Characterization of 2-cocycles and 2-coboundaries on Direct Sum of Banach Algebras

Ebrahim Nasrabadi ${ }^{\text {a,** }}$
${ }^{a}$ Department of Mathematics, University of Birjand, Birjand, Iran.

Article Info

Article history:

Received 29 April 2022
Accepted 10 January 2023
Available online 5 May 2023
Communicated by Hamid Reza
Afshin

Keywords:

2-cocycle map
2-coboundary map
Second Hochschild
cohomology group.
2010 MSC:
46H25, 16E40.

Abstract

Let A and B be Banach algebras. In this paper, we investigate the structure of 2-cocycles and 2-coboundaries on $A \oplus B$, when A and B are unital. Actually, we provide a specific criterion for each 2cocycle map and establish a connection between 2-cocycles and 2-coboundaries on $A \oplus B$ and 2-cocycles and 2-coboundaries on A and B. Finally, our results lead to a connection between $\mathcal{H}^{2}\left(A, A^{*}\right), \mathcal{H}^{2}\left(B, B^{*}\right)$ and $\mathcal{H}^{2}\left(A \oplus B, A^{*} \oplus B^{*}\right)$.

(C) (2023) Wavelets and Linear Algebra

1. Introduction

A derivation from a Banach algebra A to a Banach A-bimodule X is a bounded linear mapping $D: A \rightarrow X$ such that $D\left(a_{1} a_{2}\right)=a_{1} \cdot D\left(a_{2}\right)+D\left(a_{1}\right) \cdot a_{2}\left(a_{1}, a_{2} \in A\right)$. For each $x \in X$ the mapping $\mathbf{a d}_{x}: a \mapsto a \cdot x-x \cdot a(a \in A)$, is a derivation, called the inner derivation implemented by x. The

[^0]http://doi.org/10.22072/wala.2023.552894.1384 © (2023) Wavelets and Linear Algebra
space of all derivations is denoted by $\mathcal{Z}^{1}(A, X)$ and the space of all ineer derivations is denoted by $\mathcal{B}^{1}(A, X)$. The first Hochschild cohomology group $\mathcal{H}^{1}(A, X)$ is defined by the quotient group
$$
\mathcal{H}^{1}(A, X)=\frac{\mathcal{Z}^{1}(A, X)}{\mathcal{B}^{1}(A, X)}
$$

A 2-cocycle map from a Banach algebra A to a Banach A-bimodule X is a bounded 2-linear mapping $\varphi: A \times A \rightarrow X$ such that

$$
a_{1} \cdot \varphi\left(a_{2}, a_{3}\right)-\varphi\left(a_{1} a_{2}, a_{3}\right)+\varphi\left(a_{1}, a_{2} a_{3}\right)-\varphi\left(a_{1}, a_{2}\right) \cdot a_{3}=0,
$$

for all $a_{1}, a_{2}, a_{3} \in A$. For each bounded linear map $\psi: A \rightarrow X$, the mapping $\mathbf{a d}_{\psi}: A \times A \rightarrow X$ defined with

$$
\mathbf{a d}_{\psi}\left(a_{1}, a_{2}\right)=a_{1} \cdot \psi\left(a_{2}\right)-\psi\left(a_{1} a_{2}\right)+\psi\left(a_{1}\right) \cdot a_{2},
$$

is a 2-cocycle map, called the 2-coboundary map. The space of all bounded 2-linear maps from A to X is denoted by $C^{2}(A, X)$, the space of all 2-cocycle maps is denoted by $Z^{2}(A, X)$ and the space of all 2-coboundary maps is denoted by $\mathcal{B}^{2}(A, X)$. The second Hochschild cohomology group $\mathcal{H}^{2}(A, X)$ is defined by the quotient group

$$
\mathcal{H}^{2}(A, X)=\frac{\mathcal{Z}^{2}(A, X)}{\mathcal{B}^{2}(A, X)}
$$

Let A and B be Banach algebras and M be a Banach A, B-module. Suppose that

$$
\mathcal{T}=\left\{\left[\begin{array}{cc}
a & m \\
& b
\end{array}\right]: a \in A, b \in B, m \in M\right\}
$$

be the corresponding triangular Banach algebra. Forrest and Marcoux investigated and studied derivations on triangular Banach algebra of \mathcal{T} in [2] and analyzed the first Hochschild cohomology group $\mathcal{H}^{1}(\mathcal{T}, \mathcal{T})$. They in [3] characterize derivation $D: \mathcal{T} \rightarrow \mathcal{T}^{*}$ according to derivations $D_{A}: A \rightarrow A^{*}, D_{B}: B \rightarrow B^{*}$ and $\gamma_{D} \in M^{*}$, as follows

$$
D\left(\left[\begin{array}{cc}
a & m \\
& b
\end{array}\right]\right)=\left[\begin{array}{cc}
D_{A}(a)-m \gamma_{D} & \gamma_{D} a-b \gamma_{D} \\
& D_{B}(b)+\gamma_{D} m
\end{array}\right] .
$$

