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1. Introduction

Assume that B is a Banach algebra and X is a Banach B—bimodule. A bounded linear map
D : B — X is said to be a derivation if D(ab) = D(a)b + aD(b) for all a,b € B. Clearly the
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mapping 6, : B — X defined by 6,(b) = bx — xb, b € B is a derivation for all x € X, that is called
an inner derivation. A derivation D : B — X is called inner, if D = 6, for some x € X.

Let B be a Banach algebra and let n be a non-negative integer. The n"—dual B™ of B is a
Banach B—bimodule under the module operations defined inductively by

(G-b,g)=(G,b-g),{b-G,g)=(g-b,G),GeB" geB"V beB=BY.

Obviously B is a Banach B—bimodule under its multiplication.
A Banach algebra B is said to be n—weakly amenable if every derivation from B into B™ is
inner. The concept of n—weak amenability was initiated and intensively studied in [3]. Of course,
1-weak amenability and weak amenability are the same notions which was first introduced in [1]
for commutative Banach algebras and was followed in [4] for non-commutative case .
A Banach algebra B is said to be amenable if for each Banach B—bimodule X, every derivation
from B into X* is inner.

In this paper let A be a non-zero normed vector space and let ¢ be a non-zero element of A*

such that ||¢|| < 1. Let K = B(IO) be the closed unit ball of A. We will consider C’(K) the space of
all complex-valued, bounded and continuous functions on K. Obviously C’(K) is a unital algebra
with respect to the pointwise algebraic operations. We will denote by 1 the identity of C?(K).
The uniform norm on K is defined by ||fll. = sup {|f(x)| | x € K} for all f € C*(K). Clearly
(CP(K), || - |lo) is @ commutative, unital Banach algebra. It is obvious that ||¢||. = [l¢].

By [Examples 3.2.2 (i), 2], (C*(K), || - |lo) is a commutative C*—algebra. Also it is well-known
that every commutative C*—algebra is amenable [Example 2.3.4, 10]. So (C’(K),|| - |l) is an
amenable Banach algebra.

Let f,g € C’K) and define f - ¢ = fopg. The space C’(K) equipped with the product
- ” make C’(K) into a new associative algebra that we denote it by C**(K). In [7] we show
that (C**(K),|| - ||) is a non-unital, commutative Banach algebra and also we characterize some
relations between character spaces of (C*(K),|| - |l) and (C?(K),|| - |l). Also miscellaneous
algebraic properties of (C**(K), || - ||l.) are investigate in [7].

In [5] for a Banach algebra A, R. A. Kamyabi-Gol and M. Janfada defined a new product * -
”on A by, a-c = aecforall a,c € A, where ¢ is a fixed element of the closed unit ball B(IO) of
A. (A, -) is an associative Banach algebra which is denoted by A.. Some properties such as, Arens
regularity, amenability and derivations on A, are investigated in [5]. Also biflatness, biprojectivity,
p—amenability and ¢—contractibility of A, are investigated in [6]. It is worth pointing out that
(CP(K), |l - lleo) = (CP(KD, N - ooy

Letn € NU {0}, A € (C*¥(K),|| - [l)™ and f € (C**(K), || - |lo). Since C**(K) is commutative,
the (C*(K), || - ||..)—module operations on (C**(K), || - |l)™ are givenby A - f = f - A = Afo.

The space C*#(K) with the norm || f lle = lfelles, f € C"#(K) is a non-complete normed algebra
[8] and also, || f1l, < IIfll-llgll. Similarly, the (C*#(K), ||-|l,)-module operations on (C**(K), |- ||,)™
are given by A - f = f- A = Afp forall A € (C*(K), || - l,)™, f € (C**(K), |l - ll,),n € N U{0}.
Clearly (C*(K), || - ll,)™ is a Banach (C**(K), || - ||,)-bimodule for all n € N and (C**(K), || - |l,) is
a normed (C*(K),|| - |l,)—bimodule. In [9] we characterize the derivations from
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(C*(K), || - llo) and (C*#(K), || - ll,) into (C*(K), || - [ls)” and (C*#(K), | - [l,)" respectively. Also
weak and cyclic amenability of (C**(K), || - ||) and
(C*(K), | - ll,) are investigated in [9].

