. Also, we introduce the concept of cK-Riesz basis and we provide a necessary and sufficient condition under which *F* is a cK-Riesz basis. Finally, for the closed range operator $K \in B(\mathcal{H})$, we prove that under some conditions, $\pi_{R(K)}F$ is a cK-Riesz basis if and only if it has only one dual, where $\pi_{R(K)}$ is the orthogonal projection from \mathcal{H} onto R(K), i.e., the range of *K*.

© (2023) Wavelets and Linear Algebra

^{*}Corresponding author

sequence $\{f_j\}_{j\in J}$ in a Hilbert space \mathcal{H} is called a frame for \mathcal{H} if there exist constants A, B > 0 such that for all $f \in \mathcal{H}$,

$$A||f||^2 \leqslant \sum_{j \in J} |\langle f, f_j \rangle|^2 \leqslant B||f||^2.$$

$$(1.1)$$

 $\{f_j\}_{j\in J}$ is called a Bessel sequence if the right hand side of (1.1) holds for all $f \in \mathcal{H}$.

A particular example of a frame is an orthonormal basis for \mathcal{H} or, more generally, any isomorphic image of an orthonormal basis, i.e., a Riesz basis ([7, 15]). We say that a sequence $\{f_j\}_{j \in J}$ is a Riesz basis for the Hilbert space \mathcal{H} if $\overline{span}\{f_j\}_{j \in J} = \mathcal{H}$ (i.e., $\{f_j\}_{j \in J}$ is complete in \mathcal{H}), and there exist constants A, B > 0 such that for any finite scalar sequence $\{c_j\}$,

$$A \sum |c_j|^2 \leq \left\| \sum c_j f_j \right\|^2 \leq B \sum |c_j|^2.$$

Continuous frame as a generalization of frame was proposed by G. Kaiser [17] and independently by Ali, Antoine and Gazeau [2] (see also [5], [13]). In mathematical physics these frames are referred to as coherent states [1]. The work done by Rahimi et.al in [21], gives us a more routine study on continuous frames. Also, Gabardo and Han in [13], have provided some basic properties of continuous frames and they have introduced a kind of continuous frame which possesses only one dual, called Riesz-type frame. For more details about continuous frames, the reader can refer to [3, 8, 12, 18, 19].

Throughout this paper, \mathcal{H} is a complex Hilbert space, J is a countable set, (Ω, μ) is a σ -finite measure space with positive measure μ , $B(\mathcal{H})$ is the set of all bounded linear operators on \mathcal{H} . If $K \in B(\mathcal{H})$ then N(K) and R(K) are the kernel and the range of the operator K, respectively. $L^2(\Omega)$ represents an infinite-dimensional Hilbert space consisting of all measurable functions $\varphi : \Omega \to \mathbb{C}$ such that

$$\|\varphi\|_2 = \left(\int_{\Omega} |\varphi(\omega)|^2 d\mu(\omega)\right)^{1/2} < \infty.$$

In this space, the inner product is defined by

$$\langle \varphi, \psi \rangle_{L^2} = \int_{\Omega} \varphi(\omega) \overline{\psi(\omega)} d\mu(\omega),$$

for all $\varphi, \psi \in L^2(\Omega)$. Also, we denote by $L^2(\Omega, \mathcal{H})$ the set of all mappings $F : \Omega \to \mathcal{H}$ such that for all $f \in \mathcal{H}$, the function $\omega \mapsto \langle f, F(\omega) \rangle$ defined almost everywhere on Ω , belongs to $L^2(\Omega)$.

A mapping $F : \Omega \to \mathcal{H}$ is called a continuous frame (or a c-frame) for \mathcal{H} , if F is weakly measurable, i.e., for all $f \in \mathcal{H}$, $\omega \mapsto \langle f, F(\omega) \rangle$ is a measurable function on Ω , and there exist constants A, B > 0 such that

$$A||f||^{2} \leqslant \int_{\Omega} |\langle f, F(\omega) \rangle|^{2} d\mu(\omega) \leqslant B||f||^{2}, \quad f \in \mathcal{H}.$$
(1.2)

If the right hand inequality of (1.2) holds for all $f \in \mathcal{H}$ then we say that $F : \Omega \to \mathcal{H}$ is a c-Bessel mapping. We say that F is a tight c-frame, if there exists a constant A > 0 such that $\int_{\Omega} |\langle f, F(\omega) \rangle|^2 d\mu(\omega) = A ||f||^2$ for all $f \in \mathcal{H}$.

Definition 1.1. [4] A c-Bessel mapping $F \in L^2(\Omega, \mathcal{H})$ is said to be L^2 -independent if

$$\int_{\Omega} \phi(\omega) F(\omega) d\mu(\omega) = 0$$

for $\phi \in L^2(\Omega)$, implies that $\phi = 0$ almost everywhere.

Proposition 1.2. ([21] Theorem 2.6 and Proposition 2.7). A weakly measurable function $F : \Omega \to \mathcal{H}$ is a c-Bessel mapping for \mathcal{H} if and only if $T_F : L^2(\Omega) \to \mathcal{H}$ weakly defined by

$$\langle T_F \varphi, h \rangle = \int_{\Omega} \varphi(\omega) \langle F(\omega), h \rangle d\mu(\omega), \quad h \in \mathcal{H},$$
 (1.3)

is well-defined, linear and bounded operator. In this case, its adjoint is given by

$$T_F^*: \mathcal{H} \to L^2(\Omega), \quad (T_F^*h)(\omega) = \langle h, F(\omega) \rangle, \quad \omega \in \Omega.$$
 (1.4)

The operator T_F is called the pre-frame operator or synthesis operator and T_F^* is called the analysis operator of F.

If *F* is a c-Bessel mapping for \mathcal{H} , then the operator $S_F : \mathcal{H} \to \mathcal{H}$ defined by $S_F = T_F T_F^*$ is a bounded operator. We call S_F the frame operator of *F*. Thus,

$$\langle S_F f, g \rangle = \int_{\Omega} \langle f, F(\omega) \rangle \langle F(\omega), g \rangle d\mu(\omega), \quad f, g \in \mathcal{H}.$$
(1.5)

The concept of continuous Riesz basis (or c-Riesz basis) was introduced by Arefijamaal et al., in [4]. A c-Bessel mapping $F : \Omega \to \mathcal{H}$ is called μ -complete if

$$\left\{\int_{\Omega}\phi(\omega)F(\omega)d\mu(\omega);\,\phi\in L^{2}(\Omega)\right\}$$

is dense in \mathcal{H} . It is proved in [4] that a mapping $F : \Omega \to \mathcal{H}$ is c-Bessel if and only if for all $f \in \mathcal{H}, \int_{\Omega} |\langle f, F(\omega) \rangle|^2 d\mu(\omega) < \infty$. A mapping $F \in L^2(\Omega, \mathcal{H})$ is called a c-Riesz basis for \mathcal{H} with respect to (Ω, μ) if F is μ -complete and there are two positive constants A and B such that

$$A\Big(\int_{\Omega_1} |\phi(\omega)|^2 d\mu(\omega)\Big)^{1/2} \leqslant \Big\|\int_{\Omega_1} \phi(\omega) F(\omega) d\mu(\omega)\Big\| \leqslant B\Big(\int_{\Omega_1} |\phi(\omega)|^2 d\mu(\omega)\Big)^{1/2} d\mu(\omega)\Big)^{1/2} d\mu(\omega) = 0$$

for every $\phi \in L^2(\Omega)$ and for any measurable subset Ω_1 of Ω with $\mu(\Omega_1) < \infty$. The constants *A* and *B* are called the c-Riesz basis bounds.

L. Gǎvruta in [14] introduced a frame with respect to a bounded linear operator K in a Hilbert space \mathcal{H} to study the atomic decomposition systems. These frames are known as K-frames. For $K \in B(\mathcal{H})$, a sequence $\{f_j\}_{j\in J}$ in a Hilbert space \mathcal{H} is called a K-frame for \mathcal{H} , if there exist constants A, B > 0 such that for each $f \in \mathcal{H}$,

$$A||K^*f||^2 \leqslant \sum_{j \in J} |\langle f, f_j \rangle|^2 \leqslant B||f||^2.$$

Some properties of K-frames have been studied in [26].

