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1. Introduction

The main foundations of the distance matrix can be traced back to distant years. Schonberg’s
papers make an important contribution to the distance matrix theory [14, 13, 12].

A matrix D = (di j) ∈ Mn×n is said to be an Euclidean distance matrix (EDM), if there are n
points x1, x2, . . . , xn ∈ Rr, such that di j =

∥∥∥xi − x j

∥∥∥2
for all i, j = 1, 2, . . . , n, where ‖.‖ denotes the

Euclidean norm. By the definition of EDM the following properties for the matrix D are held:

(1) D is nonnegative matrix;
(2) D is symmetric;
(3) D has zero main diagonal and this means that the sum of its
eigenvalues is zero.

(1.1)

Inverse eigenvalues of EDM is an interesting topic in symmetric nonnegative inverse eigen-
value problems (SNIEP). Two main papers regarding SNIEP are [5, 4].

If x1, x2, . . . , xn ∈ Rr are the constructive points of EDM D, then

X =
(

x1 x2 . . . xn

)T
∈ Mn×r,

is called its coordinate matrix. Since translation and rotation preserve the distance between two
points, we deduce that the coordinate matrix associated with an EDM is not unique. The minimum
rank of the coordinate matrices associated with an EDM D is called an embedding dimension of
D and denoted by ed(D). If e is a vector with all ones, then D is a distance matrix if and only if D
is negative semidefinite on e⊥ = {y ∈ Rn, yT e = 0}. Therefore an EDM D has at most one positive
eigenvalue with algebraic multiplicity n − 1 on the set e⊥. Considering Property (3) in (1.1), we
conclude that D has exactly one positive eigenvalue.

Let S H be the set of symmetric matrices of order n with zero diagonal and S C be the set of
symmetric matrices B of order n satisfying Be = 0. We define the following maps:

T : S H → S C and K : S C → S H,

where

T (D) = −1
2 (I − eeT

n )D(I − eeT

n ),

K(B) = diag(B)eT + e(diag(B))T − 2B.
(1.2)

The linear maps T and K are mutually inverse, and D ∈ S H is an EDM of embedding dimension r
if and only if T (D) is positive semidefinite of rank r [3].

The distance matrices and their eigenvalues have been studied in several papers such as [3,
15, 7, 2, 11]. In [6] Hayden et al. solved the inverse eigenvalue problem for Euclidean distance
matrices of order n = 3, 4, 5, 6, and any n for which there exists a Hadamard matrix. They also
stated that if there exists a Hadamard matrix of order n ∈ N, then there are (n + 1) × (n + 1) and
(n + 2)× (n + 2) distance matrices with eigenvalues satisfying some special conditions for n 6 16.
Nazari and Mahdinasab [10] solved this problem using orthogonal matrices without employing
any Hadamard matrix.
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An EDM D is said to be spherical if the construction points of D lie on a hypersphere, oth-
erwise, it is said to be non-spherical. By [15] we know that a distance matrix D of embedding
dimension r is spherical if and only if its rank is r + 1 and D is non-spherical if and only if its rank
is r + 2. A spherical EDM D is called regular if the constructive points of D lie on a hypersphere
whose center coincides with the centroid of those points. D is regular spherical if and only if e is
the eigenvector of D corresponding to the eigenvalue eT De

n [7].
A matrix L is called unit lower triangular if it is a lower triangular with all entries on main diag-

onal 1. The inverse of L also is an unit lower triangular matrix and is easily computable. Recently,
Nazari et al in [9] have solved a special inverse eigenvalue problem of bisymmetric matrices by
using unit lower triangular matrices. In this paper for a given set of real numbers λ1, λ2, . . . , λn,
satisfying

∑n
i=1 λi = 0 and λ1 > 0 > λn ≥ · · · ≥ λ2, we solve the corresponding inverse eigenvalue

problem of the distance matrix without using the Hadamard matrices and orthogonal matrices and
only using some special unit lower triangular matrices.

2. Construction distance matrix with prescribed eigenvalues

In this section, at first, we solve the inverse eigenvalue problem of distance matrices and then
solve some special inverse eigenvalue problem of regular spherical matrices. First, we discuss the
following theorem about the inverse of the matrix L.

