Property (T) for C*-dynamical systems

H. Abbasia,*, Gh. Haghighatdoosta, I. Sadeqib

aDepartment of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Islamic Republic of Iran.
bFaculty of Sciences, Sahand University of Technology, Tabriz, Islamic Republic of Iran.

Abstract

In this paper, we introduce a notion of property (T) for a C*-dynamical system (\(A, \mathcal{G}, \alpha\)) consisting of a unital C*-algebra \(A\), a locally compact group \(\mathcal{G}\), and an action \(\alpha\) on \(A\). As a result, we show that if \(A\) has strong property (T) and \(\mathcal{G}\) has Kazhdan’s property (T), then the triple (\(A, \mathcal{G}, \alpha\)) has property (T).

c© (2014) Wavelets and Linear Algebra

1. Introduction

A unital C*-algebra \(A\) has property (T) if there exist a finite subset \(F\) of \(A\) and \(\varepsilon > 0\), such that for every Hilbert bimodule on \(A\) with a unit \((F, \varepsilon)\)-central vector, there is a non-zero central
vector (see [1]). This property is similar to the property (T) for locally compact groups, which is defined by D. Kazhdan in [7]. A locally compact group G has property (T) if, whenever a unitary representation (π, \mathcal{H}) of G almost has invariant vectors, \mathcal{H} has a non-zero invariant vector. It is proved in [1] that a countable discrete group G has property (T) if and only if its full (or equivalently reduced) group C^*-algebra has property (T). In [3], property (T) for a von Neumann algebra was introduced, it is shown that a discrete ICC-group G has property (T) if and only if the von Neumann algebra generated by the left regular representation of G has property (T).

In this paper, if V and W are Hilbert spaces, $V \otimes W$ denotes their Hilbert space tensor product. If V and W are algebras, $V \otimes W$ denotes their algebraic tensor product. If V and W are C^*-algebras, then $V \otimes_{\text{min}} W$ will denote their C^*-tensor product with respect to the minimal (spatial) C^*-norm and $V \otimes_{\text{max}} W$ will denote their C^*-tensor product with respect to the maximal C^*-norm. Also, if V is a Hilbert space we denote by $\mathcal{L}(V)$ the unital C^*-algebra of bounded linear operators on V.

The paper is organised as follows. In Section 2, we recall some definitions and results in the framework of C^*-dynamical systems which are used in this paper.

In Section 3, we define a notion of property (T) for an arbitrary C^*-dynamical system (\mathcal{A}, G, α). We show that if \mathcal{A} has strong property (T) and G has property (T), then (\mathcal{A}, G, α) has property (T). We will also show that if G is a discrete group and (\mathcal{A}, G, α) has property (T), then its C^*-crossed product has property (T) as a unital C^*-algebra. Furthermore, we show that if \mathcal{A} is a commutative unital C^*-algebra, G is a countable discrete group such that there exists a faithful representation of \mathcal{A} to the Hilbert space $\ell^2(G)$, then property (T) of $C_r^*(G) \otimes_{\text{min}} \mathcal{A}$ implies property (T) of G, where $C_r^*(G)$ is the reduced group C^*-algebra of G.

Our basic references for C^*-algebras are [5, 8, 9]. A good reference for C^*-dynamical systems is [10]. For a survey on Kazhdan’s property (T) one can refer to [2].

2. Preliminaries and Basic Concepts

A C^*-dynamical system (or a dynamical system) is a triple (\mathcal{A}, G, α), where \mathcal{A} is a unital C^*-algebra, G is a locally compact group, and α is a continuous homomorphism from G into the group of all $*$-automorphisms of \mathcal{A}. Note that the continuity condition on α amounts to the statement that $g \mapsto \alpha_g(a)$ is continuous for all $a \in \mathcal{A}$.

