

n-weak amenability of a certain class of function spaces

Ali Reza Khoddami^{a,*}

^aFaculty of Mathematical Sciences, Shahrood University of Technology, P. O. Box 3619995161-316, Shahrood, Iran.

ARTICLE INFO

Article history: Received 28 January 2022 Accepted 10 January 2023 Available online 5 May 2023 Communicated by Rajab Ali Kamyabi-Gol

Keywords:

Derivation, Inner derivation, Amenability, n-weak amenability.

2010 MSC: 46J10, 47B47, 47B37, 46H25.

1. Introduction

Assume that *B* is a Banach algebra and *X* is a Banach *B*-bimodule. A bounded linear map $D : B \longrightarrow X$ is said to be a derivation if D(ab) = D(a)b + aD(b) for all $a, b \in B$. Clearly the

http://doi.org/10.22072/wala.2023.547710.1360 © (2023) Wavelets and Linear Algebra

Abstract

Let *A* be a non-zero normed vector space and let φ be a nonzero element of A^* such that $\|\varphi\| \leq 1$. Assume that $K = \overline{B_1^{(0)}}$ is the closed unit ball of *A*. According to the our recent studies on the spaces of $(C^{b\varphi}(K), \|\cdot\|_{\infty})$ and $(C^{b\varphi}(K), \|\cdot\|_{\varphi})$, generated by $C^b(K)$ and equipped with a new product " \cdot " and different norms $\|\cdot\|_{\infty}$ and $\|\cdot\|_{\varphi}$, the *n*-weak amenability of $(C^{b\varphi}(K), \|\cdot\|_{\infty})$ and $(C^{b\varphi}(K), \|\cdot\|_{\varphi})$ are investigated.

© (2023) Wavelets and Linear Algebra

^{*}Corresponding author

Email address: khoddami.alireza@shahroodut.ac.ir (Ali Reza Khoddami)

mapping $\delta_x : B \longrightarrow X$ defined by $\delta_x(b) = bx - xb, b \in B$ is a derivation for all $x \in X$, that is called an inner derivation. A derivation $D : B \longrightarrow X$ is called inner, if $D = \delta_x$ for some $x \in X$.

Let *B* be a Banach algebra and let *n* be a non-negative integer. The n^{th} -dual $B^{(n)}$ of *B* is a Banach *B*-bimodule under the module operations defined inductively by

$$\langle G \cdot b, g \rangle = \langle G, b \cdot g \rangle, \langle b \cdot G, g \rangle = \langle g \cdot b, G \rangle, G \in B^{(n)}, g \in B^{(n-1)}, b \in B = B^{(0)}.$$

Obviously *B* is a Banach *B*-bimodule under its multiplication.

A Banach algebra *B* is said to be *n*-weakly amenable if every derivation from *B* into $B^{(n)}$ is inner. The concept of *n*-weak amenability was initiated and intensively studied in [3]. Of course, 1-weak amenability and weak amenability are the same notions which was first introduced in [1] for commutative Banach algebras and was followed in [4] for non-commutative case.

A Banach algebra *B* is said to be amenable if for each Banach *B*-bimodule *X*, every derivation from *B* into X^* is inner.

In this paper let *A* be a non-zero normed vector space and let φ be a non-zero element of A^* such that $\|\varphi\| \le 1$. Let $K = \overline{B_1^{(0)}}$ be the closed unit ball of *A*. We will consider $C^b(K)$ the space of all complex-valued, bounded and continuous functions on *K*. Obviously $C^b(K)$ is a unital algebra with respect to the pointwise algebraic operations. We will denote by 1_K the identity of $C^b(K)$. The uniform norm on *K* is defined by $\|f\|_{\infty} = \sup\{|f(x)| \mid x \in K\}$ for all $f \in C^b(K)$. Clearly $(C^b(K), \|\cdot\|_{\infty})$ is a commutative, unital Banach algebra. It is obvious that $\|\varphi\|_{\infty} = \|\varphi\|$.

By [Examples 3.2.2 (i), 2], $(C^b(K), \|\cdot\|_{\infty})$ is a commutative C^* -algebra. Also it is well-known that every commutative C^* -algebra is amenable [Example 2.3.4, 10]. So $(C^b(K), \|\cdot\|_{\infty})$ is an amenable Banach algebra.