Theorem 2.1. Given σ = {λ1, λ2 . . . , λn}, with

1. λ1 > 0 > λn ≥ · · · ≥ λ2,

2.
∑n

i=1 λi = 0,

there exists an n × n distance matrix that realizes σ.

Proof. For n = 2, we have λ1 = −λ2. In this case letting

L =

 1 0

1 1

 , A =

 λ1 λ1

0 λ2

 ,
we see that

D = L−1AL =

 0 λ1

−λ2 0

 .
Obviously, D is an EDM realizing the spectrum σ = {λ1, λ2}.

For n = 3, we choose the following two matrices

A =


λ1 2 λ1

1√
−2 λ1

λ2

λ1
1√
−2 λ1

λ2

0 λ2 1/2 λ2 − 1/2 λ3

0 0 λ3

 , L =


1 0 0

−1/2
√
−2 λ1

λ2
1 0

0 −1 1

 .
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In this case, we get

D = (di j)3×3 = L−1AL =



0 λ1
1√
−2 λ1

λ2

λ1
1√
−2 λ1

λ2

λ1
1√
−2 λ1

λ2

0 −λ3

λ1
1√
−2 λ1

λ2

−λ3 0


.

It can be easily shown that
d12 + d23 ≥ d13,
d13 + d32 ≥ d12,
d21 + d13 ≥ d23.

The first two inequalities are obvious, and we do so to show the third inequality. Since d21 + d13 =
√
−2λ1λ2 and λ1 > 0 > λ3 ≥ λ2 then

√
−2λ1λ2 ≥

√
−2λ1λ3 ≥

√
2|λ3| ≥ −λ3 = d23, then the above

matrix is an EDM and similar to A, which realizes spectrum σ = {λ1, λ2, λ3}.
For n = 4 we select the following two matrices

A =


λ1 1/2 λ1 − 1/2 λ2 1/2 λ3 − 1/2 λ2 −1/2 λ4 − 1/2 λ3

0 λ2 λ2 − λ3 1/2 λ3 − 1/2 λ2

0 0 λ3 1/2 λ4 − 1/2 λ3

0 0 0 λ4


, L =


1 0 0 0

−1 1 0 0

0 −1 1 0

−1 −1 1 1


.

Then we see that the matrix

D = L−1AL =


0 −1/2 λ3 − 1/2 λ2 −1/2 λ4 − 1/2 λ2 −1/2 λ4 − 1/2 λ3

−1/2 λ3 − 1/2 λ2 0 −1/2 λ4 − 1/2 λ3 −1/2 λ4 − 1/2 λ2

−1/2 λ4 − 1/2 λ2 −1/2 λ4 − 1/2 λ3 0 −1/2 λ3 − 1/2 λ2

−1/2 λ4 − 1/2 λ3 −1/2 λ4 − 1/2 λ2 −1/2 λ3 − 1/2 λ2 0


,

is a symmetric and nonnegative matrix with zeroes diagonal and it is to check that di j + d jk ≥ dik

for all i, j, k = 1, 2, 3, 4, then D is an EDM and similar to matrix A which realizes the spectrum
σ = {λ1, λ2, λ3, λ4}.

For n ≥ 5, we consider the unit lower bidiagonal matrix L = (li j)n×n with the entries

lii = 1, i = 1, 2, . . . , n,

li+1,i = −

√
λi+2

∑i
k=1 λk

λi+1(∑i+1
k=1 λk−λi+2) , i = 1, 2, . . . , n − 1.

(2.1)

It is worth noting that for i = n − 1, it follows from
∑n

k=1 λk = 0 that

ln,n−1 = −

√
λn+1 × (−λn)
−λn × λn+1

= −1.
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This shows that ln,n−1 is independent of λn+1 and in the above relation, there is no need to define
λn+1, and using this relation, λn+1 will be deleted, and in order not to separate the last line of L, we
have written it in the same way as before. Let A = (ai j) be an upper triangular matrix with aii = λi,
for i = 1, 2, . . . , n, and

ai j =
λi − λi+1∑i

k=1 λk − λi+1

√√√
λi+1

∏ j−1
m=i

(∑m
k=1 λk

) (∑ j
k=1 λk − λ j+1

)
λ j+1

∏ j−1
m=i+1

(∑m
k=1 λk − λm+1

) , for i < j. (2.2)