Let (\mathcal{A}, G, α) be a dynamical system such that G is a discrete group. Let $\mathcal{K}(G, \mathcal{A})$ be the algebra of all \mathcal{A}-valued functions with finite support endowed with the following twisted convolution as product, involution and norm:

$$xy(t) = \sum_\gamma x(\gamma) \alpha_\gamma(y(\gamma^{-1}t)), \quad x^*(t) = \alpha_t(x(t^{-1})), \quad ||x||_1 = \sum_\gamma ||x(\gamma)||,$$

where $x, y \in \mathcal{K}(G, \mathcal{A})$ and $t \in G$. The algebra $\mathcal{K}(G, \mathcal{A})$ becomes a normed $*$-algebra and we denote its completion by $\ell^1(G, \mathcal{A})$. The algebra \mathcal{A} is regarded as a subalgebra of $\mathcal{K}(G, \mathcal{A})$ with the same unit element in which each arbitrary element $a \in \mathcal{A}$ can be thought as a function on G subject to the conditions $a(e) = a$ and $a(\gamma) = 0$ for $\gamma \neq e$, where e is the unit of G.

The unital Banach $*$-algebra $\ell^1(G, \mathcal{A})$ has a faithful representation and we call the C^*-envelope of $\ell^1(G, \mathcal{A})$ the C^*-crossed product of \mathcal{A} by G with respect to the action α and write as $\mathcal{A} \rtimes_\alpha G$. Let δ_γ be the unitary element of $\ell^1(G, \mathcal{A})$ such that $\delta_\gamma(\gamma) = 1$ and $\delta_\gamma(t) = 0$ if $t \neq \gamma$. The element
\(\delta_\gamma\) belongs to \(\mathcal{A} \times_{\alpha} \mathcal{G}\) and satisfies \(\delta_\gamma a \delta_\gamma = \alpha_\gamma(a)\). An element \(x\) in \(\mathcal{K}(\mathcal{G}, \mathcal{A})\) can be written as \(x = \sum_\gamma x(\gamma)\delta_\gamma\).

A pair \((\mu, \pi)\) consisting of a representation \(\mu\) of \(\mathcal{A}\) and a unitary representation \(\pi\) of \(\mathcal{G}\) on the same Hilbert space \(\mathcal{H}\) is called a covariant representation of \((\mathcal{A}, \mathcal{G}, \alpha)\) if for all \(a \in \mathcal{A}\) and \(\gamma \in \mathcal{G}\) we have

\[
\pi(\gamma)\mu(a) = \mu(\alpha_\gamma(a))\pi(\gamma).
\]

Consider two covariant representations \((\mu_1, \pi_1)\) and \((\mu_2, \pi_2)\) on the Hilbert spaces \(\mathcal{H}_1, \mathcal{H}_2\), respectively. We say that \((\mu_1, \pi_1)\) and \((\mu_2, \pi_2)\) are equivalent if there exists a unitary operator \(W : \mathcal{H}_1 \to \mathcal{H}_2\) such that

\[
W\mu_1(a) = \mu_2(a)W, \quad W\pi_1(\gamma) = \pi_2(\gamma)W,
\]

for all \(a \in \mathcal{A}\) and \(\gamma \in \mathcal{G}\).

Consider a faithful representation of \(\mathcal{A}\) on a Hilbert space \(\mathcal{H}\). Define a representation of \(\mathcal{A}\) as well as a unitary representation of \(\mathcal{G}\) on the Hilbert space \(\ell^2(\mathcal{G}, \mathcal{H})\) by

\[
\pi_a(\alpha)\tilde{\xi}(\gamma) = \alpha_{\gamma^{-1}}(a) \cdot \tilde{\xi}(\gamma), \quad \lambda_\gamma(\tilde{\xi})(t) = \tilde{\xi}(\gamma^{-1}t),
\]

where \(a \in \mathcal{A}, \tilde{\xi} \in \ell^2(\mathcal{G}, \mathcal{H})\) and \(\gamma, t \in \mathcal{G}\). We say that \((\pi_a, \lambda_\gamma)\) is a regular representation of \((\mathcal{A}, \mathcal{G}, \alpha)\).

The reduced \(C^*\)-crossed product \(\mathcal{A} \times_\alpha \mathcal{G}\) is the \(C^*\)-algebra on \(\ell^2(\mathcal{G}, \mathcal{H})\) generated by the family of \(\{\pi_a(\alpha), \lambda_\gamma(\alpha) \mid a \in \mathcal{A}, \gamma \in \mathcal{G}\}\). Note that this definition is independent of the choice of the space \(\mathcal{H}\).