Let $f, g \in C^b(K)$ and define $f \cdot g = f\varphi g$. The space $C^b(K)$ equipped with the product " \cdot " make $C^b(K)$ into a new associative algebra that we denote it by $C^{b\varphi}(K)$. In [7] we show that $(C^{b\varphi}(K), \|\cdot\|_{\infty})$ is a non-unital, commutative Banach algebra and also we characterize some relations between character spaces of $(C^{b\varphi}(K), \|\cdot\|_{\infty})$ and $(C^b(K), \|\cdot\|_{\infty})$. Also miscellaneous algebraic properties of $(C^{b\varphi}(K), \|\cdot\|_{\infty})$ are investigate in [7].

In [5] for a Banach algebra A, R. A. Kamyabi-Gol and M. Janfada defined a new product " \cdot " on A by, $a \cdot c = a\varepsilon c$ for all $a, c \in A$, where ε is a fixed element of the closed unit ball $\overline{B_1^{(0)}}$ of A. (A, \cdot) is an associative Banach algebra which is denoted by A_{ε} . Some properties such as, Arens regularity, amenability and derivations on A_{ε} are investigated in [5]. Also biflatness, biprojectivity, φ -amenability and φ -contractibility of A_{ε} are investigated in [6]. It is worth pointing out that $(C^{b\varphi}(K), \|\cdot\|_{\infty}) = (C^b(K), \|\cdot\|_{\infty})_{\varphi}$.

Let $n \in \mathbb{N} \cup \{0\}$, $\Lambda \in (C^{b\varphi}(K), \|\cdot\|_{\infty})^{(n)}$ and $f \in (C^{b\varphi}(K), \|\cdot\|_{\infty})$. Since $C^{b\varphi}(K)$ is commutative, the $(C^{b\varphi}(K), \|\cdot\|_{\infty})$ -module operations on $(C^{b\varphi}(K), \|\cdot\|_{\infty})^{(n)}$ are given by $\Lambda \cdot f = f \cdot \Lambda = \Lambda f \varphi$.

The space $C^{b\varphi}(K)$ with the norm $||f||_{\varphi} = ||f\varphi||_{\infty}, f \in C^{b\varphi}(K)$ is a non-complete normed algebra [8] and also, $||f||_{\varphi} \le ||f||_{\infty} ||\varphi||$. Similarly, the $(C^{b\varphi}(K), ||\cdot||_{\varphi})$ -module operations on $(C^{b\varphi}(K), ||\cdot||_{\varphi})^{(n)}$ are given by $\Lambda \cdot f = f \cdot \Lambda = \Lambda f \varphi$ for all $\Lambda \in (C^{b\varphi}(K), ||\cdot||_{\varphi})^{(n)}, f \in (C^{b\varphi}(K), ||\cdot||_{\varphi}), n \in \mathbb{N} \cup \{0\}$. Clearly $(C^{b\varphi}(K), ||\cdot||_{\varphi})^{(n)}$ is a Banach $(C^{b\varphi}(K), ||\cdot||_{\varphi})$ -bimodule for all $n \in \mathbb{N}$ and $(C^{b\varphi}(K), ||\cdot||_{\varphi})$ is a normed $(C^{b\varphi}(K), ||\cdot||_{\varphi})$ -bimodule. In [9] we characterize the derivations from $(C^{b\varphi}(K), \|\cdot\|_{\infty})$ and $(C^{b\varphi}(K), \|\cdot\|_{\varphi})$ into $(C^{b\varphi}(K), \|\cdot\|_{\infty})^{(1)}$ and $(C^{b\varphi}(K), \|\cdot\|_{\varphi})^{(1)}$ respectively. Also weak and cyclic amenability of $(C^{b\varphi}(K), \|\cdot\|_{\infty})$ and $(C^{b\varphi}(K), \|\cdot\|_{\infty})$ are investigated in [0]

 $(C^{b\varphi}(K), \|\cdot\|_{\varphi})$ are investigated in [9].

The results of this paper concerning the spaces of $(C^{b\varphi}(K), \|\cdot\|_{\infty})$ and $(C^{b\varphi}(K), \|\cdot\|_{\varphi})$ can be applied as a source of examples and counterexamples in the field of amenability and *n*-weak amenability.