The results of this paper concerning the spaces of (C*(K), || - ||l.) and
(C*(K), II-l,) can be applied as a source of examples and counterexamples in the field of amenabil-
ity and n—weak amenability.

2. n—weak amenability of (C*(K), || - |.,) and (C**(K), || - Il,)

In this section we characterize the derivations from (C*(K),|| - ||-) and
(C*(K), I |lp) into (C**(K), || - [l)™ and (C*#(K), || - Il,)™ respectively and also we investigate the
n—weak amenability of (C**(K),|| - ||) and (C**(K), || - ll,) for all n € N U {0}.

We set (C**(K), || - [lo)™ and (C**(K), || - |I,)™ as the n™ dual spaces of
(C*(K), || - ll) and (C*(K), || - |l,) with the norms || - | and || - [|%” respectively, where

(C*ED), N - 1) = (KD M- Do) NI =11+ Hleos
(K- 1) = (€K M-Np)s -0 =11

Recall that [l¢]le = [l¢ll and also [|fll, < [Ifllsllell for all f € C*(K).

The mapping % : C°(K) — C defined by (&, f) = f(x), f € C*(K) is a linear functional. Clearly
I£ll” < 1 forall x € K. Also ||#lly” < L for all x € K\ ker g,

The following theorem generalizes Theorem 3.2 of [9].

Theorem 2.1. Let n € N U {0}. Also let D : (C**(K),|| - llo) — (C**(K), || - llo)™ be a bounded
linear map. Then D is a derivation if and only if D(f¢) = fD(p) = 2D(f)¢ for all f € C*(K).

Proof. The same proof of Theorem 3.2 given in [9] remains valid. Ol

Corollary 2.2. Let n € NU{0}. Also let D : (C*(K), || - |les) — (C*(K), || - lls)™ be a derivation.
Then D(f)¢* = 0 for all f € C**(K).

Proof. By Theorem 2.1 we have,
D(f¢) = fD(¢) = 2D(f)¢ 2.1)
for all f € C**(K). Replacing f by fe in (2.1) we obtain,
D(f¢*) = feD(p) = 2D(f@)¢. (2.2)
So,

feD(p) = 2D(fe)p
=22D(f)p)¢
= 4D(f)¢’, f € C™(K).
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Hence,

feD(p) = 4D(f)¢*, f € C*(K). (2.3)
Also by (2.1) we can conclude that,

feD(g) = 2D(f)¢*, f € C*(K). (2.4)

Comparing (2.3) and (2.4) we obtain D(f)¢? = 0 for all f € C**(K), as we wanted to show. L]
Theorem 2.3. The only derivation from (C*(K), || - |le) into (C*(K), || - ||) is zero.

Proof. Let D : (C*(K),|| - llo) — (C*(K),|| - |l) be a derivation. So by Corollary 2.2 we
have D(f)¢* = 0 for all f € C*(K). Applying [8, Proposition 2.1] we obtain D(f) = 0 for all
f € C*(K). So D = 0, as desired. O

The following theorem generalizes Theorem 3.1 of [9].
Theorem 2.4. (C**(K), || - ||l) is not (2n — 1)—weakly amenable for all n € N.

Proof. Since (C*(K), || - llo)” € (C*(K), || - |lo)®"~V for all n € N, inspired by [Theorem 3.1, 9]
the theorem can be proved.
[

1
S A

Lemma 2.5. Let {A,}, € (C*(K),|| - llo)V be a sequence such that A, — 0. Then {A,}, is
bounded.

Proof. Suppose the assertion of the lemma is false. So there exists a subsequence {A,}; of {A,},
such that lim;_ [|A,, ]| = co.