Y. Huang and D. Hua [16], introduced the concept of K-Riesz basis in Hilbert spaces (see also [27]). A sequence $\{f_j\}_{j\in J}$ in \mathcal{H} is called $\overline{R(K)}$ -complete, if

$$\{f \in \mathcal{H} : \langle f, f_j \rangle = 0, \ j \in J\} \subset \overline{R(K)}^{\perp} = N(K^*).$$

A sequence $\{f_j\}_{j \in J}$ is a K-Riesz basis for \mathcal{H} , if it is $\overline{R(K)}$ -complete and there exist constants A, B > 0 such that for all finite scalar sequence $\{c_j\}$,

$$A \sum |c_j|^2 \leq \left\| \sum c_j f_j \right\|^2 \leq B \sum |c_j|^2.$$

Rahimlou, et al., introduced the concept of continuous K-frame (or cK-frame) in [22], and they studied some properties of it in [23].

Definition 1.3. [22] Let $K \in B(\mathcal{H})$ and $F : \Omega \to \mathcal{H}$ be weakly measurable. Then the map *F* is called a cK-frame for \mathcal{H} , if there exist constants A, B > 0 such that for each $h \in \mathcal{H}$,

$$A||K^*h||^2 \leq \int_{\Omega} |\langle h, F(\omega) \rangle|^2 d\mu(\omega) \leq B||h||^2.$$

A cK-frame F is called a tight cK-frame, whenever there exists A > 0 such that for every $h \in \mathcal{H}$,

$$\int_{\Omega} |\langle h, F(\omega) \rangle|^2 d\mu(\omega) = A ||K^*h||^2,$$

and it is called a Parseval cK-frame, whenever for every $h \in \mathcal{H}$,

$$\int_{\Omega} |\langle h, F(\omega) \rangle|^2 d\mu(\omega) = ||K^*h||^2$$

Lemma 1.4. [22] Let $F : \Omega \to \mathcal{H}$ be weakly measurable, and $K \in B(\mathcal{H})$. Then the following assertions are equivalent:

(i) F is a cK-frame for H;

(ii) F is a c-Bessel mapping for H and there exists $G \in B(\mathcal{H}, L^2(\Omega))$ such that

$$Kh = \int_{\Omega} G(h)(\omega)F(\omega)d\mu(\omega), \quad h \in \mathcal{H}.$$
(1.6)

Note 1.5. Since a cK-frame F is a c-Bessel mapping for \mathcal{H} , the operators T_F , T_F^* and S_F can be defined for F. If F is a Parseval cK-frame then $S_F = KK^*$.

Lemma 1.6. [7] Let \mathcal{H}_1 and \mathcal{H}_2 be Hilbert spaces and suppose that $U : \mathcal{H}_1 \to \mathcal{H}_2$ is a bounded operator with closed range R(U). Then there exists a bounded operator $U^{\dagger} : \mathcal{H}_2 \to \mathcal{H}_1$ for which

$$UU^{\dagger}f = f, f \in R(U).$$

We call U^{\dagger} the pseudo-inverse of the operator U.

Theorem 1.7. [22] Let $K \in B(\mathcal{H})$ and $F : \Omega \to \mathcal{H}$ be a cK-frame for \mathcal{H} with bounds A, B. If K is closed range then S_F is invertible on R(K) and for each $h \in R(K)$,

$$B^{-1} \|h\|^2 \leq \langle (S_F |_{R(K)})^{-1}h, h \rangle \leq A^{-1} \|K^{\dagger}\|^2 \|h\|^2,$$

where K^{\dagger} is the pseudo-inverse of K.

Definition 1.8. [22] Let $K \in B(\mathcal{H})$ and let $F : \Omega \to \mathcal{H}$ and $G : \Omega \to \mathcal{H}$ be c-Bessel mappings for \mathcal{H} . We say that *G* is a cK-dual of *F*, if for all $h, g \in \mathcal{H}$,

$$\langle Kh,g\rangle = \int_{\Omega} \langle h,G(\omega)\rangle\langle F(\omega),g\rangle d\mu(\omega)$$

Definition 1.9. [20] A function $F : \Omega \to \mathcal{H}$ is called Bochner measurable if there exists a sequence of simple functions $\{F_n\}_{n=1}^{\infty}$ such that $\lim_{n\to\infty} ||F_n - F|| = 0$, μ -almost everywhere. A Bochner measurable function $F : \Omega \to \mathcal{H}$ is called Bochner integrable if there exists a sequence of integrable simple functions $\{F_n\}_{n=1}^{\infty}$ such that

$$\lim_{n\to\infty}\int_{\Omega}\|F_n(\omega)-F(\omega)\|d\mu(\omega)=0.$$

In this case, we have

$$\int_{E} F(\omega) d\mu(\omega) = \lim_{n \to \infty} \int_{E} F_n(\omega) d\mu(\omega)$$

where E is a countable set.

Proposition 1.10. [22] Let $K \in B(\mathcal{H})$ be closed range, and $F : \Omega \to \mathcal{H}$ be a cK-frame for \mathcal{H} and Bochner integrable. Then $\Pi = K^*(S_F \mid_{R(K)})^{-1}\pi_{S_F(R(K))}F$ is a cK-dual of $\pi_{R(K)}F$ with bounds B^{-1} and $A^{-1}||K||^2||K^{\dagger}||^2$, respectively, where A and B are cK-frame bounds for F. Π is called the standard cK-dual of $\pi_{R(K)}F$.

What follows have been used in the rest of this paper, in which \mathcal{H}_1 and \mathcal{H}_2 are Hilbert spaces and $B(\mathcal{H}_1, \mathcal{H}_2)$ is the set of all bounded linear operators from \mathcal{H}_1 to \mathcal{H}_2 .

Definition 1.11. [6] We say that $T \in B(\mathcal{H}_1, \mathcal{H}_2)$ is left-invertible (or, respectively, right-invertible) if there exists a bounded linear operator $G : \mathcal{H}_2 \to \mathcal{H}_1$ such that

$$GT = I_{\mathcal{H}_1}, \quad (\text{or } TG = I_{\mathcal{H}_2}).$$

We say that such an operator G is a bounded linear left (or right) inverse of T.

Proposition 1.12. [6] For $T \in B(\mathcal{H}_1, \mathcal{H}_2)$ the following assertions are equivalent: (i) *T* is injective and R(T) is closed in \mathcal{H}_2 . (ii) *T* is left-invertible.

Lemma 1.13. [10] Let $T_1 \in B(\mathcal{H}_1, \mathcal{H})$ and $T_2 \in B(\mathcal{H}_2, \mathcal{H})$. The following statements are equivalent:

(*i*) $R(T_1) \subset R(T_2)$; (*ii*) $T_1T_1^* \leq \lambda^2 T_2T_2^*$, for some $\lambda \geq 0$; and, (*iii*) there exists a bounded operator $T_3 \in B(\mathcal{H}_1, \mathcal{H}_2)$ such that $T_1 = T_2T_3$. *Remark* 1.14. In Lemma 1.13, if $T_1 \neq 0$, then $\lambda > 0$.

Lemma 1.15. [25] Let $T \in B(\mathcal{H}_1, \mathcal{H}_2)$, then

$$R(T)^{\perp} = N(T^*), \ R(T^*)^{\perp} = N(T), \ \overline{R(T)} = N(T^*)^{\perp}, \ \overline{R(T^*)} = N(T)^{\perp},$$

2. Some properties of cK-frames

In this section, the results shown in [26] for K-frames, are extended to continuous case or cK-frames. Also, inspired by results provided in [13], we show similar consequences for cK-frames. Moreover, we give a necessary and sufficient condition for a mapping F to be a cK-frame. Throughout this section, the orthogonal projection of \mathcal{H} onto a closed subspace $V \subseteq \mathcal{H}$ is denoted by π_V .

Lemma 2.1. Let $K \in B(\mathcal{H})$ and F be a tight *c*-frame for \mathcal{H} with bound A. Then KF and K^*F are tight *cK*-frame and tight *cK*^{*}-frame for \mathcal{H} with bound A, respectively.

