Vali-e-Asr University
of Rafsanjan

Wavelets and Linear Algebra

http://wala.vru.ac.ir

n-weak amenability of a certain class of function spaces

Ali Reza Khoddamia ${ }^{\text {a,* }}$
${ }^{a}$ Faculty of Mathematical Sciences, Shahrood University of Technology, P. O. Box 3619995161-316, Shahrood, Iran.

Article Info

Article history:
Received 28 January 2022
Accepted 10 January 2023
Available online 5 May 2023
Communicated by Rajab Ali
Kamyabi-Gol

Keywords:

Derivation, Inner derivation, Amenability, n-weak amenability.

2010 MSC:
46J10, 47B47, 47B37, 46H25.

Abstract

Let A be a non-zero normed vector space and let φ be a nonzero element of A^{*} such that $\|\varphi\| \leq 1$. Assume that $K=\overline{B_{1}^{(0)}}$ is the closed unit ball of A. According to the our recent studies on the spaces of $\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)$ and $\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)$, generated by $C^{b}(K)$ and equipped with a new product " . " and different norms $\|\cdot\|_{\infty}$ and $\|\cdot\|_{\varphi}$, the n-weak amenability of $\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)$ and $\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)$ are investigated.

(c) (2023) Wavelets and Linear Algebra

1. Introduction

Assume that B is a Banach algebra and X is a Banach B-bimodule. A bounded linear map $D: B \longrightarrow X$ is said to be a derivation if $D(a b)=D(a) b+a D(b)$ for all $a, b \in B$. Clearly the

[^0]mapping $\delta_{x}: B \longrightarrow X$ defined by $\delta_{x}(b)=b x-x b, b \in B$ is a derivation for all $x \in X$, that is called an inner derivation. A derivation $D: B \longrightarrow X$ is called inner, if $D=\delta_{x}$ for some $x \in X$.

Let B be a Banach algebra and let n be a non-negative integer. The $n^{\text {th }}$-dual $B^{(n)}$ of B is a Banach B-bimodule under the module operations defined inductively by

$$
\langle G \cdot b, g\rangle=\langle G, b \cdot g\rangle,\langle b \cdot G, g\rangle=\langle g \cdot b, G\rangle, G \in B^{(n)}, g \in B^{(n-1)}, b \in B=B^{(0)} .
$$

Obviously B is a Banach B-bimodule under its multiplication.
A Banach algebra B is said to be n-weakly amenable if every derivation from B into $B^{(n)}$ is inner. The concept of n-weak amenability was initiated and intensively studied in [3]. Of course, 1 -weak amenability and weak amenability are the same notions which was first introduced in [1] for commutative Banach algebras and was followed in [4] for non-commutative case .
A Banach algebra B is said to be amenable if for each Banach B-bimodule X, every derivation from B into X^{*} is inner.

In this paper let A be a non-zero normed vector space and let φ be a non-zero element of A^{*} such that $\|\varphi\| \leq 1$. Let $K=\overline{B_{1}^{(0)}}$ be the closed unit ball of A. We will consider $C^{b}(K)$ the space of all complex-valued, bounded and continuous functions on K. Obviously $C^{b}(K)$ is a unital algebra with respect to the pointwise algebraic operations. We will denote by 1_{K} the identity of $C^{b}(K)$. The uniform norm on K is defined by $\|f\|_{\infty}=\sup \{|f(x)| \quad \mid \quad x \in K\}$ for all $f \in C^{b}(K)$. Clearly $\left(C^{b}(K),\|\cdot\|_{\infty}\right)$ is a commutative, unital Banach algebra. It is obvious that $\|\varphi\|_{\infty}=\|\varphi\|$.

By [Examples 3.2.2 (i), 2], $\left(C^{b}(K),\|\cdot\|_{\infty}\right)$ is a commutative C^{*}-algebra. Also it is well-known that every commutative C^{*}-algebra is amenable [Example 2.3.4, 10]. So $\left(C^{b}(K),\|\cdot\|_{\infty}\right)$ is an amenable Banach algebra.