2. *n*-weak amenability of $(C^{b\varphi}(K), \|\cdot\|_{\infty})$ and $(C^{b\varphi}(K), \|\cdot\|_{\varphi})$

In this section we characterize the derivations from $(C^{b\varphi}(K), \|\cdot\|_{\infty})$ and $(C^{b\varphi}(K), \|\cdot\|_{\varphi})$ into $(C^{b\varphi}(K), \|\cdot\|_{\infty})^{(n)}$ and $(C^{b\varphi}(K), \|\cdot\|_{\varphi})^{(n)}$ respectively and also we investigate the *n*-weak amenability of $(C^{b\varphi}(K), \|\cdot\|_{\infty})$ and $(C^{b\varphi}(K), \|\cdot\|_{\varphi})$ for all $n \in \mathbb{N} \cup \{0\}$.

We set $(C^{b\varphi}(K), \|\cdot\|_{\infty})^{(n)}$ and $(C^{b\varphi}(K), \|\cdot\|_{\varphi})^{(n)}$ as the *n*th dual spaces of $(C^{b\varphi}(K), \|\cdot\|_{\infty})$ and $(C^{b\varphi}(K), \|\cdot\|_{\omega})$ with the norms $\|\cdot\|_{\omega}^{(n)}$ and $\|\cdot\|_{\omega}^{(n)}$ respectively, where

$$(C^{b\varphi}(K), \|\cdot\|_{\infty})^{(0)} = (C^{b\varphi}(K), \|\cdot\|_{\infty}), \quad \|\cdot\|_{\infty}^{(0)} = \|\cdot\|_{\infty},$$

$$(C^{b\varphi}(K), \|\cdot\|_{\varphi})^{(0)} = (C^{b\varphi}(K), \|\cdot\|_{\varphi}), \quad \|\cdot\|_{\varphi}^{(0)} = \|\cdot\|_{\varphi}.$$

Recall that $\|\varphi\|_{\infty} = \|\varphi\|$ and also $\|f\|_{\varphi} \le \|f\|_{\infty} \|\varphi\|$ for all $f \in C^{b\varphi}(K)$. The mapping $\hat{x} : C^b(K) \longrightarrow \mathbb{C}$ defined by $\langle \hat{x}, f \rangle = f(x), f \in C^b(K)$ is a linear functional. Clearly $\|\hat{x}\|_{\infty}^{(1)} \le 1$ for all $x \in K$. Also $\|\hat{x}\|_{\varphi}^{(1)} \le \frac{1}{|\varphi(x)|}$ for all $x \in K \setminus \ker \varphi$. The following theorem generalizes Theorem 3.2 of [9].

Theorem 2.1. Let $n \in \mathbb{N} \cup \{0\}$. Also let $D : (C^{b\varphi}(K), \|\cdot\|_{\infty}) \longrightarrow (C^{b\varphi}(K), \|\cdot\|_{\infty})^{(n)}$ be a bounded linear map. Then D is a derivation if and only if $D(f\varphi) = fD(\varphi) = 2D(f)\varphi$ for all $f \in C^{b\varphi}(K)$.

Proof. The same proof of Theorem 3.2 given in [9] remains valid.

Corollary 2.2. Let $n \in \mathbb{N} \cup \{0\}$. Also let $D : (C^{b\varphi}(K), \|\cdot\|_{\infty}) \longrightarrow (C^{b\varphi}(K), \|\cdot\|_{\infty})^{(n)}$ be a derivation. Then $D(f)\varphi^2 = 0$ for all $f \in C^{b\varphi}(K)$.

Proof. By Theorem 2.1 we have,

$$D(f\varphi) = fD(\varphi) = 2D(f)\varphi$$
(2.1)

for all $f \in C^{b\varphi}(K)$. Replacing f by $f\varphi$ in (2.1) we obtain,

$$D(f\varphi^2) = f\varphi D(\varphi) = 2D(f\varphi)\varphi.$$
(2.2)

So,

$$\begin{split} f\varphi D(\varphi) &= 2D(f\varphi)\varphi \\ &= 2(2D(f)\varphi)\varphi \\ &= 4D(f)\varphi^2, f \in C^{b\varphi}(K). \end{split}$$

Hence,

$$f\varphi D(\varphi) = 4D(f)\varphi^2, f \in C^{b\varphi}(K).$$
(2.3)

Also by (2.1) we can conclude that,

$$f\varphi D(\varphi) = 2D(f)\varphi^2, f \in C^{b\varphi}(K).$$
(2.4)

Comparing (2.3) and (2.4) we obtain $D(f)\varphi^2 = 0$ for all $f \in C^{b\varphi}(K)$, as we wanted to show.

Theorem 2.3. The only derivation from $(C^{b\varphi}(K), \|\cdot\|_{\infty})$ into $(C^{b\varphi}(K), \|\cdot\|_{\infty})$ is zero.