Indeed, they showed that there exixts derivation $D_{A B}: \mathcal{T} \rightarrow \mathcal{T}^{*}$ defined by $D_{A B}\left(\left[\begin{array}{cc}a & m \\ & b\end{array}\right]\right)=$ $\left[\begin{array}{cc}D_{A}(a) & \\ & D_{B}(b)\end{array}\right]$, such that for every $\left[\begin{array}{cc}a & m \\ & b\end{array}\right] \in \mathcal{T}$

$$
\begin{aligned}
D\left(\left[\begin{array}{cc}
a & m \\
& b
\end{array}\right]\right) & =\left[\begin{array}{cc}
D_{A}(a)-m \gamma_{D} & \gamma_{D} a-b \gamma_{D} \\
D_{B}(b)+\gamma_{D} m
\end{array}\right] \\
& =D_{A B}\left(\left[\begin{array}{cc}
a & m \\
& b
\end{array}\right]\right)+\left[\begin{array}{cc}
-m \gamma_{D} & -b \gamma_{D} \\
0
\end{array}\right]+\left[\begin{array}{cc}
0 & \gamma_{D} a \\
& \gamma_{D} m
\end{array}\right] \\
& =D_{A B}\left(\left[\begin{array}{cc}
a & m \\
& b
\end{array}\right]\right)-\operatorname{ad}_{\left[\begin{array}{cc}
0 & \gamma_{D} \\
0
\end{array}\right]\left(\left[\begin{array}{cc}
a & m \\
& b
\end{array}\right]\right),}
\end{aligned}
$$

$$
\mathcal{H}^{1}\left(\mathcal{T}, \mathcal{T}^{*}\right) \simeq \mathcal{H}^{1}\left(A, A^{*}\right) \oplus \mathcal{H}^{1}\left(B, B^{*}\right),
$$

of course, if we restrict ourselves to the case of unitary A, B and M. In particular, in the case of $M=0$, they proved that

$$
\mathcal{H}^{1}\left(A \oplus B, A^{*} \oplus B^{*}\right) \simeq \mathcal{H}^{1}\left(A, A^{*}\right) \oplus \mathcal{H}^{1}\left(B, B^{*}\right) .
$$

In this paper, somehow we want to provide the same characterization for 2-cocycle maps in $\mathcal{Z}^{2}\left(A \oplus B, A^{*} \oplus B^{*}\right)$. Indeed, we show that if $\varphi=\left(\varphi_{1}, \varphi_{2}\right) \in \mathcal{Z}^{2}\left(A \oplus B, A^{*} \oplus B^{*}\right)$, then there exist $\varphi_{A} \in \mathcal{Z}^{2}\left(A, A^{*}\right), \varphi_{B} \in \mathcal{Z}^{2}\left(B, B^{*}\right)$ and $\psi=\left(\psi_{1}, \psi_{2}\right) \in C^{1}\left(A \oplus B, A^{*} \oplus B^{*}\right)$ such that for every $\omega_{1}=\left(a_{1}, b_{1}\right), \omega_{2}=\left(a_{2}, b_{2}\right) \in A \oplus B$,

$$
\begin{aligned}
& \varphi_{1}\left(\omega_{1}, \omega_{2}\right)=\varphi_{A}\left(\left(a_{1}, a_{2}\right)\right)+a_{1} \psi_{1}\left(\omega_{2}\right)-\psi_{1}\left(\omega_{1} \omega_{2}\right)+\psi_{1}\left(\omega_{1}\right) a_{2} \\
& \varphi_{2}\left(\omega_{1}, \omega_{2}\right)=\varphi_{B}\left(b_{1}, b_{2}\right)+b_{1} \psi_{2}\left(\omega_{2}\right)+\psi_{2}\left(\omega_{1} \omega_{2}\right)+\psi_{2}\left(\omega_{1}\right) b_{2},
\end{aligned}
$$

that leads to $\varphi-\varphi_{A B}=\mathbf{a d}_{\psi} \in \mathcal{B}^{2}\left(A \oplus B, A^{*} \oplus B^{*}\right)$, where $\varphi_{A B}:(A \oplus B) \times(A \oplus B) \rightarrow A^{*} \oplus B^{*}$ is defined by

$$
\varphi_{A B}\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right)=\left(\varphi_{A}\left(a_{1}, a_{2}\right), \varphi_{B}\left(b_{1}, b_{2}\right)\right) .
$$