Let $f, g \in C^{b}(K)$ and define $f \cdot g=f \varphi g$. The space $C^{b}(K)$ equipped with the product " ." make $C^{b}(K)$ into a new associative algebra that we denote it by $C^{b \varphi}(K)$. In [7] we show that $\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)$ is a non-unital, commutative Banach algebra and also we characterize some relations between character spaces of $\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)$ and $\left(C^{b}(K),\|\cdot\|_{\infty}\right)$. Also miscellaneous algebraic properties of $\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)$ are investigate in [7].

In [5] for a Banach algebra A, R. A. Kamyabi-Gol and M. Janfada defined a new product " . " on A by, $a \cdot c=a \varepsilon c$ for all $a, c \in A$, where ε is a fixed element of the closed unit ball $\overline{B_{1}^{(0)}}$ of A. (A, \cdot) is an associative Banach algebra which is denoted by A_{ε}. Some properties such as, Arens regularity, amenability and derivations on A_{ε} are investigated in [5]. Also biflatness, biprojectivity, φ-amenability and φ-contractibility of A_{ε} are investigated in [6]. It is worth pointing out that $\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)=\left(C^{b}(K),\|\cdot\|_{\infty}\right)_{\varphi}$.

Let $n \in \mathbb{N} \cup\{0\}, \Lambda \in\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)^{(n)}$ and $f \in\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)$. Since $C^{b \varphi}(K)$ is commutative, the $\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)$-module operations on $\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)^{(n)}$ are given by $\Lambda \cdot f=f \cdot \Lambda=\Lambda f \varphi$.

The space $C^{b \varphi}(K)$ with the norm $\|f\|_{\varphi}=\|f \varphi\|_{\infty}, f \in C^{b \varphi}(K)$ is a non-complete normed algebra [8] and also, $\|f\|_{\varphi} \leq\|f\|_{\infty}\|\varphi\|$. Similarly, the $\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)$-module operations on $\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)^{(n)}$ are given by $\Lambda \cdot f=f \cdot \Lambda=\Lambda f \varphi$ for all $\Lambda \in\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)^{(n)}, f \in\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right), n \in \mathbb{N} \cup\{0\}$. Clearly $\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)^{(n)}$ is a Banach $\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)$-bimodule for all $n \in \mathbb{N}$ and $\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)$ is a normed ($\left.C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)$-bimodule. In [9] we characterize the derivations from
$\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)$ and $\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)$ into $\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)^{(1)}$ and $\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)^{(1)}$ respectively. Also weak and cyclic amenability of ($C^{b \varphi}(K),\|\cdot\|_{\infty}$) and $\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)$ are investigated in [9].

The results of this paper concerning the spaces of $\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)$ and
$\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)$ can be applied as a source of examples and counterexamples in the field of amenability and n-weak amenability.

2. n-weak amenability of $\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)$ and $\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)$

In this section we characterize the derivations from $\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)$ and $\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)$ into $\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)^{(n)}$ and $\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)^{(n)}$ respectively and also we investigate the n-weak amenability of $\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)$ and $\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)$ for all $n \in \mathbb{N} \cup\{0\}$.

We set $\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)^{(n)}$ and $\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)^{(n)}$ as the $n^{\text {th }}$ dual spaces of $\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)$ and $\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)$ with the norms $\|\cdot\|_{\infty}^{(n)}$ and $\|\cdot\|_{\varphi}^{(n)}$ respectively, where

$$
\begin{aligned}
\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)^{(0)} & =\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right), & \|\cdot\|_{\infty}^{(0)}=\|\cdot\|_{\infty}, \\
\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)^{(0)} & =\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right), & \|\cdot\|_{\varphi}^{(0)}=\|\cdot\|_{\varphi} .
\end{aligned}
$$