Proof. Let $D : (C^{b\varphi}(K), \|\cdot\|_{\infty}) \longrightarrow (C^{b\varphi}(K), \|\cdot\|_{\infty})$ be a derivation. So by Corollary 2.2 we have $D(f)\varphi^2 = 0$ for all $f \in C^{b\varphi}(K)$. Applying [8, Proposition 2.1] we obtain D(f) = 0 for all $f \in C^{b\varphi}(K)$. So D = 0, as desired.

The following theorem generalizes Theorem 3.1 of [9].

Theorem 2.4. $(C^{b\varphi}(K), \|\cdot\|_{\infty})$ is not (2n-1)-weakly amenable for all $n \in \mathbb{N}$.

Proof. Since $(C^{b\varphi}(K), \|\cdot\|_{\infty})^{(1)} \subseteq (C^{b\varphi}(K), \|\cdot\|_{\infty})^{(2n-1)}$ for all $n \in \mathbb{N}$, inspired by [Theorem 3.1, 9] the theorem can be proved.

Lemma 2.5. Let $\{\Lambda_n\}_n \subseteq (C^{b\varphi}(K), \|\cdot\|_{\infty})^{(1)}$ be a sequence such that $\Lambda_n \varphi \xrightarrow{\|\cdot\|_{\infty}^{(1)}} \hat{0}$. Then $\{\Lambda_n\}_n$ is bounded.

Proof. Suppose the assertion of the lemma is false. So there exists a subsequence $\{\Lambda_{n_j}\}_j$ of $\{\Lambda_n\}_n$ such that $\lim_{j\to\infty} \|\Lambda_{n_j}\|_{\infty}^{(1)} = \infty$.

Define $f_j: K \longrightarrow \mathbb{C}$ by $f_j(x) = \frac{1 - |\varphi(x)|}{1 + (||\Delta_{n_j}||_{\infty}^{(1)})^2 |\varphi(x)|}, x \in K$. One can easily verify that, $||f_j||_{\infty} \le 1$ and $||f_j\varphi||_{\infty} \le \frac{1}{(||\Delta_{n_j}||_{\infty}^{(1)})^2}$ for all $j \in \mathbb{N}$. It follows that $\lim_{j \to \infty} ||f_j\varphi||_{\infty} = 0$ and

$$\begin{split} |\langle \Lambda_{n_j} \varphi, f_j \rangle| &= |\langle \Lambda_{n_j}, f_j \varphi \rangle| \\ &\leq ||\Lambda_{n_j}||_{\infty}^{(1)} ||f_j \varphi||_{\infty} \\ &\leq ||\Lambda_{n_j}||_{\infty}^{(1)} \frac{1}{(||\Lambda_{n_j}||_{\infty}^{(1)})^2} \\ &= \frac{1}{||\Lambda_{n_j}||_{\infty}^{(1)}}. \end{split}$$

Hence,

$$\lim_{j \to \infty} \langle \Lambda_{n_j} \varphi, f_j \rangle = 0.$$
(2.5)

Also,

$$\begin{split} |\langle \Lambda_{n_j} \varphi, f_j \rangle - 1| &= |\langle \Lambda_{n_j} \varphi, f_j \rangle - \langle 0, f_j \rangle| \\ &= |\langle \Lambda_{n_j} \varphi - \hat{0}, f_j \rangle| \\ &\leq ||\Lambda_{n_j} \varphi - \hat{0}||_{\infty}^{(1)} ||f_j||_{\infty} \\ &\leq ||\Lambda_{n_j} \varphi - \hat{0}||_{\infty}^{(1)}. \end{split}$$

16

Since $\lim_{j\to\infty} \|\Lambda_{n_j}\varphi - \hat{0}\|_{\infty}^{(1)} = 0$ so,

$$\lim_{i \to \infty} \langle \Lambda_{n_j} \varphi, f_j \rangle = 1.$$
(2.6)

Comparing (2.5) with (2.6) shows a contradiction.

Theorem 2.6. Let $W = \left\{ \Delta \varphi \mid \Delta \in (C^{b\varphi}(K), \|\cdot\|_{\infty})^{(1)} \right\}^{\|\cdot\|_{\infty}^{(1)}}$. Then W is a proper closed subspace of $(C^{b\varphi}(K), \|\cdot\|_{\infty})^{(1)}$.