Then we set D = L−1AL that solves the problem. It is not difficult to calculate the inverse of the
matrix L, however, in the general cases we propose a method for computing the inverse of L for
n = 5. For general case it can be computed using induction. For n = 5, we have

L =



1 0 0 0 0

−

√
λ3λ1

λ2(λ1+λ2−λ3) 1 0 0 0

0 −

√
λ4(λ1+λ2)

λ3(λ1+λ2+λ3−λ4) 1 0 0

0 0 −

√
λ5(λ1+λ2+λ3)

λ4(λ1+λ2+λ3+λ4−λ5) 1 0

0 0 0 −

√
−
λ1+λ2+λ3+λ4

λ5
1


.

The inverse of matrix L is:

L−1 =



1 0 0 0 0

l−1
21 1 0 0 0

l−1
31 l−1

32 1 0 0

l−1
41 l−1

42 l−1
43 1 0

l−1
51 l−1

52 l−1
53 l−1

54 1


,

where
l−1
21 =

√
λ3λ1

λ2(λ1+λ2−λ3) ,

l−1
31 =

√
λ3λ1

λ2(λ1+λ2−λ3) ,

l−1
41 =

√
λ5(λ1+λ2+λ3)

λ4(λ1+λ2+λ3+λ4−λ5)

√
λ4(λ1+λ2)

λ3(λ1+λ2+λ3−λ4)

√
λ3λ1

λ2(λ1+λ2−λ3) ,

l−1
51 =

√
λ1+λ2+λ3+λ4

λ5

√
λ5(λ1+λ2+λ3)

λ4(λ1+λ2+λ3+λ4−λ5)

√
λ4(λ1+λ2)

λ3(λ1+λ2+λ3−λ4)

√
λ3λ1

λ2(λ1+λ2−λ3) ,

l−1
32 =

√
λ4(λ1+λ2)

λ3(λ1+λ2+λ3−λ4) ,

l−1
42 =

√
λ5(λ1+λ2+λ3)

λ4(λ1+λ2+λ3+λ4−λ5)

√
λ4(λ1+λ2)

λ3(λ1+λ2+λ3−λ4) ,

l−1
52 =

√
λ1+λ2+λ3+λ4

λ5

√
λ5(λ1+λ2+λ3)

λ4(λ1+λ2+λ3+λ4−λ5)

√
λ4(λ1+λ2)

λ3(λ1+λ2+λ3−λ4) ,
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l−1
43 =

√
λ5(λ1+λ2+λ3)

λ4(λ1+λ2+λ3+λ4−λ5) ,

l−1
53 =

√
λ1+λ2+λ3+λ4

λ5

√
λ5(λ1+λ2+λ3)

λ4(λ1+λ2+λ3+λ4−λ5) ,

l−1
54 =

√
−
λ1+λ2+λ3+λ4

λ5
.

According to the shape of the entries of the matrix L−1 in the state n = 5, we claim that the entries
of this matrix for i > j in the general case are as follows:

l−1
i, j =

√
λi+1(λ1+λ2+···+λi−1)
λi(λ1+λ2+···+λi−λi+1)

√
λi(λ1+λ2+···+λi−2)

λi−1(λ1+λ2+···+λi−1−λi)
· · ·

√
λ j(λ1+λ2+···+λ j)

λ j+1(λ1+λ2+···+λi−1−λ j) .
(2.3)

To prove the relation (2.3), if we assume that the matrix

T = (ti, j)n×n = LL−1, (2.4)

then we show that T = In. Because L is a lower triangular matrix, then the matrix L−1 also is a
lower triangular matrix, and consequently, the matrix T is a lower triangular matrix and it is trivial
that all entries of the main diagonal of T are one. Now we show that ti j = 0 for i > j. Since T is a
lower bidiagonal matrix, from (2.4) the following relation can be written

ti, j = li+1,il−1
i, j + l−1

i+1, j. (2.5)

Now we have

li+1,i = −

√
λi+2 (λ1 + λ2 + · · · + λi)

λi+1 (λ1 + λ2 + · · · + λi − λi+2)
.

