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Abstract
This study concerns a detailed analysis of composition opera-
tors Cϕ on the classical Bergman spaces, as well as on the Hardy
and Bergman spaces with variable exponents. Here, ϕ is an an-
alytic self-map of the open unit disk in the complex plane. Ac-
cordingly, conditions for the boundedness of these operators are
obtained. It is worth mentioning that the Littlewood subordi-
nation theorem plays a fundamental role in proving the stated
theorems in which we use the Rubio de Francia extrapolation
theorem.
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1. Introduction

The study of composition operators as part of operator theory on analytic function spaces dates
back to the work of E. Nordgren in the mid-1960’s. As a result, there appears several papers in
which researchers studied the composition operators acting on function spaces in the unit disk, as
well as in the unit ball of Cn. It should be emphasized that most of these papers generally dis-
cuss the boundedness and the compactness of composition operators on analytic function spaces.
In particular, Stessin and Zhu proved that the composition operators are bounded on the Hardy
and Bergman spaces defined on the unit disk as well as on the polydisk and provided necessary
and sufficient conditions for the compactness of these operators on the indicated spaces (see [22]
and [23]). It should be underlined that, variable exponent Lebesgue spaces, as generalization of
Lebesgue spaces, were first introduced by Orlicz [19]. After that, O. Kováčik, and J. Rákonsnı́k
[14] developed the fundamental properties of these spaces. More significantly, in 2004, the cor-
rect regularity condition on the exponents to guarantee the boundedness of maximal functions was
found by L. Diening [7] for bounded domains and subsequently by Cruz-Uribe et al. [6], and
independently by A. Nekvinda [18], for unbounded domains.

Very recently, the study of variable exponent Banach spaces of analytic functions, in particular,
the study of variable exponent Hardy, Bergman, and Fock spaces have attracted attention. The
following references would offer some good examples of the current studies on these topics [1, 2,
3, 8, 12].

It should be emphasized that, little is known about the variable exponent Hardy spaces on the
open unit disk. The first approach to tackle this issue was taken in [12] and [13]. Next, G. R.
Chacón and G. A. Chacón introduced the variable exponent version of the Hardy space on the
upper-half plane and studied some properties of these spaces [1].

In this paper, we first review the basic concepts of the theory of variable exponent Hardy and
Bergman spaces. We then discuss some previous works regarding the boundedness of composition
operators both in constant exponenet spaces and in variable exponent spaces. We give sufficient
conditions for the boundedness of the composition operators on the classical Bergman space, as
well as on the variable exponent Bergman space and on the variable exponent Hardy space. The
main point of our results is the use of Littlewood subordination theorem in the proofs of the
theorems presented here. It is worth mentioning that in proving the boundedness of composition
operators on analytic function spaces, the concept of Carleson measure is usually used (see [22,
23]), however we will focus on the use of the Littlewood subordination theorem.

2. Preliminaries

Due to a slight difference in the definition of concepts related to variable exponent Hardy and
Bergman spaces, we present these concepts in two separate subsections.

2.1. Variable Exponent Hardy Space
To achieve our goals, we first, review the basic concepts of variable exponent Hardy and

Bergman spaces as defined by G. R. Chacón, G. A. Chacón and H. Rafeiro [1, 2]. We also re-
call the theorems needed in the proof of our main theorems.
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Throughout this paper, we use the symbol D for the open unit disk in the complex plane. A
measurable and essentially bounded function p : [0, 2π]→ [1,∞) such that p(0) = p(2π), is called
an exponent function. The variable exponent Lebesgue space, Lp(·)(T), is defined as the space of
all measurable functions f : T→ C such that

ρp(·)( f ) =

∫ 2π

0
| f (eiθ)|p(θ)dθ < ∞

where T stands for the boundary of the unit disk D. The norm of a function f in this space is
defined by

‖ f ‖p(·) = inf
λ

{
λ > 0 : ρp(·)

(
f
λ

)
≤ 1

}
.