Proof. For all $f \in \mathcal{H}$, we have

$$\int_{\Omega} |\langle f, KF(\omega) \rangle|^2 d\mu(\omega) = A ||K^*f||^2,$$

and

$$\int_{\Omega} |\langle f, K^*F(\omega) \rangle|^2 d\mu(\omega) = A ||Kf||^2.$$

Theorem 2.2. [23] Let $F : \Omega \to \mathcal{H}$ be a *c*-frame for \mathcal{H} and $K \in B(\mathcal{H})$. Then $KF : \Omega \to \mathcal{H}$ is a *cK*-frame for \mathcal{H} .

In the following, we provide a trivial example of a cK-frame and a non-trivial example of a Parseval cK-frame.

Example 2.3. From Corollary 8.1.4 in [7], for every $0 \neq g \in L^2(\mathbb{R})$, the family $\{E_b T_a g\}_{a,b\in\mathbb{R}}$ is a c-frame for $L^2(\mathbb{R})$ with respect to $\Omega = \mathbb{R}^2$ and the Lebesgue measure *dbda*. Let $K \in B(L^2(\mathbb{R}))$, then by Theorem 2.2, $\{K E_b T_a g\}_{a,b\in\mathbb{R}}$ is a cK-frame for $L^2(\mathbb{R})$.

Example 2.4. Consider $\mathcal{H} = \mathbb{R}^2$ with the standard basis $\{e_1, e_2\}$, where $e_1 = (1, 0)$ and $e_2 = (0, 1)$. Put $N_{\mathbb{R}^2} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$ and let $N_1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1, x \geq 0\}$ and $N_2 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1, x < 0\}$ be partitions of $N_{\mathbb{R}^2}$. Let $\Omega = N_{\mathbb{R}^2}$ and λ be the Lebesgue measure. Define $F : N_{\mathbb{R}^2} \to \mathbb{R}^2$ such that

$$F(\omega) = \begin{cases} \frac{1}{\sqrt{\lambda(N_1)}} e_1, & \omega \in N_1, \\\\ \frac{1}{\sqrt{\lambda(N_2)}} e_2, & \omega \in N_2. \end{cases}$$

It is easy to check that *F* is a Parseval c-frame for \mathbb{R}^2 with respect to $(N_{\mathbb{R}^2}, \lambda)$. Define $K : \mathbb{R}^2 \to \mathbb{R}^2$ by

$$Kf = \langle f, e_1 \rangle e_2 + \langle f, e_2 \rangle e_1$$

thus,

$$K^*f = \langle f, e_2 \rangle e_1 + \langle f, e_1 \rangle e_2.$$

Now, for all $f \in \mathcal{H}$ we have

$$\begin{split} \|K^*f\|^2 &= \|\langle f, e_2 \rangle e_1 + \langle f, e_1 \rangle e_2 \|^2 \\ &= \lambda(N_1) |\langle f, \frac{1}{\sqrt{\lambda(N_1)}} e_1 \rangle|^2 + \lambda(N_2) |\langle f, \frac{1}{\sqrt{\lambda(N_2)}} e_2 \rangle|^2 \\ &= \int_{N_1} |\langle f, \frac{1}{\sqrt{\lambda(N_1)}} e_1 \rangle|^2 d\lambda(\omega) + \int_{N_2} |\langle f, \frac{1}{\sqrt{\lambda(N_2)}} e_2 \rangle|^2 d\lambda(\omega) \\ &= \int_{N_{\mathbb{R}^2}} |\langle f, F(\omega) \rangle|^2 d\lambda(\omega). \end{split}$$

This shows that *F* is a Parseval cK-frame for \mathbb{R}^2 .

Proposition 2.5. Let $T \in B(\mathcal{H})$ and F be a cK-frame for \mathcal{H} with bounds A and B. Then TF is a cTK-frame for \mathcal{H} .

Proof. We have

$$\int_{\Omega} |\langle f, TF(\omega) \rangle|^2 d\mu(\omega) = \int_{\Omega} |\langle T^*f, F(\omega) \rangle|^2 d\mu(\omega) \leqslant B ||T||^2 . ||f||^2, \ f \in \mathcal{H}.$$

Also,

$$A\|(TK)^*f\|^2 = A\|K^*T^*f\|^2 \leqslant \int_{\Omega} |\langle T^*f, F(\omega)\rangle|^2 d\mu(\omega) = \int_{\Omega} |\langle f, TF(\omega)\rangle|^2 d\mu(\omega).$$

So, *TF* is a cTK-frame for \mathcal{H} with bounds *A* and $B||T||^2$.

Proposition 2.6. Suppose that $F : \Omega \to \mathcal{H}$ is a cK-frame for \mathcal{H} with respect to (Ω, μ) . If $F : \Omega \to \mathcal{H}$ is L^2 -independent, then the mapping $G \in B(\mathcal{H}, L^2(\Omega))$ satisfying (1.6) is unique.

Proof. Assume that there exists $D \in B(\mathcal{H}, L^2(\Omega))$ such that

$$Kh = \int_{\Omega} D(h)(\omega)F(\omega)d\mu(\omega), \ h \in \mathcal{H}.$$

Then we have

$$\int_{\Omega} (G(h) - D(h))(\omega)F(\omega)d\mu(\omega) = 0, \ h \in \mathcal{H}.$$

Since *F* is L^2 -independent, G(h) - D(h) = 0 almost everywhere. Since $h \in \mathcal{H}$ is arbitray, so we get G = D. Hence the mapping $G \in B(\mathcal{H}, L^2(\Omega))$ satisfying (1.6) is unique.

Theorems 2.7 and 2.9 are similar to Proposition 2.6 and corollary 2.7 in [13].

Theorem 2.7. Let $\{e_j\}_{j\in J}$ be an orthonormal basis for \mathcal{H} and let $K \in B(\mathcal{H})$ be an invertible operator. Then the following are equivalent: (i) *F* is a Parseval cK-frame for \mathcal{H} ,

(ii) there exists an orthonormal set $\{\psi_j\}$ in $L^2(\Omega)$ having the property that $\sum_{j\in J} |\psi_j(\omega)|^2 < \infty$ for *a.e.* $\omega \in \Omega$ such that $F(\omega) = \sum_{j\in J} \psi_j(\omega) Ke_j$ holds for *a.e.* $\omega \in \Omega$.

Proof. Assume that *F* is a Parseval cK-frame for \mathcal{H} . Let T_F^* be the analysis operator for *F* defined by (1.4), and write $\psi_j = \overline{\phi_j}$, where $\phi_j = T_F^*(K^{-1})^* e_j$. For all $i, j \in J$, by Note 1.5 we have

$$\begin{split} \langle \psi_j, \psi_i \rangle &= \langle \phi_i, \phi_j \rangle = \langle T_F^* (K^{-1})^* e_i, T_F^* (K^{-1})^* e_j \rangle = \langle T_F T_F^* (K^{-1})^* e_i, (K^{-1})^* e_j \rangle \\ &= \langle K^{-1} S_F (K^{-1})^* e_i, e_j \rangle \\ &= \langle K^{-1} K K^* (K^{-1})^* e_i, e_j \rangle \\ &= \langle e_i, e_j \rangle. \end{split}$$

Therefore, $\{\psi_j\}_{j\in J}$ is an orthonormal set. Also, we have

$$\begin{split} \sum_{j \in J} |\psi_j(\omega)|^2 &= \sum_{j \in J} |\overline{\phi_j(\omega)}|^2 = \sum_{j \in J} |\overline{(T_F^*(K^{-1})^* e_j)(\omega)}|^2 \\ &= \sum_{j \in J} |\langle F(\omega), (K^{-1})^* e_j \rangle|^2 \\ &= \sum_{j \in J} |\langle K^{-1}F(\omega), e_j \rangle|^2 \\ &= ||K^{-1}F(\omega)||^2 \\ &\leqslant ||K^{-1}||^2 . ||F(\omega)||^2 < \infty, \end{split}$$

and

$$\sum_{j \in J} \psi_j(\omega) e_j = \sum_{j \in J} \overline{\phi_j(\omega)} e_j = \sum_{j \in J} \overline{(T_F^*(K^{-1})^* e_j)(\omega)} e_j$$
$$= \sum_{j \in J} \overline{\langle (K^{-1})^* e_j, F(\omega) \rangle} e_j$$
$$= \sum_{j \in J} \langle K^{-1}F(\omega), e_j \rangle e_j$$
$$= K^{-1}F(\omega).$$

So, $F(\omega) = \sum_{j \in J} \psi_j(\omega) K e_j$.