According to Equation (2.3), if we write l−1
i+1, j, we see that the beginning of it has the negative of

the member li+1,i and the rest is the same as in l−1
i, j , so ti j = 0 for i > j.

For n = k we write the upper triangular matrix A = (ai j) as following

aii = λi, i = 1, 2, · · · , k,

a12 =

√
λ2λ1(λ1+λ2−λ3)

λ3
,

a13 =

√
λ2λ1(λ1+λ2)(λ1+λ2+λ3−λ4)

λ4(λ1+λ2−λ3) ,

a14 =

√
λ2λ1(λ1+λ2)(λ1+λ2+λ3)(λ1+λ2+λ3+λ4−λ5)

λ5(λ1+λ2−λ3)(λ1+λ2+λ3−λ4) ,

...

a1k−1 =

√
λ2λ1(λ1+λ2)(λ1+λ2+λ3)···(λ1+λ2+λ3+···+λk−1−λk)

λk(λ1+λ2−λ3)(λ1+λ2+λ3−λ4)···(λ1+λ2+λ3+···+λk−2+−λk−1) ,

a1k =

√
λ2λ1(λ1+λ2)(λ1+λ2+λ3)···(λ1+λ2+λ3+···+λk−1)

(λ1+λ2−λ3)(λ1+λ2+λ3−λ4)···(λ1+λ2+λ3+···+λk−1−λk) ,

a23 = λ2−λ3
λ1+λ2−λ3

√
λ3(λ1+λ2)(λ1+λ2+λ3−λ4)

λ4
,

a24 = λ2−λ3
λ1+λ2−λ3

√
λ3(λ1+λ2)(λ1+λ2+λ3)(λ1+λ2+λ3+λ4−λ5)

λ5(λ1+λ2+λ3−λ4) ,

...

a25 = λ2−λ3
λ1+λ2−λ3

√
λ3(λ1+λ2)(λ1+λ2+λ3)(λ1+λ2+λ3+λ4)
(λ1+λ2+λ3−λ4)(λ1+λ2+λ3+λ4−λ5) ,
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a34 = λ3−λ4
λ1+λ2+λ3−λ4

√
λ4(λ1+λ2+λ3)(λ1+λ2+λ3+λ4−λ5)

λ5
,

a35 = λ3−λ4
λ1+λ2+λ3−λ4

√
λ4(λ1+λ2+λ3)(λ1+λ2+λ3+λ4)

λ1+λ2+λ3+λ4−λ5
,

a45 =
(λ4−λ5)

√
λ5(λ1+λ2+λ3+λ4)

λ1+λ2+λ3+λ4−λ5
.

In this case, for the matrix D = L−1AL = (di j) we have

dii = 0, i = 1, 2, · · · , 5,

d12 = d21 =

√
λ3λ2λ1

(λ1+λ2−λ3) ,

d13 = d31 =

√
λ4λ2λ1(λ1+λ2)

(λ1+λ2−λ3)(λ1+λ2+λ3−λ4) ,

d14 = d41 =

√
λ5λ2λ1(λ1+λ2)(λ1+λ2+λ3)

(λ1+λ2−λ3)(λ1+λ2+λ3−λ4)(λ1+λ2+λ3+λ4−λ5) ,

...

d1,k−1 = dk−1,1 =

√
λkλ2λ1(λ1+λ2)(λ1+λ2+λ3)···(λ1+λ2+λ3+···+λk−1)

(λ1+λ2−λ3)(λ1+λ2+λ3−λ4)(λ1+λ2+λ3+···+λk−1−λk) ,

d1k = dk1 =

√
−

λ2λ1(λ1+λ2)(λ1+λ2+λ3)···(λ1+λ2+λ3+λk−1)
(λ1+λ2−λ3)(λ1+λ2+λ3−λ4)···(λ1+λ2+λ3+···+λk−1−λk) ,

d23 = d32 = −λ3

√
λ4(λ1+λ2)

λ3(λ1+λ2+λ3−λ4) ,

d24 = d42 = −λ3

√
λ5(λ1+λ2)(λ1+λ2+λ3)

(λ1+λ2+λ3+λ4−λ5)λ3(λ1+λ2+λ3−λ4) ,

d25 = d52 = −λ3

√
−

(λ1+λ2+λ3+λ4)(λ1+λ2+λ3)(λ1+λ2)
(λ1+λ2+λ3+λ4−λ5)λ3(λ1+λ2+λ3−λ4) ,

...

d34 = d43 = −λ4

√
λ5(λ1+λ2+λ3)

λ4(λ1+λ2+λ3+λ4−λ5) ,

d35 = d53 = −λ4

√
−

(λ1+λ2+λ3+λ4)(λ1+λ2+λ3)
λ4(λ1+λ2+λ3+λ4−λ5) ,

...

d45 = d54 = −λ5

√
−
λ1+λ2+λ3+λ4

λ5
,

...