Proof. Obviously *W* is a closed subspace of $(C^{b\varphi}(K), \|\cdot\|_{\infty})^{(1)}$. We shall show that *W* is proper. To this end, we will prove that $\hat{0} \notin W$. Suppose, contrary to our claim, that $\hat{0} \in W$. So there exists a sequence $\{\Lambda_n\}_n \subseteq (C^{b\varphi}(K), \|\cdot\|_{\infty})^{(1)}$ such that $\Lambda_n \varphi \xrightarrow{\|\cdot\|_{\infty}^{(1)}} \hat{0}$. By Lemma 2.5 $\{\Lambda_n\}_n$ is bounded. Let $\|\Lambda_n\|_{\infty}^{(1)} \leq M$ for all $n \in \mathbb{N}$. Define $f_n : K \longrightarrow \mathbb{C}$ by $f_n(x) = \frac{1-|\varphi(x)|}{1+n|\varphi(x)|}$ for all $x \in K$. Clearly $\|f_n\|_{\infty} \leq 1$. One can easily check that $\|f_n \varphi\|_{\infty} \leq \frac{1}{n}$ and consequently $\|f_n \varphi\|_{\infty} \longrightarrow 0$. So, on the one hand,

$$\begin{split} |\langle \Lambda_n \varphi, f_n \rangle - 1| &= |\langle \Lambda_n \varphi, f_n \rangle - \langle \hat{0}, f_n \rangle| \\ &= |\langle \Lambda_n \varphi - \hat{0}, f_n \rangle| \\ &\leq ||\Lambda_n \varphi - \hat{0}||_{\infty}^{(1)} ||f_n||_{\infty} \\ &\leq ||\Lambda_n \varphi - \hat{0}||_{\infty}^{(1)} \\ &\longrightarrow 0, \end{split}$$

that implies,

$$\langle \Lambda_n \varphi, f_n \rangle \longrightarrow 1.$$
 (2.7)

On the other hand,

$$\begin{split} |\langle \Lambda_n \varphi, f_n \rangle| &= |\langle \Lambda_n, f_n \varphi \rangle| \\ &\leq ||\Lambda_n||_{\infty}^{(1)} ||f_n \varphi||_{\infty} \\ &\leq M ||f_n \varphi||_{\infty} \\ &\longrightarrow 0, \end{split}$$

that implies,

$$\langle \Lambda_n \varphi, f_n \rangle \longrightarrow 0.$$
 (2.8)

Comparing (2.7) with (2.8) yields a contradiction. So $\hat{0} \notin W$.

Theorem 2.7. $(C^{b\varphi}(K), \|\cdot\|_{\infty})$ is not 2*n*-weakly amenable for all $n \in \mathbb{N}$.

Proof. By applying [Proposition 2.8.76, 2] it is sufficient to show that $(C^{b\varphi}(K), \|\cdot\|_{\infty})$ is not 2-weakly amenable.

For this purpose, let $W = \overline{\left\{ \Lambda \varphi \mid \Lambda \in (C^{b\varphi}(K), \|\cdot\|_{\infty})^{(1)} \right\}}^{\|\cdot\|_{\infty}^{(1)}}$. By Theorem 2.6, $\hat{0} \notin W$. So

17

there exists an element $m \in (C^{b\varphi}(K), \|\cdot\|_{\infty})^{(2)}$ such that $m\Big|_{W} = 0$ and $\langle m, \hat{0} \rangle \neq 0$. Define, $D : (C^{b\varphi}(K), \|\cdot\|_{\infty}) \longrightarrow (C^{b\varphi}(K), \|\cdot\|_{\infty})^{(2)}$ by, D(f) = f(0)m for all $f \in (C^{b\varphi}(K), \|\cdot\|_{\infty})$. Obviously D is linear and $D \neq 0$. Indeed,

 $D(1_K) = 1_K(0)m = m \neq 0$. Also, for $f \in C^{b\varphi}(K)$ we have,

$$D(f)\|_{\infty}^{(2)} = \|f(0)m\|_{\infty}^{(2)}$$
$$= \|f(0)\|\|m\|_{\infty}^{(2)}$$
$$\leq \|m\|_{\infty}^{(2)}\|f\|_{\infty}$$