In the following, as an application of our results, we show that

$$
\mathcal{H}^{2}\left(A \oplus B, A^{*} \oplus B^{*}\right) \simeq \mathcal{H}^{2}\left(A, A^{*}\right) \oplus \mathcal{H}^{2}\left(B, B^{*}\right)
$$

2. Main Results

Let A and B be unital Banach algebras with units $\mathbf{1}_{A}$ and $\mathbf{1}_{B}$, respectively. ℓ^{1}-direct sum of Banach algebras $A \oplus B$ with usual multiplication and the norm $\|(a, b)\|=\|a\|+\|b\|$ is a Banach algebra. It is clear that $(A \oplus B)^{*} \simeq A^{*} \oplus B^{*}$. Let $(a, b) \in A \oplus B$ and $(\mu, \theta) \in A^{*} \oplus B^{*}$. Then the action of $A^{*} \oplus B^{*}$ upon $A \oplus B$ is given by $(\mu, \theta)((a, b))=\mu(a)+\theta(b)$. Also, it is easy to check that module action $A \oplus B$ on $A^{*} \oplus B^{*}$ are as follows:

$$
\begin{equation*}
(a, b) \cdot(\mu, \theta)=(a \cdot \mu, b \cdot \theta) \quad \text { and } \quad(\mu, \theta) \cdot(a, b)=(\mu \cdot a, \theta \cdot b) . \tag{2.1}
\end{equation*}
$$

Throughout we will remove the dot (the sign ". '") for simplicity.
Remark 2.1. (i) Note that $\varphi \in \mathcal{Z}^{2}\left(A \oplus B, A^{*} \oplus B^{*}\right)$ if and only if φ satisfies the 2 -cocycle equation

$$
\begin{equation*}
\omega_{1} \varphi\left(\omega_{2}, \omega_{3}\right)-\varphi\left(\omega_{1} \omega_{2}, \omega_{3}\right)+\varphi\left(\omega_{1}, \omega_{2} \omega_{3}\right)-\varphi\left(\omega_{1}, \omega_{2}\right) \omega_{3}=0 \tag{2.2}
\end{equation*}
$$

for all $\omega_{1}, \omega_{2}, \omega_{3} \in A \oplus B$.
(ii) Let $\psi \in C^{1}\left(A \oplus B, A^{*} \oplus B^{*}\right)$ and $\varphi \in C^{2}\left(A \oplus B, A^{*} \oplus B^{*}\right)$. Assume that $\psi_{i}:=\pi_{i} \circ \psi\left(\varphi_{i}:=\pi_{i} \circ \varphi\right)$, for $i=1,2$, denote the coordinate functions associated to $\psi(\varphi)$, when π_{i} be the projection msp on arrays. That is

$$
\psi(\omega)=\left(\psi_{1}(\omega), \psi_{2}(\omega)\right) \quad \text { and } \quad \varphi\left(\omega_{1}, \omega_{2}\right)=\left(\varphi_{1}\left(\omega_{1}, \omega_{2}\right), \varphi_{2}\left(\omega_{1}, \omega_{2}\right)\right),
$$

for all $\omega_{1}, \omega_{2} \in A \oplus B$. We will often write $\psi=\left(\psi_{1}, \psi_{2}\right)$ and $\varphi=\left(\varphi_{1}, \varphi_{2}\right)$.

Lemma 2.2. Let $\varphi \in \mathbb{Z}^{2}\left(A \oplus B, A^{*} \oplus B^{*}\right)$. Suppose that $\varphi_{A}: A \times A \rightarrow A^{*}$ and $\varphi_{B}: B \times B \rightarrow B^{*}$ defined by

$$
\begin{equation*}
\varphi_{A}\left(a_{1}, a_{2}\right):=\varphi_{1}\left(\left(a_{1}, 0\right),\left(a_{2}, 0\right)\right) \quad \text { and } \quad \varphi_{B}\left(b_{1}, b_{2}\right):=\varphi_{2}\left(\left(0, b_{1}\right),\left(0, b_{2}\right)\right) . \tag{2.3}
\end{equation*}
$$