This space is a Banach space with respect to this norm [5].
A function p : [0, 2π] → [1,∞) is said to be log-Hölder continuous or satisfy to the Dini-

Lipschitz condition on [0, 2π], if there exists a positive constant Clog such that

|p(x) − p(y)| ≤
Clog

log( 1
|x−y| )

,

for all x, y ∈ [0, 2π]. The set all of log-Hölder continuous functions in [0, 2π] for which 1 < p− ≤
p+ < ∞ is denoted by Plog([0, 2π]) where

p+ = ess sup
x∈[0,2π]

p(x) and p− = ess inf
x∈[0,2π]

p(x).

Let f : D→ C and 0 < r < 1. We define the dilation function fr : T→ C by fr(ζ) = f (rζ). Given
p : [0, 2π] → [1,∞), the variable exponent harmonic Hardy space hp(·)(D) is defined as the space
of harmonic functions f : D→ C such that

‖ f ‖hp(·)(D) = sup
0≤r<1

‖ fr‖Lp(·)(T) < ∞.

We now recall the definition of the variable exponent Hardy space Hp(·)(D) as defined in ref-
erence [1]. Suppose that p : [0, 2π] → [1,∞) is a 2π−periodic function. The variable exponent
Hardy space Hp(·)(D) is defined as the space of analytic functions f : D→ C such that f ∈ hp(·)(D).

In an analogous manner as in the classical setting, it is shown that Hp(·)(D) can be identified
as the subspace of functions in Lp(·)(T) whose negative Fourier coefficients are zero and as such,
Hp(·)(D) is a Banach space (see [9] for more details).
Now, we recall an important tool for handling these sorts of problems. Given a function f ∈ L1

loc(D)
and z ∈ D, the Hardy-Littlewood maximal function is defined by

M f (z) = sup
r>0

1
|B(z, r)|

∫
B(z,r)
| f (w)|dµ(w)

where µ is the Lebesgue measure on D. L. Diening has shown that on bounded domains, log-
Hölder continuity is a sufficient condition for the boundedness of the maximal operator on Lp(·)(D)
(see [7]).
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Lemma 2.1. ([7]) Let p ∈ Plog([0, 2π]). Then the Hardy-Littlewood maximal function is bounded
on Lp(·)(D), i.e., there exists C > 0 such that

‖M f ‖Lp(·)(D) ≤ C‖ f ‖Lp(·)(D).

In classical analysis, the Muckenhoupt weight class Ap consists of those weight functions ω
for which the Hardy-Littlewood maximal operator is bounded on Lp(dω). Let p > 1, then a
measurable function ω on D such that 0 < ω(x) < ∞, almost everywhere, is called a weight of
class Ap and is written ω ∈ Ap if the following condition holds,

[ω]Ap = sup
Q

(
1
|Q|

∫
Q
ω(z)dA(z)

) (
1
|Q|

∫
Q
ω(z)1−p′dA(z)

)p−1

< ∞,

where the supremum is taken over all cubes Q ⊆ D with sides parallel to the coordinate axes and
|Q| stands for the Lebesgue measure of Q.
In special case when p = 1, a measurable function ω on D such that 0 < ω(z) < ∞, almost
everywhere, is called a weight of class A1 and is written ω ∈ A1 if we have

[ω]A1 := ess sup
z∈D

Mω(z)
ω(z)

< ∞,

where M is the Hardy-Littlewood maximal operator. Note that, if ω ∈ A1, then the following
inequality holds:

Mω(z) ≤ [ω]A1ω(z), a.e.

Moreover, if ω ∈ A1, the following relations are valid

[ω]A1ω(z) ≥ Mω(z) ≥ ω(D), (2.1)

where
ω(B) =

∫
B
ω(z)dA(z), B ⊂ D.

This implies that

1 ≤
[ω]A1ω(z)
ω(D)

. (2.2)

For more details on Muckenhoupt weights, see [4] and [5].