Now we show that the matrix D is EDM. To do this, we prove that the entries of all rows (as well
as columns, because of the symmetry of D) form a decreasing sequence. At first, we show that
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d12 ≥ d13. Since λ4 ≥ λ3 and λ1 + λ2 + λ3 > 0, we have

λ4(λ1 + λ2 + λ3) ≥ λ3(λ1 + λ2 + λ3),
⇒ λ4(λ1 + λ2) ≥ λ3(λ1 + λ2 + λ3 − λ4),
λ4λ2λ1(λ1 + λ2) ≤ λ3λ2λ1(λ1 + λ2 + λ3 − λ4),

⇒
λ4λ2λ1 (λ1 + λ2)

(λ1 + λ2 − λ3) (λ1 + λ2 + λ3 − λ4)
≤

λ3λ2λ1

(λ1 + λ2 − λ3)
,

⇒ d12 ≥ d13.

For the other two consecutive elements of each row of the matrix, we can similarly show that the
above inequality holds, and then all rows of this matrix form a decreasing order. Now we show
that the matrix D is EDM. Let di j and d jk be two entries of matrix D. Then it is easy to see that
di j + d jk ≥ dik, because if j < k then di j ≥ dik and if j > k, then we have only a conjecture that
d2

i j + d2
jk ≥ d2

ik (numerical examples, even with dimensions greater than 100, confirm this point), so
the triangular inequality holds for every three entries of a matrix D as di j, d jk and dik. Therefore D
is EDM.

Theorem 2.2. Given σ = {λ1, λ2, . . . , λn} with the following conditions

1. λ1 > 0 > λ2 ≥ λ3 ≥ · · · ≥ λn, and
∑n

i=1 λi = 0,

2. λi = − λ1
n−1 , i = 2, 3, . . . , n

the following regular spherical distance matrix is realized spectrum σ

D =



0 λ1
n−1

λ1
n−1 · · ·

λ1
n−1

λ1
n−1

λ1
n−1 0 λ1

n−1 · · ·
λ1

n−1
λ1

n−1
λ1

n−1
λ1

n−1 0 · · ·
λ1

n−1
λ1

n−1

...
...

... · · ·
...

...

λ1
n−1

λ1
n−1

λ1
n−1 · · ·

λ1
n−1 0


. (2.6)

Proof. We set the matrices A and L as the following:

A =



−
λ1

n−1 0 0 · · · 0 λi
n−1

0 −
λ1

n−1 0 · · · 0 2 λ1
n−1

0 0 −
λ1

n−1 · · · 0 3 λ1
n−1

...
...

... · · ·
...

...

0 0 0 · · · −
λ1

n−1 (n − 1) λ1
n−1

0 0 0 · · · 0 λ1
n−1


,
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L =



1 0 0 · · · 0 0

1 1 0 · · · 0 0

1 1 1 · · · 0 0
...

...
... · · ·

...
...

1 1 1 · · · 1 0

1 1 1 · · · 1 1


.

It is easy to see that we have D = L−1AL.

Remark 2.3. The matrix D in (2.6) is a regular spherical matrix.

Proof. Since the matrix of eigenvectors of matrix D as following:

E =


1 −1 −1 −1 · · · −1 −1
1 0 0 0 · · · 0 1
1 0 0 0 · · · 1 0
...

...
...

1 1 0 0 · · · 0 0


.

We see that

eT De
n

=
1
n

(1, 1, . . . , 1)


∑n−1

1
λ1

n−1
...∑n−1

1
λ1

n−1

 =
1
n

n(n − 1)
λ1

n − 1
= λ1,

then eT De
n is an eigenvalue of D corresponding to eigenvector e, consequently by [7] D is a regular

spherical matrix.