Recall that $\|\varphi\|_{\infty}=\|\varphi\|$ and also $\|f\|_{\varphi} \leq\|f\|_{\infty}\|\varphi\|$ for all $f \in C^{b \varphi}(K)$.
The mapping $\hat{x}: C^{b}(K) \longrightarrow \mathbb{C}$ defined by $\langle\hat{x}, f\rangle=f(x), f \in C^{b}(K)$ is a linear functional. Clearly $\|\hat{x}\|_{\infty}^{(1)} \leq 1$ for all $x \in K$. Also $\|\hat{x}\|_{\varphi}^{(1)} \leq \frac{1}{|\varphi(x)|}$ for all $x \in K \backslash \operatorname{ker} \varphi$.
The following theorem generalizes Theorem 3.2 of [9].
Theorem 2.1. Let $n \in \mathbb{N} \cup\{0\}$. Also let $D:\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right) \longrightarrow\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)^{(n)}$ be a bounded linear map. Then D is a derivation if and only if $D(f \varphi)=f D(\varphi)=2 D(f) \varphi$ for all $f \in C^{b \varphi}(K)$.

Proof. The same proof of Theorem 3.2 given in [9] remains valid.
Corollary 2.2. Let $n \in \mathbb{N} \cup\{0\}$. Also let $D:\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right) \longrightarrow\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)^{(n)}$ be a derivation. Then $D(f) \varphi^{2}=0$ for all $f \in C^{b \varphi}(K)$.

Proof. By Theorem 2.1 we have,

$$
\begin{equation*}
D(f \varphi)=f D(\varphi)=2 D(f) \varphi \tag{2.1}
\end{equation*}
$$

for all $f \in C^{b \varphi}(K)$. Replacing f by $f \varphi$ in (2.1) we obtain,

$$
\begin{equation*}
D\left(f \varphi^{2}\right)=f \varphi D(\varphi)=2 D(f \varphi) \varphi \tag{2.2}
\end{equation*}
$$

So,

$$
\begin{aligned}
f \varphi D(\varphi) & =2 D(f \varphi) \varphi \\
& =2(2 D(f) \varphi) \varphi \\
& =4 D(f) \varphi^{2}, f \in C^{b \varphi}(K) .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
f \varphi D(\varphi)=4 D(f) \varphi^{2}, f \in C^{b \varphi}(K) \tag{2.3}
\end{equation*}
$$

Also by (2.1) we can conclude that,

$$
\begin{equation*}
f \varphi D(\varphi)=2 D(f) \varphi^{2}, f \in C^{b \varphi}(K) \tag{2.4}
\end{equation*}
$$

Comparing (2.3) and (2.4) we obtain $D(f) \varphi^{2}=0$ for all $f \in C^{b \varphi}(K)$, as we wanted to show.
Theorem 2.3. The only derivation from $\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)$ into $\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)$ is zero.
Proof. Let $D:\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right) \longrightarrow\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)$ be a derivation. So by Corollary 2.2 we have $D(f) \varphi^{2}=0$ for all $f \in C^{b \varphi}(K)$. Applying [8, Proposition 2.1] we obtain $D(f)=0$ for all $f \in C^{b \varphi}(K)$. So $D=0$, as desired.

The following theorem generalizes Theorem 3.1 of [9].
Theorem 2.4. $\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)$ is not $(2 n-1)$-weakly amenable for all $n \in \mathbb{N}$.
Proof. Since $\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)^{(1)} \subseteq\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)^{(2 n-1)}$ for all $n \in \mathbb{N}$, inspired by [Theorem 3.1, 9] the theorem can be proved.

Lemma 2.5. Let $\left\{\Lambda_{n}\right\}_{n} \subseteq\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)^{(1)}$ be a sequence such that $\Lambda_{n} \varphi \xrightarrow{\|\cdot\|_{\infty}^{(1)}} \hat{0}$. Then $\left\{\Lambda_{n}\right\}_{n}$ is bounded.
Proof. Suppose the assertion of the lemma is false. So there exists a subsequence $\left\{\Lambda_{n_{j}}\right\}_{j}$ of $\left\{\Lambda_{n}\right\}_{n}$ such that $\lim _{j \rightarrow \infty}\left\|\Lambda_{n_{j}}\right\|_{\infty}^{(1)}=\infty$.
Define $f_{j}: K \longrightarrow \mathbb{C}$ by $f_{j}(x)=\frac{1-|\varphi(x)|}{1+\left(\left\|\Lambda_{n_{j}}\right\|\left(\|_{0}^{1()}\right)|\varphi(x)|\right.}, x \in K$. One can easily verify that, $\left\|f_{j}\right\|_{\infty} \leq 1$ and $\left\|f_{j} \varphi\right\|_{\infty} \leq \frac{1}{\left(\left\|\Lambda_{n_{j}}\right\|_{\infty}^{(1)}\right)^{2}}$ for all $j \in \mathbb{N}$. It follows that $\lim _{j \rightarrow \infty}\left\|f_{j} \varphi\right\|_{\infty}=0$ and