Conversly if (*ii*) holds then for any $f \in \mathcal{H}$, we have

$$\begin{split} \int_{\Omega} |\langle f, F(\omega) \rangle|^2 d\mu(\omega) &= \int_{\Omega} \left| \left\langle f, \sum_{j \in J} \psi_j(\omega) K e_j \right\rangle \right|^2 d\mu(\omega) = \int_{\Omega} \left| \sum_{j \in J} \langle f, K e_j \rangle \overline{\psi_j}(\omega) \right|^2 d\mu(\omega) \\ &= \left\| \sum_{j \in J} \langle f, K e_j \rangle \overline{\psi_j} \right\|_2^2 \\ &= \sum_{j \in J} |\langle K^* f, e_j \rangle|^2 \\ &= \|K^* f\|^2. \end{split}$$

Corollary 2.8. Theorem 2.7 holds also for a unitary operator $K \in B(\mathcal{H})$. It is enough to put $\phi_j = T_F^* K e_j$.

Theorem 2.9. Let $0 \neq K \in B(\mathcal{H})$ be an invertible operator. Then the following are equivalent: (i) *F* is a cK-frame for \mathcal{H} ;

(ii) $F(\omega) = \sum_{j \in J} \psi_j(\omega) Ke_j$ for some orthonormal basis $\{e_j\}_{j \in J}$ of \mathcal{H} and some family $\{\psi_j\}_{j \in J}$ in $L^2(\Omega)$ with the properties that $\{\psi_j\}_{j \in J}$ is a Riesz basis for $\overline{span}\{\psi_j\}_{j \in J}$ and that $\sum_{j \in J} |\psi_j(\omega)|^2 < \infty$ for a.e. $\omega \in \Omega$.

(iii) $F(\omega) = \sum_{j \in J} \psi_j(\omega) g_j$ for some K-Riesz basis $\{g_j\}_{j \in J}$ of \mathcal{H} and some family $\{\psi_j\}_{j \in J}$ in $L^2(\Omega)$ with the proprties that $\{\psi_j\}_{j \in J}$ is a Riesz basis for $\overline{span}\{\psi_j\}_{j \in J}$ and that $\sum_{j \in J} |\psi_j(\omega)|^2 < \infty$ for a.e. $\omega \in \Omega$.

Proof. (*i*) \Rightarrow (*ii*). Let *F* be a cK-frame for \mathcal{H} with bounds *A* and *B*. Let $\{e_j\}_{j \in J}$ be an orthonormal basis for \mathcal{H} and put $\psi_j = \overline{\phi_j}$ where $\phi_j = T_F^*(K^{-1})^* e_j$. Then for any finite scalar sequence $\{c_j\}$ we have

$$\begin{split} \left\|\sum c_{j}\psi_{j}\right\|^{2} &= \left\|\sum c_{j}\overline{\phi_{j}}\right\|^{2} = \left\|\overline{\sum \overline{c_{j}}\phi_{j}}\right\|^{2} = \left\|\overline{T_{F}^{*}\left(\sum \overline{c_{j}}(K^{-1})^{*}e_{j}\right)}\right\|_{2}^{2} \\ &= \int_{\Omega} \left|\overline{\left\langle\sum \overline{c_{j}}(K^{-1})^{*}e_{j},F(\omega)\right\rangle}\right|^{2}d\mu(\omega) \\ &= \int_{\Omega} \left|\left\langle F(\omega),\sum \overline{c_{j}}(K^{-1})^{*}e_{j}\right\rangle\right|^{2}d\mu(\omega). \end{split}$$

Since *F* is a cK-frame, we have

$$A\left\|K^*\left(\sum \overline{c_j}(K^{-1})^*e_j\right)\right\|^2 \leqslant \left\|\sum c_j\psi_j\right\|^2 \leqslant B\left\|\sum \overline{c_j}(K^{-1})^*e_j\right\|^2.$$

Then,

$$A \sum |c_j|^2 = A \left\| \sum \overline{c_j} e_j \right\|^2 = A \left\| K^* \left(\sum \overline{c_j} (K^{-1})^* e_j \right) \right\|^2 \leq \left\| \sum c_j \psi_j \right\|^2$$
$$\leq B \left\| \sum \overline{c_j} (K^{-1})^* e_j \right\|^2$$
$$\leq B \|K^{-1}\|^2 \sum |c_j|^2.$$

Therefore, $\{\psi_j\}_{j \in J}$ is a Riesz basis for $\overline{span}\{\psi_j\}_{j \in J}$ with bounds *A* and $B||K^{-1}||^2$. Moreover, $F(\omega) = \sum_{j \in J} \psi_j(\omega) Ke_j$ and $\sum_{j \in J} |\psi_j(\omega)|^2 < \infty$ for a.e. $\omega \in \Omega$. (*ii*) \Rightarrow (*i*). Since $\{\psi_j\}_{j \in J}$ is a Riesz basis for $\overline{span}\{\psi_j\}_{j \in J}$, there exist $0 < A \leq B < \infty$ such that

$$A\sum |c_j|^2 \leqslant \left\|\sum c_j\psi_j\right\|^2 \leqslant B\sum |c_j|^2, \ \{c_j\}_{j\in J} \in l^2(J).$$

Then, for all $f \in \mathcal{H}$ we have

$$\begin{aligned} A||K^*f||^2 &= A\sum_{j\in J} |\langle e_j, K^*f\rangle|^2 \leqslant \left\|\sum_{j\in J} \langle e_j, K^*f\rangle\psi_j\right\|_2^2 \\ &\leqslant B\sum_{j\in J} |\langle e_j, K^*f\rangle|^2 \\ &= B||K^*f||^2 \leqslant B||K||^2.||f||^2 \end{aligned}$$

and

$$\begin{split} \int_{\Omega} |\langle f, F(\omega) \rangle|^2 d\mu(\omega) &= \int_{\Omega} |\langle F(\omega), f \rangle|^2 d\mu(\omega) = \int_{\Omega} \left| \left\langle \sum_{j \in J} \psi_j(\omega) K e_j, f \right\rangle \right|^2 d\mu(\omega) \\ &= \int_{\Omega} \left| \sum_{j \in J} \psi_j(\omega) \langle K e_j, f \rangle \right|^2 d\mu(\omega) \\ &= \left\| \sum_{j \in J} \langle e_j, K^* f \rangle \psi_j \right\|_2^2. \end{split}$$

Therefore,

$$A||K^*f||^2 \leqslant \left\|\sum_{j\in J} \langle e_j, K^*f \rangle \psi_j\right\|_2^2 = \int_{\Omega} |\langle f, F(\omega) \rangle|^2 d\mu(\omega) \leqslant B||K||^2 . ||f||^2,$$

so, *F* is a cK-frame for \mathcal{H} with bounds *A* and $B||K||^2$.