3. Numerical Examples

In this section, we provide some numerical examples.

Example 3.1. Consider σ = {9,−4,−3,−2}. Then by Theorem (2.1) for n=4 we present a distance
matrix that σ is its spectrum. We solve this problem with the two methods given in Theorem 2.1.

The first method: Let

L =


1 0 0 0

−1 1 0 0

0 −1 1 0

−1 −1 1 1


,

and

A :=


9 13/2 1/2 5/2

0 −4 −1 1/2

0 0 −3 1/2

0 0 0 −2


,
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then

D = L−1AL =


0 7/2 3 5/2

7/2 0 5/2 3

3 5/2 0 7/2

5/2 3 7/2 0


.

The second method: Let

L =



1 0 0 0

−3/8
√

6 1 0 0

0 −1/6
√

30 1 0

0 0 −1 1


,

A =


9 4

√
6 3

√
5 3/2

√
5

0 −4 −1/8
√

30 −1/16
√

30

0 0 −3 −1/2

0 0 0 −2


,

then

D = L−1AL =



0 3/2
√

6 3/2
√

5 3/2
√

5

3/2
√

6 0 1/2
√

6
√

5 1/2
√

6
√

5

3/2
√

5 1/2
√

6
√

5 0 2

3/2
√

5 1/2
√

6
√

5 2 0


.

Example 3.2. Consider σ = {25,−11,−5,−5,−7
2 ,−

1
2 }. Then

L =



1 0 0 0 0 0

−5
√

1045
209 1 0 0 0 0

0 −1 1 0 0 0

0 0 −1/5
√

21 1 0 0

0 0 0 −2/7
√

7 1 0

0 0 0 0 −1 1


,
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L−1 =



1 0 0 0 0 0
5
√

1045
209 1 0 0 0 0

5
√

1045
209 1 1 0 0 0

√
21
√

1045
209 1/5

√
21 1/5

√
21 1 0 0

2
√

7
√

21
√

1045
1463

2
√

7
√

21
35

2
√

7
√

21
35 2/7

√
7 1 0

2
√

7
√

21
√

1045
1463

2
√

7
√

21
35

2
√

7
√

21
35 2/7

√
7 1 1


,

A =



25
√

1045 14
√

1045
19

15
√

21945
133

4
√

3135
19 2/19

√
3135

0 −11 −84
19 −90

√
21

133 −24
√

3
19 −12

√
3

19

0 0 −5 0 0 0

0 0 0 −5 −2/5
√

7 −1/5
√

7

0 0 0 0 −7/2 −3/2

0 0 0 0 0 −1/2


,

D = L−1AL =



0 5
√

1045
19

5
√

1045
19 1/19

√
3135

√
7 2/19

√
3135 2/19

√
3135

5
√

1045
19 0 5

√
3
√

7 2
√

3 2
√

3
5
√

1045
19 5 0

√
3
√

7 2
√

3 2
√

3

1/19
√

21
√

1045
√

21
√

21 0
√

7
√

7

2/19
√

3
√

1045 2
√

3 2
√

3
√

7 0 1/2

2/19
√

3
√

1045 2
√

3 2
√

3
√

7 1/2 0


.

By (1.2) we find the matrix T (D) = −1
2 (I − eeT

n )D(I − eeT

n ) as

T (D) =



4.143843 −1.074683 −1.074683 −0.9499423 −0.522267 −0.522267

−1.074683 2.213754 −0.2862465 −0.3078960 −0.2724638 −0.2724638

−1.074683 −0.2862465 2.213754 −0.3078960 −0.2724638 −0.2724638

−0.9499433 −0.3078956 −0.3078956 1.753032 −0.0936488 −0.0936488

−0.5222664 −0.2724642 −0.2724642 −0.0936491 0.7054213 0.4554213

−0.5222664 −0.2724642 −0.2724642 −0.0936491 0.4554213 0.7054213


.
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The eigenvalues of T (D) are 

5.0962034515219839627 + 0.0 i

−3.41 × 10−21 + 0.0 i

1.5587362413318417489 + 0.0 i

2.3302837993164271684 + 0.0 i

2.5000000000000000003 + 0.0 i

0.25000000000000000011 + 0.0 i


,

and we see that all the eigenvalues of T are nonnegative. Hence, the matrix T is positive semidef-
inite and by [3] the matrix D is EDM.