$$
\begin{aligned}
\left|\left\langle\Lambda_{n_{j}} \varphi, f_{j}\right\rangle\right| & =\left|\left\langle\Lambda_{n_{j}}, f_{j} \varphi\right\rangle\right| \\
& \leq\left\|\Lambda_{n_{j}}\right\|_{\infty}^{(1)}\left\|f_{j} \varphi\right\|_{\infty} \\
& \leq\left\|\Lambda_{n_{j}}\right\|_{\infty}^{(1)} \frac{1}{\left(\left\|\Lambda_{n_{j}}\right\|_{\infty}^{(1)}\right)^{2}} \\
& =\frac{1}{\left\|\Lambda_{n_{j}}\right\|_{\infty}^{(1)}} .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left\langle\Lambda_{n_{j}} \varphi, f_{j}\right\rangle=0 . \tag{2.5}
\end{equation*}
$$

Also,

$$
\begin{aligned}
\left|\left\langle\Lambda_{n_{j}} \varphi, f_{j}\right\rangle-1\right| & =\left|\left\langle\Lambda_{n_{j}} \varphi, f_{j}\right\rangle-\left\langle\hat{0}, f_{j}\right\rangle\right| \\
& =\left|\left\langle\Lambda_{n_{j}} \varphi-\hat{0}, f_{j}\right\rangle\right| \\
& \leq\left\|\Lambda_{n_{j}} \varphi-\hat{0}\right\|_{\infty}^{(1)}\left\|f_{j}\right\|_{\infty} \\
& \leq\left\|\Lambda_{n_{j}} \varphi-\hat{0}\right\|_{\infty}^{(1)} .
\end{aligned}
$$

Since $\lim _{j \rightarrow \infty}\left\|\Lambda_{n_{j}} \varphi-\hat{0}\right\|_{\infty}^{(1)}=0$ so,

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left\langle\Lambda_{n_{j}} \varphi, f_{j}\right\rangle=1 . \tag{2.6}
\end{equation*}
$$

Comparing (2.5) with (2.6) shows a contradiction.
Theorem 2.6. Let $\left.W=\overline{\{\Lambda \varphi} \mid \Lambda \in\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)^{(1)}\right\}^{\|(1)}$. $l_{(1)}$. Then W is a proper closed subspace of $\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)^{(1)}$.

Proof. Obviously W is a closed subspace of $\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)^{(1)}$. We shall show that W is proper. To this end, we will prove that $\hat{0} \notin W$. Suppose, contrary to our claim, that $\hat{0} \in W$. So there exists a sequence $\left\{\Lambda_{n}\right\}_{n} \subseteq\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)^{(1)}$ such that $\Lambda_{n} \varphi \xrightarrow{\|\cdot\|_{\infty}^{(1)}} \hat{0}$. By Lemma $2.5\left\{\Lambda_{n}\right\}_{n}$ is bounded. Let $\left\|\Lambda_{n}\right\|_{\infty}^{(1)} \leq M$ for all $n \in \mathbb{N}$. Define $f_{n}: K \longrightarrow \mathbb{C}$ by $f_{n}(x)=\frac{1-|\varphi(x)|}{1+r|\varphi(x)|}$ for all $x \in K$. Clearly $\left\|f_{n}\right\|_{\infty} \leq 1$. One can easily check that $\left\|f_{n} \varphi\right\|_{\infty} \leq \frac{1}{n}$ and consequently $\left\|f_{n} \varphi\right\|_{\infty} \longrightarrow 0$. So, on the one hand,