Then $\varphi_{A} \in \mathcal{Z}^{2}\left(A, A^{*}\right)$ and $\varphi_{B} \in \mathcal{Z}^{2}\left(B, B^{*}\right)$. Conversely, if φ_{A} and φ_{B} belong to $\mathcal{Z}^{2}\left(A, A^{*}\right)$ and $\mathcal{Z}^{2}\left(B, B^{*}\right)$ respectively, and also $\varphi_{A B}:(A \oplus B) \times(A \oplus B) \rightarrow A^{*} \oplus B^{*}$ is defined by

$$
\varphi_{A B}\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right)=\left(\varphi_{A}\left(a_{1}, a_{2}\right), \varphi_{B}\left(b_{1}, b_{2}\right)\right),
$$

then $\varphi_{A B} \in \mathcal{Z}^{2}\left(A \oplus B, A^{*} \oplus B^{*}\right)$. Furthermore, $\varphi_{A B} \in \mathcal{B}^{2}\left(A \oplus B, A^{*} \oplus B^{*}\right)$ if and only if $\varphi_{A} \in \mathcal{B}^{2}\left(A, A^{*}\right)$ and $\varphi_{B} \in \mathcal{B}^{2}\left(B, B^{*}\right)$.

Proof. Left to the reader.
Proposition 2.3. Let $\varphi \in \mathcal{Z}^{2}\left(A \oplus B, A^{*} \oplus B^{*}\right)$. Then there exists $\psi \in C^{1}\left(A \oplus B, A^{*} \oplus B^{*}\right)$ such that for each $\omega_{1}=\left(a_{1}, b_{1}\right)$ and $\omega_{2}=\left(a_{2}, b_{2}\right)$ belong to $A \oplus B$, we have

$$
\varphi\left(\omega_{1}, \omega_{2}\right)=\left(\begin{array}{cc}
\varphi_{A}\left(a_{1}, a_{2}\right)+a_{1} \psi_{1}\left(\omega_{2}\right) & b_{1} \psi_{2}\left(\omega_{2}\right)-\psi_{2}\left(\omega_{1} \omega_{2}\right) \tag{2.4}\\
-\psi_{1}\left(\omega_{1} \omega_{2}\right)+\psi_{1}\left(\omega_{1}\right) a_{2}, & +\psi_{2}\left(\omega_{1}\right) b_{2}+\varphi_{B}\left(b_{1}, b_{2}\right)
\end{array}\right)
$$

Proof. First define

$$
\begin{array}{lll}
\mu: B \rightarrow A^{*} & \text { by } & \mu(b):=\varphi_{1}\left((0, b),\left(\mathbf{1}_{A}, 0\right)\right), \\
\theta: A \rightarrow B^{*} & \text { by } & \theta(a):=\varphi_{2}\left(\left(0, \mathbf{1}_{B}\right),(a, 0)\right) . \tag{2.5b}
\end{array}
$$

We continue the proof in four steps. Let $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$. In each step, we use the actions (2.1) and 2-cocycle equation (2.2) for φ with different elements of $\omega_{1}, \omega_{2}, \omega_{3}$ in $A \oplus B$.
step 1. For $\omega_{1}=\left(0,1_{B}\right), \omega_{2}=\left(a_{1}, 0\right)$ and $\omega_{3}=\left(a_{2}, 0\right)$, we have

$$
\left(0, \mathbf{1}_{B}\right) \varphi\left(\left(a_{1}, 0\right),\left(a_{2}, 0\right)\right)=-\varphi\left(\left(0, \mathbf{1}_{B}\right),\left(a_{1} a_{2}, 0\right)\right)+\varphi\left(\left(0, \mathbf{1}_{B}\right),\left(a_{1}, 0\right)\right)\left(a_{2}, 0\right),
$$

which according to (2.3) and (2.5b), we obtain

$$
\begin{equation*}
\varphi\left(\left(a_{1}, 0\right),\left(a_{2}, 0\right)\right)=\left(\varphi_{A}\left(a_{1}, a_{2}\right),-\theta\left(a_{1} a_{2}\right)\right) . \tag{2.6}
\end{equation*}
$$

step 2. For $\omega_{1}=\left(a_{1}, 0\right), \omega_{2}=\left(0, b_{2}\right)$ and $\omega_{3}=\left(\mathbf{1}_{A}, 0\right)$, we have

$$
\varphi\left(\left(a_{1}, 0\right),\left(0, b_{2}\right)\right)\left(\mathbf{1}_{A}, 0\right)=\left(a_{1}, 0\right) \varphi\left(\left(0, b_{2}\right),\left(\mathbf{1}_{A}, 0\right)\right)
$$