Define f; : K — C by fi(x) = #%,x € K. One can easily verify that, ||fjllo < 1 and
j {e8]

il < m for all j € N. It follows that lim;_,, || fj¢llc = 0 and
J

KA, il = KAy, 0]
< AN fiello

< ||An,.||£i);m
(1A, ]l )?
1
1ALIS
Hence,
jli_rggo(An,sa,ij) =0. (2.5)
Also,

KA, ) = 11 = KAy, £7) = €0, £
= KA =0, f)l
< 1Au = O filleo
< [|Aue = 01
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. . A (1
Since lim; .« [|A,,¢ = 0] = 0 so,

lim (A, 0, fj) = 1. (2.6)
]—)00
Comparing (2.5) with (2.6) shows a contradiction. O

115
Theorem 2.6. Let W = {Acp ‘ A € (CP(K),|| - ||OO)(1)} . Then W is a proper closed subspace
of (C(K), || - lleo)™P.

Proof. Obviously W is a closed subspace of (C*(K), || - ||)". We shall show that W is proper. To
this end, we will prove that 0 ¢ W. Suppose, contrary to our claim, that ) € W. So there exists a
IS

sequence {A,}, € (C*(K),|| - lo)® such that A, — 0. By Lemma 2.5 {A,}, is bounded. Let
ALY < M forall n € N. Define f, : K — C by fo(x) = 229 for all x € K. Clearly || fall < 1.

L+nlp(x)|
One can easily check that || f,¢]|e < ﬁ and consequently || f,¢|lcc — 0. So, on the one hand,

KA, £y = 1 = KAug, £2) = <0, £)
= KA = 0, f3)]
< 1Aup = OV fulloo
< [|Aup = O

—0,
that implies,

A, fr) — 1. (2.7)
On the other hand,

KA, F)] = KA fu0)]
< IAIDN oo
< Ml|f, @l

—0,

that implies,
(Mg, fr) — 0. (2.8)

Comparing (2.7) with (2.8) yields a contradiction. So 0 ¢ W. U
Theorem 2.7. (C*(K), || - ||l) is not 2n-weakly amenable for all n € N.

Proof. By applying [Proposition 2.8.76, 2] it is sufficient to show that
(C*(K), || - |l) is not 2-weakly amenable.

1
S

A € (CP(K),|| - ||oo)(1)} . By Theorem 2.6, 0 ¢ W. So

For this purpose, let W = {Agp
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there exists an element m € (C?(K),|| - |lo)® such that m| = 0 and (m,0) # 0. Define, D :
w
(C(K), |l - lleo) — (CP#(K), || - ll0)® by, D(f) = f(O)m for all f € (C**(K),|| - |lo). Obviously D
is linear and D # 0. Indeed,
D(1x) = 1x(0)ym = m # 0. Also, for f € C**(K) we have,
IDNHIZ = 11 O)mlP
= fO)lllm||2
<m0 fleo-

So ||D]| < ||m||fi) . This shows that D is bounded. We shall show that D is a derivation. Let
f-g € C¥(K). So,

D(f - g) = D(fyg)

= (feg)(0)m

= f(0)¢(0)g(0)m

=0,
also,

D(f)-g+ f-D(g) = D(f)ge + D) fe

= (f(0O)m)gp + (g(0)m) f

= f(O)mge + g(0)mfo.
Since m| =0, clearly mgyp = mfyp = 0. So, we can conclude that,

w

D(f)-g+ f-D(g) = 0. This shows that D(f - g) = D(f) - g + f - D(g) for all f,g € C*(K).
Since C**(K) is commutative and D # 0, D is not inner. Hence, (C**(K),|| - |l») is not 2-weakly
amenable. O

Corollary 2.8. (C**(K), || - |l-) is not n—weakly amenable for all n € N.
Proof. The proof is immediate by Theorems 2.4 and 2.7. [

To investigate the n—weak amenability of (C*#(K), ||- ll,) we need to characterize the derivations
from (C*(K), || - |l,) into (C**(K), || -1|,)™ for all n € NU{0}. To this end, we present the following
lemma that is a generalization of Propositions 2.1 and 2.3 of [9].