 $(ii) \Rightarrow (iii)$. Put $\psi_j = \overline{\phi_j}$ where $\phi_j = T_F^*(K^{-1})^* e_j$. According to $(i) \Rightarrow (ii)$, $\{\psi_j\}_{j \in J}$ is a Riesz basis for $\overline{span}\{\psi_j\}_{j \in J}$ and $\sum_{j \in J} |\psi_j(\omega)|^2 < \infty$ for a.e. $\omega \in \Omega$. Also, $F(\omega) = \sum_{j \in J} \psi_j(\omega)g_j$ where $g_j = Ke_j$ for all $j \in J$ and $\{g_j\}_{j \in J}$ is a K-Riesz basis for \mathcal{H} with bounds $||K^{-1}||^{-2}$ and $||K||^2$, recpectively. (*iii*) \Rightarrow (*i*). $\{g_j\}_{j \in J}$ is a K-Riesz basis for \mathcal{H} , so it is a K-frame ([24]), then there exist C, D > 0 such that

$$C||K^*f||^2 \leq \sum_{j \in J} |\langle f, g_j \rangle|^2 \leq D||f||^2.$$

On the other hand, let A, B > 0 be the bounds of Riesz basis $\{\psi_j\}_{j \in J}$. Then,

$$A\sum |c_j|^2 \leqslant \left\|\sum c_j\psi_j\right\|^2 \leqslant B\sum |c_j|^2, \ \{c_j\}_{j\in J} \in l^2(J).$$

For all $f \in \mathcal{H}$, we have

$$\begin{split} \int_{\Omega} |\langle f, F(\omega) \rangle|^2 d\mu(\omega) &= \int_{\Omega} |\langle F(\omega), f \rangle|^2 d\mu(\omega) = \int_{\Omega} \left| \left\langle \sum_{j \in J} \psi_j(\omega) g_j, f \right\rangle \right|^2 d\mu(\omega) \\ &= \int_{\Omega} \left| \sum_{j \in J} \psi_j(\omega) \langle g_j, f \rangle \right|^2 d\mu(\omega) \\ &= \left\| \sum_{j \in J} \langle g_j, f \rangle \psi_j \right\|_2^2. \end{split}$$

Moreover,

$$AC||K^*f||^2 \leqslant A\sum_{j\in J}|\langle g_j,f\rangle|^2 \leqslant \Big\|\sum_{j\in J}\langle g_j,f\rangle\psi_j\Big\|_2^2 \leqslant B\sum_{j\in J}|\langle g_j,f\rangle|^2 \leqslant BD||f||^2,$$

for all $f \in \mathcal{H}$. Therefore,

$$AC||K^*f||^2 \leq \int_{\Omega} |\langle f, F(\omega) \rangle|^2 d\mu(\omega) \leq BD||f||^2.$$

Corollary 2.10. Theorem 2.9 also holds for any unitary operator $K \in B(\mathcal{H})$.

Proposition 2.11. Let $0 \neq K \in B(\mathcal{H})$ be an invertible operator and let $F(\omega) = \sum_{j \in J} \psi_j(\omega)g_j$ in which $\{g_j\}_{j \in J}$ is a K-frame for \mathcal{H} and $\{\psi_j\}_{j \in J}$ is an orthonormal set in $L^2(\Omega)$ with the property that $\sum_{j \in J} |\psi_j(\omega)|^2 < \infty$, for a.e. $\omega \in \Omega$ then F is a cK-frame for \mathcal{H} .

Proof. For all $f \in \mathcal{H}$ we have

$$\begin{split} \int_{\Omega} |\langle f, F(\omega) \rangle|^2 d\mu(\omega) &= \int_{\Omega} |\langle F(\omega), f \rangle|^2 d\mu(\omega) \\ &= \int_{\Omega} \left| \left\langle \sum_{j \in J} \psi_j(\omega) g_j, f \right\rangle \right|^2 d\mu(\omega) \\ &= \int_{\Omega} \left| \sum_{j \in J} \psi_j(\omega) \langle g_j, f \rangle \right|^2 d\mu(\omega) \\ &= \left\| \sum_{j \in J} \langle g_j, f \rangle \psi_j \right\|_2^2 \\ &= \sum_{j \in J} |\langle g_j, f \rangle|^2. \end{split}$$

Then there exist A, B > 0 such that

$$A||K^*f||^2 \leqslant \sum_{j \in J} |\langle g_j, f \rangle|^2 = \int_{\Omega} |\langle f, F(\omega) \rangle|^2 d\mu(\omega) \leqslant B||f||^2.$$

Theorem 2.12. Let $0 \neq K \in B(\mathcal{H})$ and $\{\psi_i\}_{i \in I}$ be an orthonormal basis for $L^2(\Omega)$ and $F : \Omega \to \mathcal{H}$ be weakly measurable. Then F is a cK-frame for \mathcal{H} if and only if there exists a bounded linear operator $\Theta : L^2(\Omega) \to \mathcal{H}$ such that

$$\langle x, \Theta \psi_i \rangle = \langle \langle x, F(\cdot) \rangle, \psi_i \rangle, \ x \in \mathcal{H}, \ i \in I,$$

and $R(K) \subset R(\Theta)$.

Proof. First, we suppose that F is a cK-frame for \mathcal{H} . Then, there exist A, B > 0 such that

$$A||K^*f||^2 \leqslant \int_{\Omega} |\langle f, F(\omega) \rangle|^2 d\mu(\omega) \leqslant B||f||^2, \quad f \in \mathcal{H}.$$
(2.1)

Let the mapping $\Phi : \mathcal{H} \to L^2(\Omega)$ be defined by $\Phi f = \langle f, F(.) \rangle$, for all $f \in \mathcal{H}$. By (2.1), we have

$$\|\Phi f\|_2^2 = \int_{\Omega} |\Phi f(\omega)|^2 d\mu(\omega) = \int_{\Omega} |\langle f, F(\omega) \rangle|^2 d\mu(\omega) \leqslant B \|f\|^2, \ f \in \mathcal{H}.$$

Hence, Φ is a bounded linear operator. Also, by (2.1) we have $A||K^*f||^2 \leq ||\Phi f||_2^2$, for all $f \in \mathcal{H}$. Then, $AKK^* \leq \Phi^*\Phi$, so by Lemma 1.13, $R(K) \subset R(\Theta)$, where $\Theta = \Phi^*$. Also, for all $x \in \mathcal{H}$, we have

$$\langle x, \Theta \psi_i \rangle = \langle x, \Phi^* \psi_i \rangle = \langle \Phi x, \psi_i \rangle = \left\langle \langle x, F(\cdot) \rangle, \psi_i \right\rangle, \quad i \in I.$$

Conversely, for all $f \in \mathcal{H}$ and for all $i \in I$ we have

$$\langle \Theta^* f, \psi_i \rangle = \langle f, \Theta \psi_i \rangle = \langle \langle f, F(\cdot) \rangle, \psi_i \rangle.$$

So, $\Theta^* f = \langle f, F(\cdot) \rangle$, for all $f \in \mathcal{H}$. *F* is a c-Bessel mapping, since

$$\int_{\Omega} |\langle f, F(\omega) \rangle|^2 d\mu(\omega) = ||\Theta^* f||^2 \leq ||\Theta||^2 . ||f||^2.$$

Since, $R(K) \subset R(\Theta)$, Lemma 1.13 and Remark 1.14 imply that there exists $\lambda > 0$ such that $KK^* \leq \lambda \Theta \Theta^*$. Then

$$\frac{1}{\lambda} \|K^* f\|^2 \leq \|\Theta^* f\|^2 = \int_{\Omega} |\langle f, F(\omega) \rangle|^2 d\mu(\omega), \quad f \in \mathcal{H}.$$

Therefore, *F* is a cK-frame for \mathcal{H} with bounds $\frac{1}{\lambda}$ and $||\Theta||^2$, respectively.

3. cK-Riesz bases

In this section, considering the method provided in [4], we introduce the concept of continuous K-Riesz basis or cK-Riesz bases. We show that every cK-Riesz basis is a cK-frame, but a cK-frame can not be a cK-Riesz basis unless some certain conditions satisfied. Moreover, we give the definition of Riesz-type cK-frames and we show that when a Riesz-type cK-frame can be a cK-Riesz basis.

Definition 3.1. Let $K \in B(\mathcal{H})$ and put $M = \left\{ \int_{\Omega} \phi(\omega) F(\omega) d\mu(\omega); \phi \in L^2(\Omega) \right\}$. A c-Bessel mapping $F : \Omega \to \mathcal{H}$ is called $\overline{R(K)}$ - μ -complete, if

$$\overline{R(K)} \subset \overline{M} \tag{3.1}$$

Proposition 3.2. Let $F \in L^2(\Omega, \mathcal{H})$. Then the following are equivalent: (i) F is $\overline{R(K)}$ - μ -complete, (ii) if $f \in \mathcal{H}$ so that $\langle f, F(\omega) \rangle = 0$ for almost all $\omega \in \Omega$, then $f \in N(K^*)$.