Also for $\omega_{1}=\left(0, \mathbf{1}_{B}\right), \omega_{2}=\left(a_{1}, 0\right)$ and $\omega_{3}=\left(0, b_{2}\right)$, we have

$$
\left(0, \mathbf{1}_{B}\right) \varphi\left(\left(a_{1}, 0\right),\left(0, b_{2}\right)\right)=\varphi\left(\left(0, \mathbf{1}_{B}\right),\left(a_{1}, 0\right)\right)\left(0, b_{2}\right)
$$

Using (2.5a), (2.5b) and the two previous equalities, we obtain

$$
\begin{equation*}
\varphi\left(\left(a_{1}, 0\right),\left(0, b_{2}\right)\right)=\left(a_{1} \mu\left(b_{2}\right), \theta\left(a_{1}\right) b_{2}\right) . \tag{2.7}
\end{equation*}
$$

step 3. For $\omega_{1}=\left(0, b_{1}\right), \omega_{2}=\left(0,1_{B}\right)$ and $\omega_{3}=\left(a_{2}, 0\right)$, we have

$$
\varphi\left(\left(0, b_{1}\right),\left(a_{2}, 0\right)\right)=\left(0, b_{1}\right) \varphi\left(\left(0, \mathbf{1}_{B}\right),\left(a_{2}, 0\right)\right)-\varphi\left(\left(0, b_{1}\right),\left(0, \mathbf{1}_{B}\right)\right)\left(a_{2}, 0\right),
$$

which according to (2.5b) and the previous equality, we obtain

$$
\begin{equation*}
\varphi\left(\left(0, b_{1}\right),\left(a_{2}, 0\right)\right)=\left(\mu\left(b_{1}\right) a_{2}, b_{1} \theta\left(a_{2}\right)\right) . \tag{2.8}
\end{equation*}
$$

step 4. For $\omega_{1}=\left(0, b_{1}\right), \omega_{2}=\left(0, b_{2}\right)$ and $\omega_{3}=\left(\mathbf{1}_{A}, 0\right)$, we have

$$
\varphi\left(\left(0, b_{1}\right),\left(0, b_{2}\right)\right)\left(\mathbf{1}_{A}, 0\right)=\left(0, b_{1}\right) \varphi\left(\left(0, b_{2}\right),\left(\mathbf{1}_{A}, 0\right)\right)-\varphi\left(\left(0, b_{1} b_{2}\right),\left(\mathbf{1}_{A}, 0\right)\right) .
$$

Using (2.3), (2.5a) and the previous equaliy, we obtain

$$
\begin{equation*}
\varphi\left(\left(0, b_{1}\right),\left(0, b_{2}\right)\right)=\left(-\mu\left(b_{1} b_{2}\right), \varphi_{B}\left(b_{1}, b_{2}\right)\right) . \tag{2.9}
\end{equation*}
$$

Now, from the sum of the sides of the relationships (2.6) to (2.9), we get

$$
\varphi\left(\omega_{1}, \omega_{2}\right)=\left(\begin{array}{ll}
\varphi_{A}\left(a_{1}, a_{2}\right)+a_{1} \mu\left(b_{2}\right) & -\theta\left(a_{1} a_{2}\right)+\theta\left(a_{1}\right) b_{2} \\
+\mu\left(b_{1}\right) a_{2}-\mu\left(b_{1} b_{2}\right), & +b_{1} \theta\left(a_{2}\right)+\varphi_{B}\left(b_{1}, b_{2}\right)
\end{array}\right) .
$$

Next, let us assume that $\psi=\left(\psi_{1}, \psi_{2}\right): A \oplus B \longrightarrow A^{*} \oplus B^{*}$, to be defined by

$$
\begin{aligned}
& \psi_{1}: A \oplus B \rightarrow A^{*} \quad \text { by } \quad \psi_{1}((a, b)):=\mu(b), \\
& \psi_{2}: A \oplus B \rightarrow B^{*} \quad \text { by } \quad \psi_{2}((a, b)):=\theta(a) \text {. }
\end{aligned}
$$

Proof that ψ is bounded and linear is entrusted to the reader. Therefore, $\psi \in C^{1}\left(A \oplus B, A^{*} \oplus B^{*}\right)$ and also

$$
\varphi\left(\omega_{1}, \omega_{2}\right)=\left(\begin{array}{cc}
\varphi_{A}\left(a_{1}, a_{2}\right)+a_{1} \psi_{1}\left(\omega_{2}\right) & b_{1} \psi_{2}\left(\omega_{2}\right)-\psi_{2}\left(\omega_{1} \omega_{2}\right) \\
-\psi_{1}\left(\omega_{1} \omega_{2}\right)+\psi_{1}\left(\omega_{1}\right) a_{2} & +\psi_{2}\left(\omega_{1}\right) b_{2}+\varphi_{B}\left(b_{1}, b_{2}\right)
\end{array}\right) .
$$