Theorem 2.2. ([5]) Let Ω ⊂ Rn and p(·) ∈ P(Ω) satisfies 1 < p− ≤ p+ < ∞. Then the Hardy-
Littlewood maximal function M is bounded on Lp(·)(Ω) if and only if M is bounded on the dual
space Lp′(·)(Ω).
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Theorem 2.3. ([5]) (Rubio de Francia extrapolation theorem) Given Ω ⊂ Rn, let for some p0 ≥ 1,
the family F consisting all non-negative measurable functions on Ω is such that for all ω ∈ A1,
there exists C0 > 0 such that∫

Ω

F(x)p0ω(x)dx ≤ C0

∫
Ω

G(x)p0ω(x)dx; F,G ∈ F . (2.3)

If p(·) ∈ P(Ω) with p0 ≤ p− ≤ p+ < ∞ and if the maximal operator is bounded on the dual space

L
(

p(·)
p0

)′
(Ω), then there exists Cp(·) > 0 such that

‖F‖Lp(·) ≤ Cp(·)‖G‖Lp(·) .

By Proposition 3.3 of [5], we know that for every f : D→ C, the following inequality holds

| f (z)| ≤ M f (z), z ∈ D, (2.4)

this is of course a consequence of the Lebesgue differentiation theorem (see Section 2.9 of [6]).
Finally, we recall the Littlewood subordination theorem as follows.

Theorem 2.4. ([4])(Littlewood Subordination Theorem) Let ϕ be an analytic map of D into itself
such that ϕ(0) = 0. If G is a subharmonic function in D, then for 0 < r < 1, the following
inequality is valid ∫ 2π

0
G(ϕ(reiθ))dθ ≤

∫ 2π

0
G(reiθ)dθ.

Theorem 2.5. ([4]) If ϕ is an analytic function of the disk into itself and p ≥ 1, then the composi-
tion operator Cϕ : Hp(D)→ Hp(D) is bounded and(

1
1 − |ϕ(0)|2

) 1
p

≤ ‖Cϕ‖ ≤

(
1 + |ϕ(0)|
1 − |ϕ(0)

) 1
p

.

2.2. Variable Exponent Bergman Space
First, we recall the definition of Bergman spaces with constant exponent. Let dA(z) = dx dy/π

be the normalized Lebesgue area measure on D. For 1 ≤ p < ∞, the Bergman space Ap(D) is
defined as the space of all analytic functions on D that satisfy the following relation

‖ f ‖p
Ap :=

∫
D
| f (z)|p dA(z) < ∞.

This space equipped with the following norm is a Banach space (see [11]):

‖ f ‖Ap =

(∫
D
| f (z)|p dA(z)

)1/p

.
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G. R. Chacón and H. Rafeiro in 2014 introduced the concept of the variable exponent Bergman
spaces [2]. A measurable function p : D → [1,∞) is called a variable exponent. Let P(D) be the
set of all variable exponents p(·) for which p+ < ∞, where

p+ = p+
D := ess sup

z∈D
p(z),

p− = p−D := ess inf
z∈D

p(z).

For a complex-valued measurable function f : D→ C, the modular ρp(·) is defined by

ρp(·)( f ) :=
∫
D
| f (z)|p(z) dµ(z)

where µ is the Lebesgue measure on D. The Luxemburg-Nakano norm induced by this modular is
given by

‖ f ‖Lp(.) := inf
{
λ > 0 : ρp(.)

(
f
λ

)
≤ 1

}
. (2.5)

The variable exponent Lebesgue space, Lp(·)(D), consists of all complex-valued functions f : D→
C for which ρp(·)( f ) < ∞. In this case, we write p(·) ∈ P(D). It is well-known that if p(·) ∈ P(D),
then the Lp(·)(D) equipped with the given norm is a Banach space (see [5] or [8]). Moreover, the
dual of Lp(·)(D) is denoted by Lp′(·)(D) where the conjugate exponent p′(·) satisfies the following
relation for every z ∈ D

1
p(z)

+
1

p′(z)
= 1.

So far, we assumed that the variable exponent p enjoys the boundedness property p+ < ∞. To get
more efficient results, we need to impose some more restrictions. A function p : D → R is said
to be log-Hölder continuous if there exists a positive constant C such that for all z,w ∈ D with
|z − w| < 1

2 , the following relation holds

|p(z) − p(w)| ≤
C

log( 1
|z−w| )

. (2.6)

We denote by Plog(D), the set of all log-Hölder continuous functions in D for which 1 < p− ≤
p+ < ∞. Now, we recall the definition of variable exponent Bergman spaces on the unit disk of
the complex plane. Given p ∈ P(D), the variable exponent Bergman space Ap(·)(D) consists of all
analytic functions in in the unit disk for which∫

D
| f (z)|p(z)dA(z) < ∞.