So $||D|| \leq ||m||_{\infty}^{(2)}$. This shows that D is bounded. We shall show that D is a derivation. Let $f, g \in C^{b\varphi}(K)$. So,

$$D(f \cdot g) = D(f\varphi g)$$

= $(f\varphi g)(0)m$
= $f(0)\varphi(0)g(0)m$
= $0,$

also,

$$D(f) \cdot g + f \cdot D(g) = D(f)g\varphi + D(g)f\varphi$$
$$= (f(0)m)g\varphi + (g(0)m)f\varphi$$
$$= f(0)mg\varphi + g(0)mf\varphi.$$

Since $m\Big|_W = 0$, clearly $mg\varphi = mf\varphi = 0$. So, we can conclude that, $D(f) \cdot g + f \cdot D(g) = 0$. This shows that $D(f \cdot g) = D(f) \cdot g + f \cdot D(g)$ for all $f, g \in C^{b\varphi}(K)$. Since $C^{b\varphi}(K)$ is commutative and $D \neq 0$, D is not inner. Hence, $(C^{b\varphi}(K), \|\cdot\|_{\infty})$ is not 2-weakly amenable.

Corollary 2.8. $(C^{b\varphi}(K), \|\cdot\|_{\infty})$ is not *n*-weakly amenable for all $n \in \mathbb{N}$.

Proof. The proof is immediate by Theorems 2.4 and 2.7.

To investigate the *n*-weak amenability of $(C^{b\varphi}(K), \|\cdot\|_{\varphi})$ we need to characterize the derivations from $(C^{b\varphi}(K), \|\cdot\|_{\varphi})$ into $(C^{b\varphi}(K), \|\cdot\|_{\varphi})^{(n)}$ for all $n \in \mathbb{N} \cup \{0\}$. To this end, we present the following lemma that is a generalization of Propositions 2.1 and 2.3 of [9].

Lemma 2.9. Let $n \in \mathbb{N} \cup \{0\}$. Then

1.

$$(C^{b\varphi}(K), \|\cdot\|_{\infty})^{(2n)} \subseteq (C^{b\varphi}(K), \|\cdot\|_{\varphi})^{(2n)},$$
(2.9)

$$(C^{b\varphi}(K), \|\cdot\|_{\varphi})^{(2n+1)} \subseteq (C^{b\varphi}(K), \|\cdot\|_{\infty})^{(2n+1)}.$$
(2.10)

Moreover,

$$\|m\|_{\omega}^{(2n)} \le \|m\|_{\infty}^{(2n)} \|\varphi\|, m \in (C^{b\varphi}(K), \|\cdot\|_{\infty})^{(2n)},$$
(2.11)

$$\|\Lambda\|_{\infty}^{(2n+1)} \le \|\Lambda\|_{\omega}^{(2n+1)} \|\varphi\|, \Lambda \in (C^{b\varphi}(K), \|\cdot\|_{\varphi})^{(2n+1)}.$$
(2.12)

2.

$$(C^{b\varphi}(K), \|\cdot\|_{\varphi})^{(2n)}\varphi \subseteq (C^{b\varphi}(K), \|\cdot\|_{\infty})^{(2n)},$$

$$(2.13)$$

$$(C^{b\varphi}(K), \|\cdot\|_{\infty})^{(2n+1)}\varphi \subseteq (C^{b\varphi}(K), \|\cdot\|_{\varphi})^{(2n+1)}.$$
(2.14)

Moreover,

$$\|m\varphi\|_{\infty}^{(2n)} \le \|m\|_{\varphi}^{(2n)}, m \in (C^{b\varphi}(K), \|\cdot\|_{\varphi})^{(2n)},$$
(2.15)

$$\|\Lambda\varphi\|_{\varphi}^{(2n+1)} \le \|\Lambda\|_{\infty}^{(2n+1)}, \Lambda \in (C^{b\varphi}(K), \|\cdot\|_{\infty})^{(2n+1)}.$$
(2.16)

Proof. The proof is by induction on *n*. We first prove that all of the assertions of the lemma is valid for n = 0. The proofs of (2.9), (2.11), (2.13), and (2.15) are obvious and are left for the reader. Let $\Lambda \in (C^{b\varphi}(K), \|\cdot\|_{\varphi})^{(1)}, \Lambda' \in (C^{b\varphi}(K), \|\cdot\|_{\infty})^{(1)}$ and $f, g \in C^{b\varphi}(K)$. So,

$$\begin{split} |\langle \Lambda, f \rangle| &\leq \|\Lambda\|_{\varphi}^{(1)} \|f\|_{\varphi} \\ &= \|\Lambda\|_{\varphi}^{(1)} \|f\varphi\|_{\infty} \\ &\leq \|\Lambda\|_{\varphi}^{(1)} \|f\|_{\infty} \|\varphi\|_{\infty} \\ &\leq \|\Lambda\|_{\varphi}^{(1)} \|f\|_{\infty} \|\varphi\|_{\infty} \\ &= \|\Lambda\|_{\varphi}^{(1)} \|f\|_{\infty} \|\varphi\|. \end{split}$$