So (2.4) is valid and the proof is complete.
So far, we have established a connection between the 2 -cocycles on A, B and $A \oplus B$. We want to extend this connection to the 2 -coboundaries and for this, we need the following Lemma.
Lemma 2.4. Let $\varphi \in \mathcal{Z}^{2}\left(A \oplus B, A^{*} \oplus B^{*}\right)$. Then $\varphi \in \mathcal{B}^{2}\left(A \oplus B, A^{*} \oplus B^{*}\right)$ if and only if $\varphi_{A} \in \mathcal{B}^{2}\left(A, A^{*}\right)$ and $\varphi_{B} \in \mathcal{B}^{2}\left(B, B^{*}\right)$.
Proof. Let $\varphi \in Z^{2}\left(A \oplus B, A^{*} \oplus B^{*}\right)$. By Proposition 2.3, there exists $\psi \in C^{1}\left(A \oplus B, A^{*} \oplus B^{*}\right)$, such that (2.4) is valid. For each $\omega_{1}=\left(a_{1}, b_{1}\right), \omega_{2}=\left(a_{2}, b_{2}\right)$ in $A \oplus B$, we have

$$
\begin{aligned}
\left(\varphi-\varphi_{A B}\right)\left(\omega_{1}, \omega_{2}\right)= & \left(\begin{array}{cc}
a_{1} \psi_{1}\left(\omega_{2}\right)-\psi_{1}\left(\omega_{1} \omega_{2}\right), & b_{1} \psi_{2}\left(\omega_{2}\right)-\psi_{2}\left(\omega_{1} \omega_{2}\right) \\
& +\psi_{1}\left(\omega_{1}\right) a_{2}, \\
= & +\psi_{2}\left(\omega_{1}\right) b_{2}
\end{array}\right) \\
& \left(a_{1} \psi_{1}\left(\omega_{2}\right), b_{1} \psi_{2}\left(\omega_{2}\right)\right)-\left(\psi_{1}\left(\omega_{1} \omega_{2}\right), \psi_{2}\left(\omega_{1} \omega_{2}\right)\right) \\
& +\left(\psi_{1}\left(\omega_{1}\right) a_{2}, \psi_{2}\left(\omega_{1}\right) b_{2}\right) \\
= & \left(a_{1}, b_{1}\right)\left(\psi_{1}\left(\omega_{2}\right), \psi_{2}\left(\omega_{2}\right)\right)-\left(\psi_{1}\left(\omega_{1} \omega_{2}\right), \psi_{2}\left(\omega_{1} \omega_{2}\right)\right) \\
& \quad+\left(\psi_{1}\left(\omega_{1}\right), \psi_{2}\left(\omega_{1}\right)\right)\left(a_{2}, b_{2}\right) \\
= & \omega_{1} \psi\left(\omega_{2}\right)-\psi\left(\omega_{1} \omega_{2}\right)+\psi\left(\omega_{1}\right) \omega_{2} \\
= & \mathbf{a d} \mathbf{d}_{\psi}\left(\omega_{1}, \omega_{2}\right) .
\end{aligned}
$$

Hence $\varphi-\varphi_{A B} \in \mathcal{B}^{2}\left(A \oplus B, A^{*} \oplus B^{*}\right)$. That this means, φ is 2-coboundary, if and only if $\varphi_{A B}$ is 2-coboundary, and by Lemma 2.2, if and only if φ_{A} and φ_{B} are 2-coboundaries.

Forrest and Marcoux in [3] have studied the first Hochschild cohomology group of triangular Banach algebra $\mathcal{H}^{1}\left(A \oplus B, A^{*} \oplus B^{*}\right)$. They showed that

$$
\mathcal{H}^{1}\left(A \oplus B, A^{*} \oplus B^{*}\right) \simeq \mathcal{H}^{1}\left(A, A^{*}\right) \oplus \mathcal{H}^{1}\left(B, B^{*}\right)
$$

In this section, we wish to identify the second Hochschild cohomology group $\mathcal{H}^{2}\left(A \oplus B, A^{*} \oplus B^{*}\right)$. We get similar results with the results of Forrest and Marcoux in [3], but in the second order.
Corollary 2.5. Let A and B be unital Banach algebras. Then

$$
\mathcal{H}^{2}\left(A \oplus B, A^{*} \oplus B^{*}\right) \simeq \mathcal{H}^{2}\left(A, A^{*}\right) \oplus \mathcal{H}^{2}\left(B, B^{*}\right)
$$