Proof. (*i*) \Rightarrow (*ii*). Assume that $f \in \mathcal{H}$ and $\langle f, F(\omega) \rangle = 0$, for almost all $\omega \in \Omega$. Then

$$\left\langle f, \int_{\Omega} \phi(\omega) F(\omega) d\mu(\omega) \right\rangle = \int_{\Omega} \overline{\phi(\omega)} \langle f, F(\omega) \rangle d\mu(\omega) = 0,$$

for all $\phi \in L^2(\Omega)$. Thus $f \in M^{\perp}$. By (3.1) we have $M^{\perp} \subset \overline{R(K)}^{\perp}$ and Lemma 1.15 implies that $f \in N(K^*)$.

 $(ii) \Rightarrow (i)$. Let $f \in \mathcal{H}$ be such that $\langle f, \int_{\Omega} \phi(\omega) F(\omega) d\mu(\omega) \rangle = 0$ for all $\phi \in L^2(\Omega)$. Taking $\phi = \langle f, F(\cdot) \rangle \in L^2(\Omega)$, we get

$$0 = \left\langle \int_{\Omega} \phi(\omega) F(\omega) d\mu(\omega), f \right\rangle = \int_{\Omega} |\langle f, F(\omega) \rangle|^2 d\mu(\omega).$$

which shows that $\langle f, F(\omega) \rangle = 0$ for almost all $\omega \in \Omega$. Hence $f \in N(K^*)$. Thus,

$$M^{\perp} \subset \overline{R(K)}^{\perp},$$

therefore, $\overline{R(K)} \subset \overline{M}$.

Definition 3.3. A mapping $F \in L^2(\Omega, \mathcal{H})$ is called a cK-Riesz basis for \mathcal{H} with respect to (Ω, μ) if *F* is $\overline{R(K)}$ - μ -complete and there are two positive numbers *A* and *B* such that

$$A\Big(\int_{\Omega_1} |\phi(\omega)|^2 d\mu(\omega)\Big)^{1/2} \leq \left\|\int_{\Omega_1} \phi(\omega) F(\omega) d\mu(\omega)\right\| \leq B\Big(\int_{\Omega_1} |\phi(\omega)|^2 d\mu(\omega)\Big)^{1/2}, \quad (3.2)$$

for every $\phi \in L^2(\Omega)$ and for any measurable subset Ω_1 of Ω with $\mu(\Omega_1) < \infty$. The integral is taken in the weak sense and the constants *A* and *B* are called cK-Riesz basis bounds.

Remark 3.4. Let *F* be a cK-Riesz basis for \mathcal{H} . Since (Ω, μ) is σ -finite,

$$A\Big(\int_{\Omega} |\phi(\omega)|^2 d\mu(\omega)\Big)^{1/2} \leqslant \Big\|\int_{\Omega} \phi(\omega)F(\omega)d\mu(\omega)\Big\| \leqslant B\Big(\int_{\Omega} |\phi(\omega)|^2 d\mu(\omega)\Big)^{1/2}.$$

It means that (3.2) holds for whole Ω .

Theorem 3.5. Let $0 \neq K \in B(\mathcal{H})$ and $\{\psi_i\}_{i \in I}$ be an orthonormal basis for $L^2(\Omega)$ and $F \in L^2(\Omega, \mathcal{H})$. If F is a cK-Riesz basis for \mathcal{H} , then there exists a bounded left-invertible operator $\Gamma_F : L^2(\Omega) \to \mathcal{H}$ such that

$$\langle x, \Gamma_F \psi_i \rangle = \langle \langle x, F(\cdot) \rangle, \psi_i \rangle, \ x \in \mathcal{H}, \ i \in I,$$

and $R(K) \subset R(\Gamma_F)$.

-	~

Proof. Suppose that $F \in L^2(\Omega, \mathcal{H})$ is a cK-Riesz basis for \mathcal{H} . Then, it is $\overline{R(K)}$ - μ -complete and there exist A, B > 0 such that for every $\phi \in L^2(\Omega)$,

$$A\Big(\int_{\Omega} |\phi(\omega)|^2 d\mu(\omega)\Big)^{1/2} \leqslant \left\|\int_{\Omega} \phi(\omega) F(\omega) d\mu(\omega)\right\| \leqslant B\Big(\int_{\Omega} |\phi(\omega)|^2 d\mu(\omega)\Big)^{1/2}.$$
(3.3)

Define $\Gamma_F : L^2(\Omega) \to \mathcal{H}$ by

$$\Gamma_F(\varphi) = \int_{\Omega} \varphi(\omega) F(\omega) d\mu(\omega).$$

 $F \in L^2(\Omega, \mathcal{H})$ implies that F is a c-Bessel mapping, let D be its Bessel bound. Then by (3.3), we have

$$\begin{split} \|\Gamma_{F}(\varphi)\| &= \sup_{h \in \mathcal{H}, \|h\|=1} |\langle \Gamma_{F}\varphi, h \rangle| = \sup_{h \in \mathcal{H}, \|h\|=1} \left| \left\langle \int_{\Omega} \varphi(\omega) F(\omega) d\mu(\omega), h \right\rangle \right| \\ &\leq \sup_{h \in \mathcal{H}, \|h\|=1} \left(\int_{\Omega} |\varphi(\omega)|^{2} d\mu(\omega) \right)^{1/2} \left(\int_{\Omega} |\langle h, F(\omega)|^{2} d\mu(\omega) \right)^{1/2} \\ &\leq D^{1/2} \|\varphi\|_{2}. \end{split}$$

Then, Γ_F is well-defined and bounded. Also, (3.3) implies that

$$A\|\varphi\|_{2} \leqslant \|\Gamma_{F}(\varphi)\| \leqslant B\|\varphi\|_{2}, \ \varphi \in L^{2}(\Omega).$$

$$(3.4)$$

By (3.4) we conclude that Γ_F is injective and $R(\Gamma_F)$ is a closed subspace of \mathcal{H} . Therefore, by Proposition 1.5, Γ_F is left-invertible. We have

$$\Gamma_F^*: \mathcal{H} \to L^2(\Omega), \quad (\Gamma_F^* f)(\omega) = \langle f, F(\omega) \rangle. \tag{3.5}$$

Now, if $f \in \mathcal{H}$ and $\Gamma_F^*(f) = 0$, then $\langle f, F(\omega) \rangle = 0$, for all $\omega \in \Omega$. Thus by Proposition 3.2, $f \in N(K^*)$. It means that $N(\Gamma_F^*) \subset N(K^*)$, so $N(K^*)^{\perp} \subset N(\Gamma_F^*)^{\perp}$. By Lemma 1.13, $R(K) \subset \overline{R(K)} \subset \overline{R(F)} = R(\Gamma_F)$. Moreover, for all $x \in \mathcal{H}$ and for all $i \in I$ we have

$$\left\langle \langle x, F(\cdot) \rangle, \psi_i \right\rangle = \int_{\Omega} \langle x, F(\omega) \rangle \overline{\psi_i(\omega)} d\mu(\omega) = \left\langle x, \int_{\Omega} \psi_i(\omega) F(\omega) d\mu(\omega) \right\rangle = \left\langle x, \Gamma_F(\psi_i) \right\rangle$$

Proposition 3.6. Let $0 \neq K \in B(\mathcal{H})$. If $F \in L^2(\Omega, \mathcal{H})$ is a cK-Riesz basis for \mathcal{H} , then it is a cK-frame for \mathcal{H} .

Proof. Let $F \in L^2(\Omega, \mathcal{H})$ be a cK-Riesz basis for \mathcal{H} , then it is a c-Bessel mapping with bound D and by Theorem 3.5, there exists a bounded left-invertible operator $\Gamma_F \in B(L^2(\Omega), \mathcal{H})$ such that $R(K) \subset R(\Gamma_F)$ and $T_F^* f = \langle f, F(\cdot) \rangle$. By Lemma 1.13, there exists $\lambda > 0$ such that $KK^* \leq \lambda^2 \Gamma_F \Gamma_F^*$. Then,

$$||K^*f||^2 \leq \lambda^2 ||\Gamma_F^*f||^2 = \lambda^2 ||\{\langle f, F(\cdot)\rangle\}||^2 = \lambda^2 \int_{\Omega} |\langle f, F(\omega)\rangle|^2 d\mu(\omega), \quad f \in \mathcal{H}.$$

Therefore, *F* is a cK-frame for \mathcal{H} with bounds $\frac{1}{\lambda^2}$ and *D*.