In other words, Ap(·)(D) consists of all analytic functions in the open unit disk that are simulta-
neously elements of Lp(·)(D) with respect to the normalized Lebesgue area measure in D. These
spaces were studied in detail by Chaćon and Rafeiro [2].
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Now, we turn our attention to Carleson measure. For constant exponent Bergman spaces, a finite
positive Borel measure µ on D is said to be a Carleson measure for Ap(D) if there exists C > 0
such that for every f ∈ Ap(D) we have the following relation∫

D
| f (z)|pdµ(z) ≤ C

∫
D
| f (z)|pdA(z).

In other words, µ is a Carleson measure for Ap(D, dA) if Ap(D, dA) is continuously embedded in
Lp(D, dµ).

For more details and characterizations of the Carleson measures for the Bergman spaces, see
[10] and [11]. Recently, Chaćon, Rafeiro and Vallejo in [3] have defined the Carleson measure for
variable exponent Bergman spaces.

Given a finite positive Borel measure µ on the unit disk D, we call µ a Carleson measure for
the variable exponent Bergman space Ap(·)(D, dA) if there exists a positive constant C such that for
every f ∈ Ap(·)(D, dA) the following relation holds [3]

‖ f ‖Lp(·)(D,µ) ≤ C‖ f ‖Ap(·)(D,dA).

It is well-known that in Bergman spaces, being a Carleson measure is independent of p; in other
words, µ is a Carleson measure for Ap(D) for some p > 0 if and only if µ is a Carleson measure
for Ap(D) for every p > 0 (see [10]).

Let ϕ be an analytic self-map on D. Then ϕ induces an operator Cϕ on every space of analytic
functions on the unit disk; this operator is given by Cϕ( f ) = f ◦ ϕ and is called the composition
operator. We, also recall for α > −1, the weighted Bergman space Ap

α(D), is defined as the space
of analytic functions f for which the following property holds∫

D
| f (z)|p dAα(z) < +∞,

where
dAα(z) = π−1(α + 1)(1 − |z|2)αdx dy.

Suppose α > −1 and ϕ : D→ D is holomorphic. We define a positive Borel measure µϕ,α on D as
follows: If E is a Borel subset of D, we define

µϕ,α(E) := Aα

(
ϕ−1(E)

)
= (α + 1)

∫
ϕ−1(E)

(
1 − |z|2

)α
dA(z).

Finally, similar to Lemma 2.1, we have

Lemma 2.6. ([5]) Let p ∈ Plog(D). Then the Hardy-Littlewood maximal function is bounded on
Lp(·)(D) i.e. there exists positive constant Cp(·) such that

‖M f ‖Lp(·)(D) ≤ Cp(·)‖ f ‖Lp(·)(D).
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3. Main Result

We now prove the main results of this paper. First, we present the following lemma which
allows us to use the Littlewood subordination theorem to prove the boundedness of composition
operators on Hardy and Bergman spaces.

Lemma 3.1. Let ϕ : D → D be an analytic function such that ϕ(0) = 0, 0 < p < ∞ and
0 , f ∈ Hol(D). Then | f |p is a subharmonic function and the following inequality holds∫ 2π

0
| f

(
ϕ(reiθ)

)
|pdθ ≤

∫ 2π

0
| f (reiθ)|pdθ.

Proof. Let 0 , f ∈ Hol(D). The function η(t) = ept is increasing and convex. On the other hand,
since f is holomorphic, u = log | f | is a subharmonic function, therefore the function

η ◦ u = ep log | f | = | f |p

is subharmonic too (see [20]).
Now, applying the Littlewood subordination theorem to the subharmonic function | f |p, we have∫ 2π

0
| f

(
ϕ(reiθ)

)
|pdθ ≤

∫ 2π

0
| f (reiθ)|pdθ.

Theorem 3.2. Let p > 0 and ϕ : D → D be an analytic function. Then the composition operator
Cϕ : Ap(D)→ Ap(D) is bounded.