If \(\mathcal{A} = \mathbb{C}\) and \(\alpha\) is trivial, then \(\ell^1(\mathcal{G}, \mathcal{A})\) coincide with \(\ell^1(\mathcal{G})\) and \(\lambda_\gamma\) is the regular representation on the Hilbert space \(\ell^2(\mathcal{G})\). In this case, \(\mathcal{A} \times_\alpha \mathcal{G}\) is the group \(C^*\)-algebra \(C^*(\mathcal{G})\) and \(\mathcal{A} \times_{ar} \mathcal{G}\) is the reduced group \(C^*\)-algebra \(C^r(\mathcal{G})\).

3. Property (T) for a dynamical system

A Hilbert bimodule on a unital \(C^*\)-algebra \(\mathcal{A}\) (or a Hilbert \(\mathcal{A}\)-bimodule) is a Hilbert space \(\mathcal{H}\) carrying two commuting actions, one from \(\mathcal{A}\) and one from the opposite algebra \(\mathcal{A}^0\) (see [1]). In other words, there exists a representation from \(\mathcal{A} \otimes_{\max} \mathcal{A}^0\) to \(L(\mathcal{H})\). If \(\mathcal{H}\) is a Hilbert \(\mathcal{A}\)-bimodule, we will write \(a \cdot \xi \cdot b\) for all \(a, b \in \mathcal{A}\) and \(\xi \in \mathcal{H}\), to denote the module actions.

A tracial state on a unital \(C^*\)-algebra \(\mathcal{A}\) is a positive linear functional \(Tr : \mathcal{A} \to \mathbb{C}\) such that \(Tr(ab) = Tr(ba)\) for all \(a, b \in \mathcal{A}\) and \(Tr(1) = 1\).

Definition 3.1. (see [1]) Let \(\mathcal{B} \subset \mathcal{A}\) be a \(C^*\)-subalgebra containing the identity of a unital \(C^*\)-algebra \(\mathcal{A}\). The pair \((\mathcal{A}, \mathcal{B})\) has property \((T)\) if there exist a finite subset \(\mathcal{F}\) of \(\mathcal{A}\) and \(\varepsilon > 0\) such that the following property holds: if a Hilbert bimodule \(\mathcal{H}\) on \(\mathcal{A}\) contains a unit vector \(\xi \in \mathcal{H}\) which is \((\mathcal{F}, \varepsilon)\)-central, that is:

\[
\max_{a \in \mathcal{F}} \|a \cdot \xi - \xi \cdot a\| < \varepsilon,
\]

then \(\mathcal{H}\) has a non-zero \(\mathcal{B}\)-central vector, that is, a non-zero vector \(\eta \in \mathcal{H}\) such that

\[
b \cdot \eta = \eta \cdot b,
\]

for all \(b \in \mathcal{B}\). Moreover, \(\mathcal{A}\) has property \((T)\) if the pair \((\mathcal{A}, \mathcal{A})\) has such property.
It is clear that if \(A \) has property (T), then the pair \((A, B)\) has, too. As an example, if \(H \) is any Hilbert space and \(B \subset L(H) \) a unital \(C^* \)-subalgebra, then \((L(H), B)\) has property (T) (see [4]).

Note that Definition 3.1 comes from the original definition of property (T) for groups. Let \(G \) be a locally compact group and \(N \) a closed subgroup. The pair \((G, N)\) has property (T) if there exist a compact subset \(Q \) of \(G \) and \(r > 0 \) such that the following property holds: if a unitary representation \((\pi, H)\) of \(G \) contains a unit vector \(\xi \in H \) which is \((Q,r)\)-invariant, that is:

\[
\sup_{\gamma \in Q} ||\pi(\gamma)(\xi) - \xi|| < r,
\]

then \(H \) has a non-zero \(N \)-invariant vector, that is, there is a non-zero vector \(\eta \in H \) such that

\[
\pi(\gamma)(\eta) = \eta,
\]

for all \(\gamma \in N \). Moreover, \(G \) has property (T) if the pair \((G, G)\) has property (T). An example of a pair with property (T) is the pair \((S L_2(\mathbb{Z}) \rtimes \mathbb{Z}^2, \mathbb{Z}^2)\), where \(S L_2(\mathbb{Z}) \rtimes \mathbb{Z}^2 \) is the semi-direct product for the natural action of \(S L_2(\mathbb{Z}) \) on \(\mathbb{Z}^2 \).