$$
\begin{aligned}
\left|\left\langle\Lambda_{n} \varphi, f_{n}\right\rangle-1\right| & =\left|\left\langle\Lambda_{n} \varphi, f_{n}\right\rangle-\left\langle\hat{0}, f_{n}\right\rangle\right| \\
& =\left|\left\langle\Lambda_{n} \varphi-\hat{0}, f_{n}\right\rangle\right| \\
& \leq\left\|\Lambda_{n} \varphi-\hat{0}\right\|_{\infty}^{11}\left\|f_{n}\right\|_{\infty} \\
& \leq\left\|\Lambda_{n} \varphi-\hat{0}\right\|_{\infty}^{(1)} \\
& \longrightarrow 0,
\end{aligned}
$$

that implies,

$$
\begin{equation*}
\left\langle\Lambda_{n} \varphi, f_{n}\right\rangle \longrightarrow 1 \tag{2.7}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
\left|\left\langle\Lambda_{n} \varphi, f_{n}\right\rangle\right| & =\left|\left\langle\Lambda_{n}, f_{n} \varphi\right\rangle\right| \\
& \leq\left\|\Lambda_{n}\right\|_{\infty}^{(1)}\left\|f_{n} \varphi\right\|_{\infty} \\
& \leq M\left\|f_{n} \varphi\right\|_{\infty} \\
& \longrightarrow 0,
\end{aligned}
$$

that implies,

$$
\begin{equation*}
\left\langle\Lambda_{n} \varphi, f_{n}\right\rangle \longrightarrow 0 \tag{2.8}
\end{equation*}
$$

Comparing (2.7) with (2.8) yields a contradiction. So $\hat{0} \notin W$.
Theorem 2.7. $\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)$ is not $2 n$-weakly amenable for all $n \in \mathbb{N}$.
Proof. By applying [Proposition 2.8.76, 2] it is sufficient to show that $\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)$ is not 2-weakly amenable.
For this purpose, let $\left.W=\overline{\{\Lambda \varphi} \mid \Lambda \in\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)^{(1)}\right\}^{\|} \cdot\| \|_{\infty}^{(1)}$.
. By Theorem 2.6, $\hat{0} \notin W$. So
there exists an element $m \in\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)^{(2)}$ such that $\left.m\right|_{W}=0$ and $\langle m, \hat{0}\rangle \neq 0$. Define, D : $\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right) \longrightarrow\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)^{(2)}$ by, $D(f)=f(0) m$ for all $f \in\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)$. Obviously D is linear and $D \neq 0$. Indeed,
$D\left(1_{K}\right)=1_{K}(0) m=m \neq 0$. Also, for $f \in C^{b \varphi}(K)$ we have,

$$
\begin{aligned}
\|D(f)\|_{\infty}^{(2)} & =\|f(0) m\|_{\infty}^{(2)} \\
& =\mid f(0)\|m\|_{\infty}^{(2)} \\
& \leq\|m\|_{\infty}^{(2)}\|f\|_{\infty} .
\end{aligned}
$$

So $\|D\| \leq\|m\|_{\infty}^{(2)}$. This shows that D is bounded. We shall show that D is a derivation. Let $f, g \in C^{b \varphi}(K)$. So,

$$
\begin{aligned}
D(f \cdot g) & =D(f \varphi g) \\
& =(f \varphi g)(0) m \\
& =f(0) \varphi(0) g(0) m \\
& =0,
\end{aligned}
$$

also,

$$
\begin{aligned}
D(f) \cdot g+f \cdot D(g) & =D(f) g \varphi+D(g) f \varphi \\
& =(f(0) m) g \varphi+(g(0) m) f \varphi \\
& =f(0) m g \varphi+g(0) m f \varphi .
\end{aligned}
$$