Example 3.3. Let n = 10 and σ = {42,−10,−9,−6,−5,−4,−3,−2,−2,−1}. By Theorem 3.4 we
find an EDM matrix with σ being its spectrum. To present the matrices we use 4 decimal places.
The matrices L (along with its inverse) and the matrix A are given as follows

L =



1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

−0.9599 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 −0.8576 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 −0.9332 1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 −0.9220 1.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 −0.9045 1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 −0.8731 1.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 −1.0 1.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 −0.8660 1.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −1.0 1.0



,

L−1 =



1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.9599 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.8236 0.8576 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.7685 0.8003 0.9332 1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.7088 0.7380 0.8605 0.9220 1.0 0.0 0.0 0.0 0.0 0.0

0.6412 0.6677 0.7785 0.8339 0.9045 1.0 0.0 0.0 0.0 0.0

0.5593 0.5826 0.6793 0.7278 0.7896 0.8731 1.0 0.0 0.0 0.0

0.5593 0.5826 0.6793 0.7278 0.7896 0.8731 1.0 1.0 0.0 0.0

0.4847 0.5049 0.5887 0.6306 0.6838 0.7560 0.8660 0.8660 1.0 0.0

0.4847 0.5049 0.5887 0.6306 0.6838 0.7560 0.8660 0.8660 1.0 1.0



,
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A =



42.0 43.74 39.80 33.82 28.34 23.50 19.58 13.98 9.692 4.846

0.0 −10.0 −0.9099 −0.7731 −0.6479 −0.5374 −0.4477 −0.3198 −0.2215 −0.1108

0.0 0.0 −9.0 −2.549 −2.137 −1.771 −1.476 −1.054 −0.7304 −0.3652

0.0 0.0 0.0 −6.0 −0.8382 −0.6951 −0.5789 −0.4136 −0.2865 −0.1433

0.0 0.0 0.0 0.0 −5.0 −0.8292 −0.6908 −0.4935 −0.3419 −0.1709

0.0 0.0 0.0 0.0 0.0 −4.0 −0.8332 −0.5953 −0.4122 −0.2062

0.0 0.0 0.0 0.0 0.0 0.0 −3.0 −0.7143 −0.4948 −0.2475

0.0 0.0 0.0 0.0 0.0 0.0 0.0 −2.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −2.0 −0.5000

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −1.0



,

then

D = L−1AL =



0.0 9.602 8.235 7.687 7.087 6.410 5.595 5.595 4.846 4.846

9.602 0.0 7.719 7.205 6.643 6.009 5.245 5.245 4.542 4.542

8.235 7.719 0.0 5.600 5.163 4.670 4.077 4.077 3.530 3.530

7.687 7.205 5.600 0.0 4.610 4.170 3.640 3.640 3.152 3.152

7.087 6.643 5.163 4.610 0.0 3.618 3.158 3.158 2.735 2.735

6.410 6.009 4.670 4.170 3.618 0.0 2.619 2.619 2.268 2.268

5.595 5.245 4.077 3.640 3.158 2.619 0.0 2.0 1.732 1.732

5.595 5.245 4.077 3.640 3.158 2.619 2.0 0.0 1.732 1.732

4.846 4.542 3.530 3.152 2.735 2.268 1.732 1.732 0.0 1.0

4.846 4.542 3.530 3.152 2.735 2.268 1.732 1.732 1.0 0.0



.

Example 3.4. Consider σ = {8,−2,−2,−2,−2}. Then by Theorem (2.2), we find a regular spher-
ical matrix with eigenvalues σ. Let

A =



−2 0 0 0 2

0 −2 0 0 4

0 0 −2 0 6

0 0 0 −2 8

0 0 0 0 8


.
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Then we have by matrix L which is defined in Theorem (2.2)

D = L−1AL =



0 2 2 2 2

2 0 2 2 2

2 2 0 2 2

2 2 2 0 2

2 2 2 2 0


.

Remark 3.5. The matrix D in example (3.4) is EDM matrix.
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