In the following, we give definition of a covariant birepresentation on a dynamical system and apply it to study the property (T) on the dynamical systems.

Let \((\mathcal{A}, G, \alpha)\) be a dynamical system. A triple \((H, \pi_1, \pi_2)\) consisting of a Hilbert bimodule \(H \) on \(A \) and two commuting unitary representations \(\pi_1, \pi_2 \) of \(G \) on the same Hilbert space \(H \) is called a covariant birepresentation of \((\mathcal{A}, G, \alpha)\) if we have

\[
\pi_1(\gamma_1)\pi_2(\gamma_2)(a \cdot \xi \cdot b) = \alpha_{\gamma_1}(a) \cdot \pi_1(\gamma_1)\pi_2(\gamma_2)(\xi) \cdot \alpha_{\gamma_2}(b),
\]

for all \(a, b \in \mathcal{A}, \gamma_1, \gamma_2 \in G \) and \(\xi \in H \).

Obviously, covariant birepresentations of the dynamical system \((\mathcal{A}, \{e\}, id)\) are in one-to-one correspondence with Hilbert bimodules on \(\mathcal{A} \), where \(\{e\} \) is the trivial group with one element. Covariant birepresentations of the dynamical system \((\mathbb{C}, G, id)\) correspond to commuting unitary representations of \(G \). Note that if \((H, \pi_1, \pi_2)\) is a covariant birepresentation of \((\mathcal{A}, G, \alpha)\), then so is the triple \((H, \pi_2, \pi_1)\).

Let \((\mathcal{A}, G, \alpha)\) be a dynamical system and \(B \subset \mathcal{A} \) an \(\alpha \)-invariant \(C^* \)-subalgebra containing the identity element of \(\mathcal{A} \). Let \((H, \pi_1, \pi_2)\) be a covariant birepresentation of \((\mathcal{A}, G, \alpha)\). We say that \((H, \pi_1, \pi_2)\) has a non-zero \((B, G)\)-central vector if there exists a non-zero vector \(\eta \) in \(H \) such that

\[
b \cdot \eta = \eta \cdot b, \quad \pi_1(\gamma)\pi_2(\gamma)(\eta) = \eta,
\]

for all \(\gamma \in G \) and \(b \in B \).

If \((\mathcal{A}, G, \alpha)\) is a dynamical system and \(G \) is a discrete group, then covariant birepresentations with non-zero central vectors are in one-to-one correspondence with \(\alpha \)-invariant tracial states of the associated \(C^* \)-algebra.

Lemma 3.2. (i) Let \((H, \pi_1, \pi_2)\) be a covariant birepresentation of a dynamical system \((\mathcal{A}, G, \alpha)\) with a non-zero \((\mathcal{A}, G)\)-central vector \(\eta \). Then \(\mathcal{A} \) admits an \(\alpha \)-invariant tracial state.
(ii) Let \((\mathcal{A}, \mathcal{G}, \alpha)\) be a dynamical system such that \(\mathcal{G}\) is a discrete group. Let \(Tr : \mathcal{A} \rightarrow \mathbb{C}\) be an \(\alpha\)-invariant tracial state on \(\mathcal{A}\). Then there exists a covariant birepresentation of \((\mathcal{A}, \mathcal{G}, \alpha)\) with a non-zero \((\mathcal{A}, \mathcal{G})\)-central vector.

Proof. (i) Let \(\zeta = \frac{\eta}{\|\eta\|}\). Define \(Tr : \mathcal{A} \rightarrow \mathbb{C}\) by \(Tr(a) = \langle a \cdot \zeta, \zeta \rangle\). Then \(Tr\) is a tracial state on \(\mathcal{A}\), and for all \(a \in \mathcal{A}, \gamma \in \mathcal{G}\) we have
\[
Tr(\alpha_r(a)) = \langle \pi_1(\gamma)\pi_2(\gamma)(a \cdot \zeta), \zeta \rangle = \langle a \cdot \zeta, \pi_2(\gamma^{-1})(\pi_1(\gamma^{-1})(\zeta)) \rangle = Tr(a).
\]

