

Vali-e-Asr University

Wavelets and Linear Algebra
http://wala.vru.ac.ir

A note on Sonnenschein summability matrices

Gholamreza Talebi ${ }^{\text {a,*, }}$, Masoud Aminizadeh ${ }^{1}$
${ }^{a}$ Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Islamic Republic of Iran.

Article Info

Article history:

Received 26 January 2023
Accepted 7 April 2023
Available online 5 May 2023
Communicated by Ali Armandnejad

Keywords:

Sonnenschein matrix, Bernoulli numbers,
Holomorphic function.

Abstract

In this note, we give a simple method for computing the column sums of the Sonnenschein summability matrices.
(C) (2023) Wavelets and Linear Algebra

1. Introduction

Let $f(z)$ be an analytic function in $|z|<r, r \geq 1$ with $f(1)=1$. The matrix $S=\left(f_{n, k}\right)$, where $\left(f_{n, k}\right)$ are defined by $[f(z)]^{n}=\sum_{k=0}^{\infty} f_{n, k} z^{k}$ is called a Sonnenschein matrix [4]. The special choice

$$
f(z)=\frac{\alpha+(1-\alpha-\beta) z}{1-\beta z}, z \in \mathbb{C} \backslash\left\{\frac{1}{\beta}\right\},
$$

[^0]where α and β are complex numbers, gives the Karamata matrix $K[\alpha, \beta]$ and its coefficients as a Sonnenschein matrix are given by [3]
$$
f_{n, k}=\sum_{v=0}^{k}\binom{n}{v}(1-\alpha-\beta)^{v} \alpha^{n-v}\binom{n+k-v-1}{k-v} \beta^{k-v} .
$$

Recently in [1], the authors have calculated the row and column sums of Karamata matrices in a relatively complicated way. In this note we give a new and simple method for computing the column sums of these matrices which can be also applied to other Sonnenschein matrices.

Start with a general f. It is clear that if $|f(0)|<1$ then $|f(z)|<1$ in a neighborhood of $z=0$. Thus

$$
\sum_{n=0}^{\infty}[f(z)]^{n}=\frac{1}{1-f(z)}
$$

Now the sum we want is the coefficient of z^{k} of the right-hand side of the above equation. For the case of the Karamata matrices we have $f(0)=\alpha$, so we assume first that $|\alpha|<1$. Now

$$
\frac{1}{1-f(z)}=\frac{1}{1-\alpha}+\frac{(1-\beta) z}{(1-\alpha)(1-z)}=\frac{1}{1-\alpha}+\frac{1-\beta}{1-\alpha} \sum_{k=1}^{\infty} z^{k} .
$$

The coefficient of z^{k} is then easily found. Indeed, the sum of the first column is $\frac{1}{1-\alpha}$, and the sum of all other columns are $\frac{1-\beta}{1-\alpha}$.

The point is that this method may apply to other choices of the function f and other Sonnenschein matrices. As another example consider the function

$$
h(z)=\sin ^{2}\left(\frac{\pi z}{2}\right), \quad(z \in \mathbb{C})
$$

which is holomorphic function and its coefficients as a Sonnenschein matrix are as follows:

1. If $n=0$, then $a_{0, k}=\delta_{0 k}$, for all k;
2. If $n \neq 0$ and $k=0$, then $a_{n, k}=\frac{1}{4^{n}}\binom{2 n}{n}+\sum_{r=0}^{n-1} \frac{(-1)^{n+r}}{2^{n n-1}}\binom{2 n}{2 r}$;
3. If $n \neq 0$ and $k \neq 0$, then $\quad a_{n, k}=\left\{\begin{array}{lr}0 & k \text { is odd, } \\ \pi^{2 k} \sum_{r=0}^{n-1} \frac{(-1)^{n+r+k}(n-r)^{2 k}}{2^{2 n-1}(2 k)!}\binom{2 n}{2 r} & k \text { is even. }\end{array}\right.$

We have $h(0)=0$, thus

$$
\begin{aligned}
\frac{1}{1-h(z)}=\sec ^{2}\left(\frac{\pi z}{2}\right)= & \frac{2}{\pi} \frac{d}{d z} \tan \left(\frac{\pi z}{2}\right) \\
& =\frac{2}{\pi} \frac{d}{d z}\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(22^{2 n+2}-1\right)}{(2 n+2)!} B_{2 n+2} \pi^{2 n+1} z^{2 n+1}\right) \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}(8 n+4)\left(2^{2 n+2}-1\right)}{(2 n+2)!} B_{2 n+2} \pi^{2 n} z^{2 n},
\end{aligned}
$$

where B_{n} is the sequence of Bernoulli numbers (see [2], pp. 274-275), defined by

$$
B_{n}=\sum_{k=0}^{n} \frac{1}{k+1} \sum_{r=0}^{k}(-1)^{r}\binom{k}{r} r^{n} . \quad(n=0,1,2, \ldots)
$$

Therefore, the sum of odd columns are 0 , and the sum of column $2 n(n=0,1,2, \ldots)$ is

$$
\frac{(-1)^{n}(8 n+4)\left(2^{2 n+2}-1\right)}{(2 n+2)!} B_{2 n+2} \pi^{2 n}
$$

Funding

The research for this manuscript is not funded by anybody else.

Acknowledgements

The authors would like to thank professor Mourad Ismail [University of Central Florida, Orlando] for his technical assistance during the preparation of the this note.

Declaration

The authors have no conflicts of interest to declare.

References

[1] M. Aminizadeh and G. Talebi, On some special classes of Sonnenschein matrices, Wavel. Linear Algebra, 5(2) (2018), 59-64.
[2] T. Apostol, Introduction to Analytic Number Theory, Springer, 1976.
[3] J. Boos, Classical and Modern Methods in Summability, Oxford University Press Inc., New York, 2000.
[4] J. Sonnenschein, Sur les series divergentes, Acad. Roy. Belg. Bull. Cl. Sei., 35 (1949), 594-601.

[^0]: *Corresponding author
 Email addresses: gh.talebi@vru.ac.ir (Gholamreza Talebi), m.aminizadeh@vru.ac.ir (Masoud Aminizadeh)
 http://doi.org/10.22072/wala.2023.1988431.1407@ (2023) Wavelets and Linear Algebra