Lemma 2.9. Let n € NU{0}. Then

1.
(C™"(K), || - ll)® S (C™(K), || - 11,)?", (2.9)
(C*(K), || - 1) € (CP(K), || - [leo) D (2.10)
'3
Moreover,
Iml|C™ < Iml| &Pl m € (CP(K), || - 1lo) ™, (2.11)

IAIZD < IAIE™ Dllgll, A € (C(K), 11 - 1) (2.12)
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2.
(C*(K), || - )" € (CP#(K), || - 1leo)®™, (2.13)
(C*(K), || - l)®* P € (CP(K), | - 11,) "D (2.14)
Moreover,
Imel|Z” < IImIIf"),m € (C*(K), | - I,)", (2.15)
IIAcpllff"“) < IAIZ™*D, A € (CP(K), || - [lo)@™* 1. (2.16)

Proof. The proof is by induction on n. We first prove that all of the assertions of the lemma is
valid for n = 0. The proofs of (2.9), (2.11), (2.13), and (2.15) are obvious and are left for the
reader. Let A € (C**(K), || - [I,)V, A" € (C**(K), || - llo)" and f, g € C**(K). So,

KA, P < AL
SN
< IAICN Nl
= AL ATl

Hence, [[AISY < IAI]l¢ll, providing (2.10) and (2.12). Also,

KA @, &) = KA, g)l
<IN Igelleo
= 1Al
Therefore [|A'g|[” < [|A||', providing (2.14) and (2.16).
Assume all of the assertions of the lemma hold for n = p, we will prove them forn = p + 1. For
this purpose, let,
m € (C*(K), || - )2,
A € (C*(E), || - 1) Y,
A € (C™(K), || - 1)+,
m € (C™(K), || - 1l,)**,
A" € (CP(K), [ - llo)?P*Y,
A" € (C¥(K), || - 11e) 2.
By (2.10) and (2.12) of hypotheses we have, A € (C*(K), ||-[l)®*" and AIZ"" < [IAI"*lgl.
So,

2p+2 2p+1
[(m, AY| < [lm]| 2P| AN G

2p+2 2p+1
< mllSP2NANZ el
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It follows that, [m||S7*? < [Iml|S7*?|¢ll, providing (2.9) and (2.11) forn = p + 1.
Since (2.9) and (2.11) are valid for n = p+ 1, m € (C**(K), ||-l,)?"*? and |lm||S”** < [lm)| 2" llpll.
Hence,

! "12p+3 2p+2
KA, m)l < [INTE D lm)| G2

"12p+3 2p+2
< AN NmlI 272l

that implies, [|A'|7* < [IA'IS”V|l¢ll, providing (2.10) and (2.12) forn = p + 1.

Since by (2.14) and (2.16) of hypotheses, A" ¢ € (C**(K), || - |l,)*"*" and

IA” @7 <IN ISP+, we can define,

me : (C¥(K),| - |lo)?*) — C by, (m'¢o, A") = (m', A" ). Obviously m ¢ is linear. We will
prove that m ¢ is bounded on (C*(K), || - ||.) V.

Km'@, A"Y = Km', A" )|
< Im [P 2IA" gl 2P+

"112p+2 "12p+l
< llm 272 NAT NS,

that implies, [[m'||'5”*> < |Im||5”*?, providing (2.13) and 2.15 for

n=p+1.

Since (2.13) and (2.15) are valid forn = p + 1, m'¢ € (C?*(K), || - llo)@*? and |Im ¢|| 2> <
||m'||§,2p *2 Hence we can define,

A"@ : (CP(K), || - 1,)*7*2 — C by, (A" @,m’) = (A", m'). It follows that,

(A" @,m ) = KA, m )|
n’ 2 3 ! 2 2
< |A" 2741 ) 2P+

17" 2 3 ’ 2 2
< NP N 11572

So, ISP < IA" 1P, providing (2.14) and (2.16) forn = p + 1. O
The following theorem generalizes Theorem 4.2 of [9].

Theorem 2.10. Let n € N U {0} and let
D : (C**(K), |l - ll,) — (C*(K), || - lI,)™ be a bounded linear map. Then D is a derivation if and
only if D = 0.

Proof. One can prove the theorem by applying Lemma 2.9 and by modifying the proof of [Theo-
rem 4.2, 9].
[
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