Since $\left.m\right|_{W}=0$, clearly $m g \varphi=m f \varphi=0$. So, we can conclude that,
$D(f) \cdot g+f \cdot D(g)=0$. This shows that $D(f \cdot g)=D(f) \cdot g+f \cdot D(g)$ for all $f, g \in C^{b \varphi}(K)$. Since $C^{b \varphi}(K)$ is commutative and $D \neq 0, D$ is not inner. Hence, $\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)$ is not 2-weakly amenable.
Corollary 2.8. $\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)$ is not n-weakly amenable for all $n \in \mathbb{N}$.
Proof. The proof is immediate by Theorems 2.4 and 2.7.
To investigate the n-weak amenability of $\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)$ we need to characterize the derivations from $\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)$ into $\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)^{(n)}$ for all $n \in \mathbb{N} \cup\{0\}$. To this end, we present the following lemma that is a generalization of Propositions 2.1 and 2.3 of [9].
Lemma 2.9. Let $n \in \mathbb{N} \cup\{0\}$. Then
1.

$$
\begin{align*}
\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)^{(2 n)} \subseteq\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)^{(2 n)} \tag{2.9}\\
\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)^{(2 n+1)} \subseteq\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)^{(2 n+1)} . \tag{2.10}
\end{align*}
$$

Moreover,

$$
\begin{align*}
\|m\|_{\varphi}^{(2 n)} & \leq\|m\|_{\infty}^{(2 n)}\|\varphi\|, m \in\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)^{(2 n)}, \tag{2.11}\\
\|\Lambda\|_{\infty}^{(2 n+1)} & \leq\|\Lambda\|_{\varphi}^{(2 n+1)}\|\varphi\|, \Lambda \in\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)^{(2 n+1)} . \tag{2.12}
\end{align*}
$$

2.

$$
\begin{gather*}
\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)^{(2 n)} \varphi \subseteq\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)^{(2 n)}, \tag{2.13}\\
\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)^{(2 n+1)} \varphi \subseteq\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)^{(2 n+1)} . \tag{2.14}
\end{gather*}
$$

Moreover,

$$
\begin{align*}
\|m \varphi\|_{\infty}^{(2 n)} & \leq\|m\|_{\varphi}^{(2 n)}, m \in\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)^{(2 n)}, \tag{2.15}\\
\|\Lambda \varphi\|_{\varphi}^{(2 n+1)} & \leq\|\Lambda\|_{\infty}^{(2 n+1)}, \Lambda \in\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)^{(2 n+1)} . \tag{2.16}
\end{align*}
$$

Proof. The proof is by induction on n. We first prove that all of the assertions of the lemma is valid for $n=0$. The proofs of (2.9), (2.11), (2.13), and (2.15) are obvious and are left for the reader. Let $\Lambda \in\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)^{(1)}, \Lambda^{\prime} \in\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)^{(1)}$ and $f, g \in C^{b \varphi}(K)$. So,

$$
\begin{aligned}
|\langle\Lambda, f\rangle| & \leq\|\Lambda\|_{\varphi}^{(1)}\|f\|_{\varphi} \\
& =\|\Lambda\|_{\varphi}^{(1)}\|f \varphi\|_{\infty} \\
& \leq\|\Lambda\|_{\varphi}^{(1)}\|f\|_{\infty}\|\varphi\|_{\infty} \\
& =\|\Lambda\|_{\varphi}^{(1)}\|f\|_{\infty}\|\varphi\|^{2} .
\end{aligned}
$$

Hence, $\|\Lambda\|_{\infty}^{(1)} \leq\|\Lambda\|_{\varphi}^{(1)}\|\varphi\|$, providing (2.10) and (2.12). Also,

$$
\begin{aligned}
\left|\left\langle\Lambda^{\prime} \varphi, g\right\rangle\right| & =\left|\left\langle\Lambda^{\prime}, g \varphi\right\rangle\right| \\
& \leq\left\|\Lambda^{\prime}\right\|_{\infty}^{(1)}\|g \varphi\|_{\infty} \\
& =\left\|\Lambda^{\prime}\right\|_{\infty}^{(1)}\|g\|_{\varphi} .
\end{aligned}
$$