Proof. Let $\varphi \in \mathcal{Z}^{2}\left(A \oplus B, A^{*} \oplus B^{*}\right)$. By Lemma 2.2 and Proposition 2.3, there exists $\varphi_{A} \in \mathcal{Z}^{2}\left(A, A^{*}\right)$, $\varphi_{B} \in \mathcal{Z}^{2}\left(B, B^{*}\right)$ and $\psi \in C^{1}\left(A \oplus B, A^{*} \oplus B^{*}\right)$ such that (2.4) is valid.

Consider the map

$$
\begin{aligned}
\Gamma: \mathcal{Z}^{2}\left(A \oplus B, A^{*} \oplus B^{*}\right) & \rightarrow \mathcal{H}^{2}\left(A, A^{*}\right) \oplus \mathcal{H}^{2}\left(B, B^{*}\right) \\
\varphi & \mapsto\left(\varphi_{A}+\mathcal{B}^{2}\left(A, A^{*}\right), \varphi_{B}+\mathcal{B}^{2}\left(B, B^{*}\right)\right) .
\end{aligned}
$$

Using Lemma 2.2 and Proposition 2.3, it can be easily proved that Γ is well-define and surjective. Now we have

$$
\frac{\mathfrak{Z}^{2}\left(A \oplus B, A^{*} \oplus B^{*}\right)}{\operatorname{ker} \Gamma} \simeq \operatorname{Im} \Gamma=\mathcal{H}^{2}\left(A, A^{*}\right) \oplus \mathcal{H}^{2}\left(B, B^{*}\right)
$$

On the other hand, by Lemma 2.2,

$$
\varphi \in \operatorname{ker} \Gamma \Leftrightarrow \varphi_{A} \in \mathcal{B}^{2}\left(A, A^{*}\right) \text { and } \varphi_{B} \in \mathcal{B}^{2}\left(B, B^{*}\right) \Leftrightarrow \varphi \in \mathcal{B}^{2}\left(A \oplus B, A^{*} \oplus B^{*}\right)
$$

That is, $\operatorname{ker} \Gamma=\mathcal{B}^{2}\left(A \oplus B, A^{*} \oplus B^{*}\right)$. Thus

$$
\mathcal{H}^{2}\left(A \oplus B, A^{*} \oplus B^{*}\right)=\frac{\mathcal{Z}^{2}\left(A \oplus B, A^{*} \oplus B^{*}\right)}{\mathcal{B}^{2}\left(A \oplus B, A^{*} \oplus B^{*}\right)} \simeq \mathcal{H}^{2}\left(A, A^{*}\right) \oplus \mathcal{H}^{2}\left(B, B^{*}\right)
$$

This completes the proof.
We end this section with the final theorem and two rather simple examples. Recall that the action of $A \oplus B$ on $A^{(3)} \oplus B^{(3)}$ is a restriction of the action of $A^{(2)} \oplus B^{(2)}$ on $A^{(3)} \oplus B^{(3)}$. The same way the action of $A^{(2 n-4)} \oplus B^{(2 n-4)}$ on $A^{(2 n-1)} \oplus B^{(2 n-1)}$ is a restriction of the action of $A^{(2 n-2)} \oplus B^{(2 n-2)}$ on $A^{(2 n-1)} \oplus B^{(2 n-1)}$ for any $n \geq 2$. From this we can again the behavior of a 2 -cocycle map $\varphi: A \oplus B \rightarrow A^{(2 n-1)} \oplus B^{(2 n-1)}$. Suppose n is a positive integer. By repeating exactly the same calculations as Proposition 2.3, we find that there exist 2-cocycle maps $\varphi_{A}: A \rightarrow A^{(2 n-1)}$ and $\varphi_{B}: B \rightarrow B^{(2 n-1)}$ as well as $\psi \in C^{1}\left(A \oplus B, A^{(2 n-1)} \oplus B^{(2 n-1)}\right)$ such that (2.4) is valid. We therefore have:

Theorem 2.6. Let A and B be unital Banach algebras. Suppose $A \oplus B$ is ℓ^{1}-direct sum of A and B. Then

$$
\mathcal{H}^{2}\left(A \oplus B, A^{(2 n-1)} \oplus B^{(2 n-1)}\right) \simeq \mathcal{H}^{2}\left(A, A^{(2 n-1)}\right) \oplus \mathcal{H}^{2}\left(B, B^{(2 n-1)}\right)
$$