Proof. See [4].

Theorem 3.3. Let p(·) ∈ Plog(D) and ϕ : D → D be a holomorphic function such that f ◦ ϕ ∈
Ap(·)(D) for every f ∈ Ap(·)(D), and let p(·) and ϕ satisfy the condition

sup
z∈D

(1 − |z|2)
2

p(z)

(1 − |ϕ(z)|2)
2

p(ϕ(z))

< ∞.

Then Cϕ : Ap(·)(D)→ Ap(·)(D) is bounded.

Proof. The first thing we should comment is the supremum condition that ϕ and p(·) must satisfy.
As we shall see, this is indeed a necessary condition for the boundedness of the composition
operator. Let us assume that Cϕ is bounded. Recall the evaluation functional

γz( f ) = f (z), f ∈ Ap(·)(D),

which is known to be bounded and satisfies the following estimate (see [3, Theorem 3.4])

|γz( f )| ≤
C‖ f ‖Ap(·)(D)

(1 − |z|2)
2

p(z)
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where C is some constant. Now, let

ka(z) =
1

(1 − az)2 , a, z ∈ D.

It follows from Proposition 3.3 of [3] that

‖k2/p(a)
a ‖ = ‖

1
(1 − az)4/p(a) ‖ ≤

C
(1 − |a|2)2/p(a) ,

from which it follows that
‖(1 − |a|2)2/p(a)k2/p(a)

a ‖ ≤ C.

We now consider the function

ga(z) := (1 − |a|2)2/p(a)k2/p(a)
a (z)

which has a norm less than or equal to C. Therefore, if Cϕ is bounded, we then have

|(Cϕga)(z)| = |ga(ϕ(z))|
= |γz(ga ◦ ϕ)|

≤
C‖ga ◦ ϕ‖Ap(·)(D)

(1 − |z|2)
2

p(z)

≤
C‖Cϕ‖‖ga‖Ap(·)(D)

(1 − |z|2)
2

p(z)

≤
M

(1 − |z|2)
2

p(z)

.

This implies that there is M > 0 such that

|ga(ϕ(z))| (1 − |z|2)
2

p(z) ≤ M, z, a ∈ D.

In particular, put a = ϕ(z) to get

sup
z∈D

(
1 − |ϕ(z)|2

) 2
p(ϕ(z)) k

2
p(ϕ(z))

ϕ(z) (ϕ(z))(1 − |z|2)
2

p(z) ≤ M,

or
sup
z∈D

(
1 − |ϕ(z)|2

) 2
p(ϕ(z)) 1(

1 − |ϕ(z)|2
) 4

p(ϕ(z))

(1 − |z|2)
2

p(z) ≤ M,

and finally,

sup
z∈D

(1 − |z|2)
2

p(z)(
1 − |ϕ(z)|2

) 2
p(ϕ(z))

≤ M,
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which proves the necessary condition. So far we have justified the assumption made on the symbol
and on the exponent. To prove the boundedness of Cϕ, let ω ∈ A1 and 1 < p0 ≤ p−. From (2.4)
and the fact that 0 < ω(η) < ∞, we have∫

D
| f (ϕ(η))|p0ω(η)dA(η)≤

∫
D
| f (ϕ(η))|p0 Mω(η)dA(η). (3.1)

Since, 0 < ω(η) < ∞, it follows that the integrals in the definition of Ap class weights are positive,
therefore, both of them must be finite. This implies that ω and ω1−p′ are locally integrable. Now
since ω is locally integrable in Rn, there exists C0 > 0 such that for every η ∈ D, we have

Mω(η) ≤ [ω]A1ω(η) ≤ [ω]A1ω(D) < C0. (3.2)

Therefore, we can write∫
D
| f (ϕ(η))|p0 Mω(η)dA(η) ≤C0

∫
D
| f (ϕ(η))|p0dA(η).

Now, let α > −1 and
dµ(η) = dAα(η) = (α + 1)(1 − |η|2)αdA(η)

be a measure on D, therefore, for every E ⊆ D, we define the push forward measure by

µ(E) := Aα(ϕ−1(E)) = (α + 1)
∫
ϕ−1(E)

(1 − |η|2)αdA(η).