Theorem 3.7. Let $F : \Omega \to \mathcal{H}$ be a cK-frame for \mathcal{H} with respect to (Ω, μ) . Then F is a cK-Riesz basis for \mathcal{H} if and only if $R(T_F)$ is closed and F is L^2 -independent.

Proof. First let $F : \Omega \to \mathcal{H}$ be a cK-Riesz basis for \mathcal{H} with respect to (Ω, μ) , then it is $\overline{R(K)}$ - μ complete and there exist A, B > 0 such that for every $\phi \in L^2(\Omega)$,

$$A\Big(\int_{\Omega} |\phi(\omega)|^2 d\mu(\omega)\Big)^{1/2} \leq \left\|\int_{\Omega} \phi(\omega)F(\omega)d\mu(\omega)\right\| \leq B\Big(\int_{\Omega} |\phi(\omega)|^2 d\mu(\omega)\Big)^{1/2}.$$
(3.6)

Let $\phi \in L^2(\Omega)$ and $\int_{\Omega} \phi(\omega) F(\omega) d\mu(\omega) = 0$, then by (3.6), $\phi = 0$ almost everywhere. Thus, *F* is L^2 -independent. Also from (3.6) we have

$$A\|\phi\|_2 \leqslant \|T_F(\phi)\| \leqslant B\|\phi\|_2,$$

so we conclude that $R(T_F)$ is closed.

Conversely, let $R(T_F)$ be closed and F be L^2 -independent. Since F is a cK-frame, then there exist A, B > 0 such that for all $f \in \mathcal{H}$,

$$A\|K^*f\|^2 \leqslant \int_{\Omega} |\langle f, F(\omega)\rangle|^2 d\mu(\omega) \leqslant B\|f\|^2.$$

Thus if $\langle f, F(\omega) \rangle = 0$ for almost all $\omega \in \Omega$, then $A ||K^*f||^2 = 0$, so $f \in N(K^*)$. Therefore, *F* is $\overline{R(K)}$ - μ -complete. Also, for all $\phi \in L^2(\Omega)$ we have

$$\begin{split} \left\| \int_{\Omega} \phi(\omega) F(\omega) d\mu(\omega) \right\| &= \sup_{\|f\|=1} \left| \left\langle \int_{\Omega} \phi(\omega) F(\omega) d\mu(\omega), f \right\rangle \right| \\ &\leqslant \sup_{\|f\|=1} \left(\int_{\Omega} |\phi(\omega)|^2 d\mu(\omega) \right)^{1/2} \cdot \left(\int_{\Omega} |\langle f, F(\omega) \rangle|^2 d\mu(\omega) \right)^{1/2} \\ &\leqslant B^{1/2} \Big(\int_{\Omega} |\phi(\omega)|^2 d\mu(\omega) \Big)^{1/2} \cdot \left(\int_{\Omega} |\langle f, F(\omega) \rangle|^2 d\mu(\omega) \right)^{1/2} \end{split}$$

Since *F* is L^2 -independent, $N(T_F) = \{0\}$ and since $R(T_F)$ is closed, by Proposition 1.12, there exists a bounded operator $(T_F)_l^{-1} : \mathcal{H} \to L^2(\Omega)$ such that for any $\phi \in L^2(\Omega)$, $(T_F)_l^{-1}T_F(\phi) = \phi$. Then

$$\int_{\Omega} |\phi(\omega)|^2 d\mu(\omega) = \|\phi\|_2^2 = \|(T_F)_l^{-1} T_F(\phi)\|^2 \leq \|(T_F)_l^{-1}\|^2 \|T_F(\phi)\|^2 = \|(T_F)_l^{-1}\|^2 \left\|\int_{\Omega} \phi(\omega) F(\omega) d\mu(\omega)\right\|^2$$

for all $\phi \in L^2(\Omega)$. Thus

$$\|(T_F)_l^{-1}\|^{-1} \Big(\int_{\Omega} |\phi(\omega)|^2 d\mu(\omega)\Big)^{1/2} \leq \left\|\int_{\Omega} \phi(\omega) F(\omega) d\mu(\omega)\right\|, \quad \phi \in L^2(\Omega).$$

Therefore, F is a cK-Riesz basis with bounds $||(T_F)_l^{-1}||^{-1}$ and $B^{1/2}$, respectively.

Definition 3.8. Let $K \in B(\mathcal{H})$ be closed range. We say that $F : \Omega \to \mathcal{H}$ is a Riesz-type cK-frame, if $\pi_{R(K)}F$ has only one dual.

Theorem 3.9. Let $K \in B(\mathcal{H})$ be closed range and F be a cK-frame and Bochner integrable. Then F is a Riesz-type cK-frame if and only if $R(T^*_{\pi_{R(K)}F}) = L^2(\Omega)$.

Proof. Let Π be the standard cK-dual of $\pi_{R(K)}F$ and assume that $R(T^*_{\pi_{R(K)}F}) \neq L^2(\Omega)$. We can then choose $h \in (R(T^*_{\pi_{R(K)}F}))^{\perp}$ such that ||h|| = 1. Define $D(\omega) = h(\omega)h$ for each $\omega \in \Omega$. Then, for each $f \in L^2(\Omega)$, we have

$$\int_{\Omega} |\langle f, D(\omega) \rangle|^2 d\mu(\omega) = \int_{\Omega} |\langle f, h \rangle|^2 |h(\omega)|^2 d\mu(\omega) = |\langle f, h \rangle|^2 \leq ||f||^2.$$

Thus *D* is c-Bessel. Let $V : L^2(\Omega) \to \mathcal{H}$ be a bounded linear operator such that $Vh \neq 0$. For all $f \in \mathcal{H}$, we have

$$\int_{\Omega} |\langle f, VD(\omega) \rangle|^2 d\mu(\omega) = \int_{\Omega} |\langle V^*f, D(\omega) \rangle|^2 d\mu(\omega) \leqslant ||V||^2 ||f||^2,$$

so VD is a c-Bessel mapping as well. By Proposition 1.10,

$$\begin{split} \int_{\Omega} |\langle f, (\Pi(\omega) + VD(\omega) \rangle|^2 d\mu(\omega) &\leq 2 \int_{\Omega} |\langle f, \Pi(\omega) \rangle|^2 d\mu(\omega) + 2 \int_{\Omega} |\langle f, VD(\omega) \rangle|^2 d\mu(\omega) \\ &\leq 2A^{-1} ||K||^2 ||K^{\dagger}||^2 ||f||^2 + 2||V||^2 ||f||^2, \ f \in \mathcal{H}, \end{split}$$

hence, $\Pi + VD$ is a c-Bessel mapping. Note that for each $x \in \mathcal{H}$,

$$\langle x, VD(\omega) \rangle = \langle V^*x, D(\omega) \rangle = \langle V^*x, h \rangle \overline{h(\omega)}.$$

Since *h* is orthogonal to $R(T^*_{\pi_{R(k)}F})$, it follows that

$$\begin{split} \int_{\Omega} \langle x, VD(\omega) \rangle \langle \pi_{R(K)}F(\omega), y \rangle d\mu(\omega) &= \langle V^*x, h \rangle \int_{\Omega} \overline{h(\omega)} \langle \pi_{R(K)}F(\omega), y \rangle d\mu(\omega) \\ &= \langle V^*x, h \rangle \Big\langle \langle \pi_{R(K)}F(\cdot), y \rangle, h \Big\rangle \\ &= 0, \end{split}$$

for all $x, y \in \mathcal{H}$. Thus , for all $x, y \in \mathcal{H}$ we have

$$\begin{split} \int_{\Omega} \langle x, \Pi(\omega) + VD(\omega) \rangle \langle \pi_{R(K)}F(\omega), y \rangle d\mu(\omega) &= \int_{\Omega} \langle x, \Pi(\omega) \rangle \langle \pi_{R(K)}F(\omega), y \rangle d\mu(\omega) \\ &+ \int_{\Omega} \langle x, VD(\omega) \rangle \langle \pi_{R(K)}F(\omega), y \rangle d\mu(\omega) \\ &= \int_{\Omega} \langle x, \Pi(\omega) \rangle \langle \pi_{R(K)}F(\omega), y \rangle d\mu(\omega) \\ &= \langle Kx, y \rangle. \end{split}$$

Therefore $\Pi + VD$ is a dual of $\pi_{R(K)}F$ which is different from the standard dual. Then *F* is not a Riesz-type cK-frame.