Hence, $\|\Lambda\|_{\infty}^{(1)} \leq \|\Lambda\|_{\varphi}^{(1)}\|\varphi\|$, providing (2.10) and (2.12). Also,

$$\begin{split} |\langle \Lambda^{'}\varphi,g\rangle| &= |\langle \Lambda^{'},g\varphi\rangle| \\ &\leq ||\Lambda^{'}||_{\infty}^{(1)}||g\varphi||_{\infty} \\ &= ||\Lambda^{'}||_{\infty}^{(1)}||g||_{\varphi}. \end{split}$$

Therefore $\|\Lambda' \varphi\|_{\varphi}^{(1)} \leq \|\Lambda'\|_{\infty}^{(1)}$, providing (2.14) and (2.16). Assume all of the assertions of the lemma hold for n = p, we will prove them for n = p + 1. For this purpose, let,

$$\begin{split} m &\in (C^{b\varphi}(K), \|\cdot\|_{\infty})^{(2p+2)}, \\ \Lambda &\in (C^{b\varphi}(K), \|\cdot\|_{\varphi})^{(2p+1)}, \\ \Lambda' &\in (C^{b\varphi}(K), \|\cdot\|_{\varphi})^{(2p+3)}, \\ m' &\in (C^{b\varphi}(K), \|\cdot\|_{\varphi})^{(2p+2)}, \\ \Lambda'' &\in (C^{b\varphi}(K), \|\cdot\|_{\infty})^{(2p+1)}, \\ \Lambda''' &\in (C^{b\varphi}(K), \|\cdot\|_{\infty})^{(2p+3)}. \end{split}$$

By (2.10) and (2.12) of hypotheses we have, $\Lambda \in (C^{b\varphi}(K), \|\cdot\|_{\infty})^{(2p+1)}$ and $\|\Lambda\|_{\infty}^{(2p+1)} \leq \|\Lambda\|_{\varphi}^{(2p+1)} \|\varphi\|$. So,

$$\begin{split} |\langle m, \Lambda \rangle| &\leq \|m\|_{\infty}^{(2p+2)} \|\Lambda\|_{\infty}^{(2p+1)} \\ &\leq \|m\|_{\infty}^{(2p+2)} \|\Lambda\|_{\varphi}^{(2p+1)} \|\varphi\|. \end{split}$$

It follows that, $||m||_{\varphi}^{(2p+2)} \leq ||m||_{\infty}^{(2p+2)} ||\varphi||$, providing (2.9) and (2.11) for n = p + 1. Since (2.9) and (2.11) are valid for n = p + 1, $m \in (C^{b\varphi}(K), ||\cdot||_{\varphi})^{(2p+2)}$ and $||m||_{\varphi}^{(2p+2)} \leq ||m||_{\infty}^{(2p+2)} ||\varphi||$. Hence,

$$\begin{aligned} |\langle \Lambda', m \rangle| &\leq \|\Lambda'\|_{\varphi}^{(2p+3)} \|m\|_{\varphi}^{(2p+2)} \\ &\leq \|\Lambda'\|_{\varphi}^{(2p+3)} \|m\|_{\infty}^{(2p+2)} \|\varphi\| \end{aligned}$$

that implies, $\|\Lambda'\|_{\infty}^{(2p+3)} \leq \|\Lambda'\|_{\varphi}^{(2p+3)} \|\varphi\|$, providing (2.10) and (2.12) for n = p + 1. Since by (2.14) and (2.16) of hypotheses, $\Lambda''\varphi \in (C^{b\varphi}(K), \|\cdot\|_{\varphi})^{(2p+1)}$ and $\|\Lambda''\varphi\|_{\varphi}^{(2p+1)} \leq \|\Lambda''\|_{\infty}^{(2p+1)}$, we can define, $m'\varphi : (C^{b\varphi}(K), \|\cdot\|_{\infty})^{(2p+1)} \longrightarrow \mathbb{C}$ by, $\langle m'\varphi, \Lambda''\rangle = \langle m', \Lambda''\varphi \rangle$. Obviously $m'\varphi$ is linear. We will prove that $m'\varphi$ is bounded on $(C^{b\varphi}(K), \|\cdot\|_{\infty})^{(2p+1)}$.