3. Examples

Now we recall that semigroup S is an inverse semigroup if for each $s \in S$ there is a unique element $s^{*} \in S$ such that $s s^{*} s=s$ and $s^{*} s s^{*}=s^{*}$. The element $s \in S$ is called central and idempotent if $s t=t s$ for each $t \in S$ and $s=s^{*}=s^{2}$, respectively. The inverse semigroup S is called semilattice if each element of S is central and idempotent. Also the inverse semigroup S is called Clifford semigroup if each idempotent element of S is central. Subsequently, it is assumed that S is an unital semigroup. In this case, semigroup algebra $\ell^{1}(S)$ is unital Banach algebras with the actions

$$
\delta_{s} \cdot \delta_{t}=\delta_{t} \cdot \delta_{s}=\delta_{s} * \delta_{t}=\delta_{s t} \quad(s, t \in S)
$$

Example 3.1. Consider $A=B=\ell^{1}(S)$, where S is semigroup. Using Corollary 2.5, [1, Theorem 3.2], [1, Theorem 3.3] and [4, Theorem 4.6], we have
(i) $\mathcal{H}^{2}\left(\ell^{1}(S) \oplus \ell^{1}(S), \ell^{\infty}(S) \oplus \ell^{\infty}(S)\right)=0$, for $S=\mathbb{Z}_{+}$or unital semilattice S.
(ii) $\mathcal{H}^{2}\left(\ell^{1}(S) \oplus \ell^{1}(S), \ell^{\infty}(S) \oplus \ell^{\infty}(S)\right)$ is Banach space for Clifford semigroups.

Using Theorem 2.6 and Theorems 2.3 and 3.3 of [5], we have the following examples.
Example 3.2. $\mathcal{H}^{2}\left(\ell^{1}(G) \oplus \ell^{1}(G), \ell^{1}(G)^{(2 n-1)} \oplus \ell^{1}(G)^{(2 n-1)}\right)$ is Banach space, for every discrete group G and any $n \in \mathbb{N}$.

Example 3.3. $\mathcal{H}^{2}\left(L^{1}(G) \oplus L^{1}(G), L^{1}(G)^{(2 n-1)} \oplus L^{1}(G)^{(2 n-1)}\right)$ is Banach space, for every locally campact group G and any $n \in \mathbb{N}$.

We end this paper with a question:
Question. Let A and B be Banach algebras and M be a Banach A, B-module. Suppose that

$$
\mathcal{T}=\operatorname{Tri}(A, B, M)=\left\{\left[\begin{array}{cc}
a & m \\
& b
\end{array}\right]: a \in A, b \in B, m \in M\right\}
$$

be the corresponding triangular Banach algebra. In this paper, in the case of $M=0$, we proved that $\mathcal{H}^{2}\left(\mathcal{T}, \mathcal{T}^{*}\right) \simeq \mathcal{H}^{2}\left(A, A^{*}\right) \oplus \mathcal{H}^{2}\left(B, B^{*}\right)$, where $\mathcal{T}=A \oplus B$. Now the question is, whether there is a general rule as well. In fact, is the Lemma 2.4 also true for the general case $M \neq 0$? Indeed, is $\varphi-\varphi_{A B} \in \mathcal{B}^{2}\left(\mathcal{T}, \mathcal{T}^{*}\right)$, for every $\varphi \in \mathcal{Z}^{2}\left(\mathcal{T}, \mathcal{T}^{*}\right) ?$

References

[1] H.G. Dales and J. Duncan, Second-order cohomology groups of some semigroup algebras, In Banach algebras, Walter de gruyter, Berlin, 1998, 101-117.
[2] B.E. Forrest and L.W. Marcoux, Derivation of triangular Banach algebras, Indiana, Univ. Math. Soc., 45 (1996), 441-462.
[3] B.E. Forrest and L.W. Marcoux, Weak amenability of triangular Banach algebras, Tranc. Amer, Math. Soc., 354 (2002), 1435-1452.
[4] F. Gordeau, A.R. Pourabbas and M.C. White, Simplicial cohomology of some semigroup algebras, Canad. Math. Bull., 50(1) (2007), 56-70.
[5] A.R. Pourabbas, Second cohomology group of group algebras with coefficients in iterated duals, Proc. Amer. Math. Soc., 32(5) (2004), 1403-1410.

[^0]: *Corresponding author
 Email address: nasrabadi@birjand.ac.ir (Ebrahim Nasrabadi)