Conversely, assume that $\pi_{R(K)}F$ admits two different duals G_1 and G_2 and consider $G_3 = G_1 - G_2 \neq 0$. Then, for all $x, y \in \mathcal{H}$,

$$\int_{\Omega} \langle x, G_3(\omega) \rangle \langle \pi_{R(K)} F(\omega), y \rangle d\mu(\omega) = \int_{\Omega} \langle x, G_1(\omega) - G_2(\omega) \rangle \langle \pi_{R(K)} F(\omega), y \rangle d\mu(\omega) = 0.$$

Thus $R(T_{G_3}^*) \perp R(T_{\pi_{R(K)}F}^*)$, which implies that $(R(T_{\pi_{R(K)}F}^*))^{\perp} \neq 0$, so $R(T_{\pi_{R(K)}F}^*) \neq L^2(\Omega)$.

Theorem 3.10. Let $K \in B(\mathcal{H})$ be closed range and let $F : \Omega \to \mathcal{H}$ be a cK-frame and Bochner intagrable. Then $\pi_{R(K)}F$ is a cK-Riesz basis if and only if it has only one dual.

Proof. Let $\pi_{R(K)}F$ be a cK-Riesz basis and F_1 and F_2 are duals of $\pi_{R(K)}F$. Then for all $f, g \in \mathcal{H}$ we have

$$\int_{\Omega} \langle f, F_1(\omega) - F_2(\omega) \rangle \langle \pi_{R(K)} F(\omega), g \rangle d\mu(\omega) = 0$$

then

$$A\Big(\int_{\Omega}|\langle f,F_1(\omega)-F_2(\omega)\rangle|^2d\mu(\omega)\Big)^{1/2} \leq \left\|\int_{\Omega}\langle f,F_1(\omega)-F_2(\omega)\rangle\pi_{R(K)}F(\omega)d\mu(\omega)\right\| = 0,$$

which shows that, for all $f \in \mathcal{H}$

$$\langle f, F_1(\omega) \rangle = \langle f, F_2(\omega) \rangle \ (\mu - \text{almost all } \omega \in \Omega).$$

Hence $F_1 = F_2$.

For the converse, let *F* be a Riesz-type cK-frame. If $\phi \in L^2(\Omega)$ be such that

$$\int_{\Omega} \phi(\omega) \pi_{R(K)} F(\omega) d\mu(\omega) = 0,$$

thus for all $h \in \mathcal{H}$,

$$\int_{\Omega} \phi(\omega) \langle \pi_{R(K)} F(\omega), h \rangle d\mu(\omega) = 0.$$

Then by Theorem 3.9,

$$\phi \in (R(T^*_{\pi_{R(K)}F})^{\perp} = \{0\}.$$

Hence $\phi = 0$ almost everywhere and $\pi_{R(K)}F$ is L^2 -independent. Also, by Theorem 3.9, $R(T^*_{\pi_{R(K)}F})$ is closed, then $R(T_{\pi_{R(K)}F})$ is closed. Now Theorem 3.7 implies that $\pi_{R(K)}F$ is a cK-Riesz basis.

References

- [1] S.T. Ali, J.P. Antoine and J.P. Gazeau, *Coherent States, Wavelets and their Generalizations*, Berlin, Springer-Verlag, 2000.
- [2] S.T. Ali, J.P. Antoine and J.P. Gazeau, Continuous frames in Hilbert spaces, Ann Physics., 222 (1993), 1–37.
- [3] A.A. Arefijamaal, The continuous Zak transform and generalized Gabor frames, *Mediterranean Journal of Mathematics*, **10** (2013), 353–365.

- [4] A.A. Arefijamaal, R.A. Kamyabi Gol, R. Raisi Tousi and N. Tavallaei, A new approach to continuous Riesz bases, J. Sci., Islamic Rep. Iran, 129 (2000), 1143–1147.
- [5] A. Askari-Hemmat, M.A. Dehghan and M. Rajabalipour, Generalized frames and their redundancy, *Proc. Amer. Math. Soc.*, 129(4) (2001), 1143–1147.
- [6] J.P. Aubin, Applied Functional Analysis, A Wiley Series of Texts, Monographs and Tracts, 2nd Edition, 2000.
- [7] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhuäser, 2003.
- [8] O. Christensen, *Frames and Bases-an Introductory Course*, Applied and Numerical Harmonic Analysis, Birkhuäser, Boston, Mass, USA, 2008.
- [9] I. Daubechies, A. Grossman and Y. Meyer, Painless nonorthogonal expansions, *Journal of Mathematical Physics*, 27 (1986), 1271–1283.
- [10] R.G. Douglas, On majorization, factorization and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc., 17 (1966), 413–415.
- [11] J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series, *Trans. Amer. Math. Soc.*, 72 (1952), 341–366.
- [12] M. Fornasier and H. Rauhut, Continuous frames, function spaces, and the discretization problem, *The Journal of Fourier Analysis and Applications*, **11**(3) (2005), 245–287.
- [13] J.P. Gabardo and D. Han, Frames associated with measurable space, Adv. Comp. Math., 18(3) (2003), 127–147.
- [14] L. Găvruta, Frames for operators, Appl. Comput. Harmon. Anal., 32 (2012), 139-144.
- [15] C. Heil, Wiener Amalgam Spaces in Generalized Harmonic Analysis and Wavelet Theory, Ph.D. Dissertation, University of Maryland, College Park, MD, 1990.
- [16] Y. Huang and D. Hua, K-Riesz frames and the stability of K-Riesz frames for Hilbert spaces, *Sci. Sin. Math.*, 47(3) (2017), 383–396.
- [17] G. Kaiser, A Friendly Guide to Wavelets, Boston: Birkhäuser, 1994.
- [18] G. Kaiser, *Quantum physics, relativity, and complex space time*, North-Holland Mathematics Studies, Vol. 163, North-Holland Amsterdam, 1990.
- [19] S.K. Kaushik, L.K. Vashisht and S.K. Sharma, Some results concerning frames associated with measurable spaces, *TWMS J. Pure Appl. Math.*, 4(1) (2013), 52–60.
- [20] M. Rahmani, On some properties of c-frames, J. Math. Research with Appl., 37(4) (2017), 466–476.
- [21] A. Rahimi, A. Najati and Y.N. Dehghan, Continuous frames in Hilbert spaces, *Methods of Functional Analysis* and Topology, **12**(2) (2006), 170–182.
- [22] G.H. Rahimlou, R. Ahmadi, M.A. Jafarizadeh and S. Nami, Continuous K-frames and their dual in Hilbert spaces, Sahand Commun. Math. Anal., 17(3) (2020), 145–160.
- [23] G.H. Rahimlou, R. Ahmadi, M.A. Jafarizadeh and S. Nami, Some properties of continuous K-frames in Hilbert spaces, Sahand Commun. Math. Anal., 15(1) (2019), 169–187.
- [24] A. Shekari and M.R. Abdollahpour, On some properties of K-g-Riesz bases in Hilbert spaces, Wavelets and Linear Algebra, 8(2) (2022), 31–42.
- [25] A.E. Taylor and D.C. Lay, Introduction to Functional Analysis, New York, John Wiley and Sons, 1980.
- [26] X. Xiao, Y. Zhu and L. Găvruta, Some properties of K-frames in Hilbert spaces, *Results Math.*, 63 (2013), 1243–1255.
- [27] Y. Zhu, Z. Shu and X. Xiao, K-frames and K-Riesz bases in complex Hilbert spaces, Sci. Sin. Math., 48 (2018), 609–622.