$$\begin{split} |\langle m'\varphi, \Lambda^{''}\rangle| &= |\langle m', \Lambda^{''}\varphi\rangle| \\ &\leq ||m'||_{\varphi}^{(2p+2)} ||\Lambda^{''}\varphi||_{\varphi}^{(2p+1)} \\ &\leq ||m'||_{\varphi}^{(2p+2)} ||\Lambda^{''}||_{\infty}^{(2p+1)}, \end{split}$$

that implies, $||m'\varphi||_{\infty}^{(2p+2)} \le ||m'||_{\varphi}^{(2p+2)}$, providing (2.13) and 2.15 for n = p + 1. Since (2.13) and (2.15) are valid for n = p + 1, $m'\varphi \in (C^{b\varphi}(K), ||\cdot||_{\infty})^{(2p+2)}$ and $||m'\varphi||_{\infty}^{(2p+2)} \le ||m'||_{\varphi}^{(2p+2)}$. Hence we can define,

 $\Lambda'''\varphi: (C^{b\varphi}(K), \|\cdot\|_{\varphi})^{(2p+2)} \longrightarrow \mathbb{C} \text{ by, } \langle \Lambda'''\varphi, m'\rangle = \langle \Lambda''', m'\varphi \rangle. \text{ It follows that,}$

$$\begin{split} |\langle \Lambda^{'''}\varphi, m^{'}\rangle| &= |\langle \Lambda^{'''}, m^{'}\varphi\rangle| \\ &\leq ||\Lambda^{'''}||_{\infty}^{(2p+3)} ||m^{'}\varphi||_{\infty}^{(2p+2)} \\ &\leq ||\Lambda^{'''}||_{\infty}^{(2p+3)} ||m^{'}||_{\varphi}^{(2p+2)}. \end{split}$$

So, $\|\Lambda^{'''}\varphi\|_{\varphi}^{(2p+3)} \le \|\Lambda^{'''}\|_{\infty}^{(2p+3)}$, providing (2.14) and (2.16) for n = p + 1.

The following theorem generalizes Theorem 4.2 of [9].

Theorem 2.10. Let $n \in \mathbb{N} \cup \{0\}$ and let

 $D: (C^{b\varphi}(K), \|\cdot\|_{\varphi}) \longrightarrow (C^{b\varphi}(K), \|\cdot\|_{\varphi})^{(n)}$ be a bounded linear map. Then D is a derivation if and only if D = 0.

Proof. One can prove the theorem by applying Lemma 2.9 and by modifying the proof of [Theorem 4.2, 9].

References

[1] G.W. Bade, P.C. Curtis and H.G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, *Proc. London Math. Soc.*, **55** (1987), 359–377.

- [2] H.G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monogr. Ser., 24, The Clarendon Press, Oxford University Press, New York, 2000.
- [3] H.G. Dales, F. Ghahramani and N. Grønbæk, Derivations into iterated duals of Banach algebras, *Studia Math.*, 128 (1998), 19–54.
- [4] N. Grønbæk, Weak and cyclic amenability for non-commutative Banach algebras, *Proc. Edinburgh Math. Soc.*, 35 (1992), 315–328.
- [5] R.A. Kamyabi-Gol and M. Janfada, Banach algebras related to the elements of the unit ball of a Banach algebra, *Taiwan. J. Math.*, **12** (2008), 1769–1779.
- [6] A.R. Khoddami, Biflatness, biprojectivity, φ -amenability and φ -contractibility of a certain class of Banach algebras, *U.P.B. Sci. Bull., Series A*, **80** (2018), 169–178.
- [7] A.R. Khoddami, Bounded and continuous functions on the closed unit ball of a normed vector space equipped with a new product, *U.P.B. Sci. Bull., Series A*, **81** (2019), 81–86.
- [8] A.R. Khoddami, Non equivalent norms on $C^{b}(K)$, Sahand Commun. Math. Anal., 17 (2020), 1–11.
- [9] A.R. Khoddami, Weak and cyclic amenability of certain function algebras, *Wavelets and Linear Algebr.*, 7 (2020), 31–41.
- [10] V. Runde, Lectures on Amenability, Lecture Notes in Mathematics 1774, Springer-Verlag, Berlin, 2002.