Therefore, we have the following relation [23]∫
D
| f (ϕ(η))|2dAα(η) =

∫
D
| f (η)|2dµ(η). (3.3)

Let a = ϕ(0) and ψ(η) = (ϕa ◦ ϕ)( η) that ϕa(η) =
a−η
1−āη . Note that ψ is an analytic function on D

satisfying ψ(0) = ϕa(ϕ(0)) = ϕa(a) = 0. By applying Littlewood subordination theorem, for every
analytic function f : D→ C,∫

D
| f (ψ(η))|2dAα(η) ≤

∫
D
| f (η)|2dAα(η). (3.4)

Now, replacing f ◦ ϕa with f in (3.4), we get∫
D
|( f ◦ ϕa)(ψ(η))|2dAα(η) ≤

∫
D
| f ◦ ϕa(η)|2dAα(η), (3.5)

from which, using ϕa ◦ ψ = ϕa(ϕa ◦ ϕ) = ϕ, we obtain∫
D
|( f ◦ ϕ)(η)|2dAα(η) ≤

∫
D
| f ◦ ϕa(η)|2dAα(η). (3.6)
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By using the relations (3.3) and (3.6) we have∫
D
| f (η)|2dµ(η) =

∫
D
| f (ϕ(η))|2dAα(η)

≤

∫
D
| f ◦ ϕa(η)|2dAα(η)

=

∫
D
| f (η)|2dAα(η)

=

∫
D
| f (η)|2|ϕ

′

a(η)|2dAα(η)

≤

∫
D
| f (η)|2

(1 − |a|2)2

|1 − āη|4
dAα(η)

≤

∫
D
| f (η)|2

(1 − |a|)2(1 + |a|)2

(1 − |a|)4 dAα(η)

=

∫
D
| f (η)|2

(1 + |a|)2

(1 − |a|)2 dAα(η)

=

(
1 + |a|
1 − |a|

)2 ∫
D
| f (η)|2dAα(η)

=

(
1 + |ϕ(0)|
1 − |ϕ(0)|

)2 ∫
D
| f (η)|2dAα(η).

By putting α = 0, in the last relations, we get the following result∫
D
| f (ϕ(η))|2dµ(η) ≤

(
1 + |ϕ(0)|
1 − |ϕ(0)|

)2 ∫
D
| f (η)|2dA(η). (3.7)

Therefore, µ is a Carleson measure for A2(D). This implies that there exists C > 0 such that∫
D
| f (ϕ(η))|p0dµ(η) ≤ C

∫
D
| f (η)|p0dA(η).

Note that according to (3.1) and (3.2) we have the following relation∫
D
| f (ϕ(η))|p0ω(η)dA(η) ≤ CC0

∫
D
| f (η)|p0dA(η).

Now, by using the inequality ω(D) ≤ [ω]A1ω(z) we can write∫
D
| f (ϕ(η))|p0ω(η)dA(η) ≤ C1

∫
D
| f (η)|p0ω(η)dA(η).

This inequality implies that the two functions F(η) = | f (ϕ(η))| and G(η) = | f (η)| satisfy the
assumptions of the Rubio de Francia extrapolation theorem. On the other hand, p ∈ Plog(D)
therefore, p

p0
∈ Plog(D). Therefore, the result follows.
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Remark 3.4. We close this section by commenting on how to prove a similar statement for the
variable exponent Hardy space Hp(·)(D). First of all we need to use an estimate for the norm of the
evaluation functional γz( f ) = f (z). It is known that

‖γz‖ ≤ C‖kz‖ ≤
C

(1 − |z|)1/p(θ) , z = reiθ,

where C is a constant, and

kz(w) =
1

1 − wz
is the reproducing kernel. This is used to produce a function whose norm is 1. As in the previous
theorem, we can find a necessary condition for the boundedness of Cϕ (boundedness of an expres-
sion in terms of p(·) and ϕ). The rest of the proof is essentially the same as that of the preceding
theorem. Recall that in this case, ϕ : D → D is an analytic function and p(·) ∈ Plog([0, 2π]) is a
2π-periodic function.
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