Therefore $\left\|\Lambda^{\prime} \varphi\right\|_{\varphi}^{(1)} \leq\left\|\Lambda^{\prime}\right\|_{\infty}^{(1)}$, providing (2.14) and (2.16).
Assume all of the assertions of the lemma hold for $n=p$, we will prove them for $n=p+1$. For this purpose, let,

$$
\begin{gathered}
m \in\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)^{(2 p+2)}, \\
\Lambda \in\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)^{(2 p+1)}, \\
\Lambda^{\prime} \in\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)^{(2 p+3)}, \\
m^{\prime} \in\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)^{(2 p+2)}, \\
\Lambda^{\prime \prime} \in\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)^{(2 p+1)}, \\
\Lambda^{\prime \prime \prime} \in\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)^{(2 p+3)} .
\end{gathered}
$$

By (2.10) and (2.12) of hypotheses we have, $\Lambda \in\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)^{(2 p+1)}$ and $\|\Lambda\|_{\infty}^{(2 p+1)} \leq\|\Lambda\|_{\varphi}^{(2 p+1)}\|\varphi\|$. So,

$$
\begin{aligned}
|\langle m, \Lambda\rangle| & \leq\|m\|_{\infty}^{(2 p+2)}\|\Lambda\|_{\infty}^{(2 p+1)} \\
& \leq\|m\|_{\infty}^{(2 p+2)}\|\Lambda\|_{\varphi}^{(2 p+1)}\|\varphi\| .
\end{aligned}
$$

It follows that, $\|m\|_{\varphi}^{(2 p+2)} \leq\|m\|_{\infty}^{(2 p+2)}\|\varphi\|$, providing (2.9) and (2.11) for $n=p+1$.
Since (2.9) and (2.11) are valid for $n=p+1, m \in\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)^{(2 p+2)}$ and $\|m\|_{\varphi}^{(2 p+2)} \leq\|m\|_{\infty}^{(2 p+2)}\|\varphi\|$. Hence,

$$
\begin{aligned}
\left|\left\langle\Lambda^{\prime}, m\right\rangle\right| & \leq\left\|\Lambda^{\prime}\right\|_{\varphi}^{(2 p+3)}\|m\|_{\varphi}^{(2 p+2)} \\
& \leq\left\|\Lambda^{\prime}\right\|_{\varphi}^{(2 p+3)}\|m\|_{\infty}^{(2 p+2)}\|\varphi\|,
\end{aligned}
$$

that implies, $\left\|\Lambda^{\prime}\right\|_{\infty}^{(2 p+3)} \leq\left\|\Lambda^{\prime}\right\|_{\varphi}^{(2 p+3)}\|\varphi\|$, providing (2.10) and (2.12) for $n=p+1$.
Since by (2.14) and (2.16) of hypotheses, $\Lambda^{\prime \prime} \varphi \in\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)^{(2 p+1)}$ and
$\left\|\Lambda^{\prime \prime} \varphi\right\|_{\varphi}^{(2 p+1)} \leq\left\|\Lambda^{\prime \prime}\right\|_{\infty}^{(2 p+1)}$, we can define,
$m^{\prime} \varphi:\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)^{(2 p+1)} \longrightarrow \mathbb{C}$ by, $\left\langle m^{\prime} \varphi, \Lambda^{\prime \prime}\right\rangle=\left\langle m^{\prime}, \Lambda^{\prime \prime} \varphi\right\rangle$. Obviously $m^{\prime} \varphi$ is linear. We will prove that $m^{\prime} \varphi$ is bounded on $\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)^{(2 p+1)}$.

$$
\begin{aligned}
\left|\left\langle m^{\prime} \varphi, \Lambda^{\prime \prime}\right\rangle\right| & =\left|\left\langle m^{\prime}, \Lambda^{\prime \prime} \varphi\right\rangle\right| \\
& \leq\left\|m^{\prime}\right\|_{\varphi}^{(2 p+2)}\left\|\Lambda^{\prime \prime} \varphi\right\|_{\varphi}^{(2 p+1)} \\
& \leq\left\|m^{\prime}\right\|_{\varphi}^{(2 p+2)}\left\|\Lambda^{\prime \prime}\right\|_{\infty}^{(2 p+1)},
\end{aligned}
$$

that implies, $\left\|m^{\prime} \varphi\right\|_{\infty}^{(2 p+2)} \leq\left\|m^{\prime}\right\|_{\varphi}^{(2 p+2)}$, providing (2.13) and 2.15 for $n=p+1$.
Since (2.13) and (2.15) are valid for $n=p+1, m^{\prime} \varphi \in\left(C^{b \varphi}(K),\|\cdot\|_{\infty}\right)^{(2 p+2)}$ and $\left\|m^{\prime} \varphi\right\|_{\infty}^{(2 p+2)} \leq$ $\left\|m^{\prime}\right\|_{\varphi}^{(2 p+2)}$. Hence we can define,
$\Lambda^{\prime \prime \prime} \varphi:\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)^{(2 p+2)} \longrightarrow \mathbb{C}$ by, $\left\langle\Lambda^{\prime \prime \prime} \varphi, m^{\prime}\right\rangle=\left\langle\Lambda^{\prime \prime \prime}, m^{\prime} \varphi\right\rangle$. It follows that,

$$
\begin{aligned}
\left|\left\langle\Lambda^{\prime \prime \prime} \varphi, m^{\prime}\right\rangle\right| & =\left|\left\langle\Lambda^{\prime \prime \prime}, m^{\prime} \varphi\right\rangle\right| \\
& \leq\left\|\Lambda^{\prime \prime \prime}\right\|_{\infty}^{(2 p+3)}\left\|m^{\prime} \varphi\right\|_{\infty}^{(2 p+2)} \\
& \leq\left\|\Lambda^{\prime \prime \prime}\right\|_{\infty}^{(2 p+3)}\left\|m^{\prime}\right\|_{\varphi}^{(2 p+2)} .
\end{aligned}
$$

So, $\left\|\Lambda^{\prime \prime \prime} \varphi\right\|_{\varphi}^{(2 p+3)} \leq\left\|\Lambda^{\prime \prime \prime}\right\|_{\infty}^{(2 p+3)}$, providing (2.14) and (2.16) for $n=p+1$.
The following theorem generalizes Theorem 4.2 of [9].
Theorem 2.10. Let $n \in \mathbb{N} \cup\{0\}$ and let
$D:\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right) \longrightarrow\left(C^{b \varphi}(K),\|\cdot\|_{\varphi}\right)^{(n)}$ be a bounded linear map. Then D is a derivation if and only if $D=0$.

Proof. One can prove the theorem by applying Lemma 2.9 and by modifying the proof of [Theorem 4.2, 9].

References

[1] G.W. Bade, P.C. Curtis and H.G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc., 55 (1987), 359-377.
[2] H.G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monogr. Ser., 24, The Clarendon Press, Oxford University Press, New York, 2000.
[3] H.G. Dales, F. Ghahramani and N. Grønbæk, Derivations into iterated duals of Banach algebras, Studia Math., 128 (1998), 19-54.
[4] N. Grønbæk, Weak and cyclic amenability for non-commutative Banach algebras, Proc. Edinburgh Math. Soc., 35 (1992), 315-328.
[5] R.A. Kamyabi-Gol and M. Janfada, Banach algebras related to the elements of the unit ball of a Banach algebra, Taiwan. J. Math., 12 (2008), 1769-1779.
[6] A.R. Khoddami, Biflatness, biprojectivity, φ-amenability and φ-contractibility of a certain class of Banach algebras, U.P.B. Sci. Bull., Series A, 80 (2018), 169-178.
[7] A.R. Khoddami, Bounded and continuous functions on the closed unit ball of a normed vector space equipped with a new product, U.P.B. Sci. Bull., Series A, 81 (2019), 81-86.
[8] A.R. Khoddami, Non equivalent norms on $C^{b}(K)$, Sahand Commun. Math. Anal., 17 (2020), 1-11.
[9] A.R. Khoddami, Weak and cyclic amenability of certain function algebras, Wavelets and Linear Algebr., 7 (2020), 31-41.
[10] V. Runde, Lectures on Amenability, Lecture Notes in Mathematics 1774, Springer-Verlag, Berlin, 2002.

[^0]: *Corresponding author
 Email address: khoddami.alireza@shahroodut.ac.ir (Ali Reza Khoddami)