(ii) First, consider the extension of \(\alpha\)-invariant tracial state on \(\mathcal{A} \times_{\alpha} \mathcal{G}\), again denoted by \(Tr\). Setting \(N = \{x \in \mathcal{A} \times_{\alpha} \mathcal{G} \mid Tr(x \cdot x) = 0\}\), it is easy to check that \(N\) is a two-sided ideal of \(\mathcal{A} \times_{\alpha} \mathcal{G}\) and that the map \(\langle x + N, y + N \rangle = Tr(x \cdot y)\) is a well-defined inner product on the quotient space \(\mathcal{A} \times_{\alpha} \mathcal{G}/N\). We denote by \(L^2(Tr)\) the Hilbert space completion of \(\mathcal{A} \times_{\alpha} \mathcal{G}/N\). For each \(a \in \mathcal{A}\), the mappings \(x + N \mapsto ax + N\) and \(x + N \mapsto xa + N\) can be extend to bounded operators on \(L^2(Tr)\), and \((L^2(Tr), \pi_1, \pi_2)\) is a Hilbert bimodule on \(\mathcal{A}\). Also, if \(\gamma \in \mathcal{G}\), define two operators \(\pi_1(\gamma), \pi_2(\gamma) \in \mathcal{L}(L^2(Tr))\) by
\[
\pi_1(\gamma)(x + N) = \delta_{\gamma}x + N, \quad \pi_2(\gamma)(x + N) = x\delta_{\gamma^{-1}} + N.
\]

We obtain two commuting unitary representations \(\pi_1, \pi_2\) of \(\mathcal{G}\) on \(L^2(Tr)\), and \((L^2(Tr), \pi_1, \pi_2)\) is a covariant birepresentation of \((\mathcal{A}, \mathcal{G}, \alpha)\). Moreover, \(\eta = \delta_e + N\) is a non-zero \((\mathcal{A}, \mathcal{G})\)-central vector.

\(\square\)

Let \((\mathcal{H}, \pi_1, \pi_2)\) be a covariant birepresentation of \((\mathcal{A}, \mathcal{G}, \alpha)\). Given a finite subset \(\mathcal{F}\) of \(\mathcal{A}\), a compact subset \(\mathcal{Q}\) of \(\mathcal{G}\) and \(\varepsilon, r > 0\), we say that a unit vector \(\xi \in \mathcal{H}\) is \((\mathcal{F}, \varepsilon, \mathcal{Q}, r)\)-central if:
\[
\max_{a \in \mathcal{F}} \|a \cdot \xi - \xi \cdot a\| < \varepsilon, \quad \sup_{\gamma \in \mathcal{Q}} \|\pi_1(\gamma)\pi_2(\gamma)(\xi) - \xi\| < r.
\]

The covariant birepresentation \((\mathcal{H}, \pi_1, \pi_2)\) almost has invariant vectors if it has \((\mathcal{F}, \varepsilon, \mathcal{Q}, r)\)-central vectors for every finite subset \(\mathcal{F}\) of \(\mathcal{A}\), compact subset \(\mathcal{Q}\) of \(\mathcal{G}\) and every \(\varepsilon, r > 0\).

Definition 3.3. Let \((\mathcal{A}, \mathcal{G}, \alpha)\) be a dynamical system, and \(\mathcal{B} \subset \mathcal{A}\) an \(\alpha\)-invariant \(C^*\)-subalgebra containing the identity element of \(\mathcal{A}\). We denote the dynamical system \((\mathcal{A}, \mathcal{G}, \alpha)\) with the \(\alpha\)-invariant \(C^*\)-subalgebra \(\mathcal{B}\), by \(((\mathcal{A}, \mathcal{B}), \mathcal{G}, \alpha)\). We say that \(((\mathcal{A}, \mathcal{B}), \mathcal{G}, \alpha)\) has property (T) if there exist a finite subset \(\mathcal{F}\) of \(\mathcal{A}\), a compact subset \(\mathcal{Q}\) of \(\mathcal{G}\) and \(\varepsilon, r > 0\) such that any covariant birepresentation of \((\mathcal{A}, \mathcal{G}, \alpha)\) with a unit \((\mathcal{F}, \varepsilon, \mathcal{Q}, r)\)-central possesses non-zero \((\mathcal{B}, \mathcal{G})\)-central vectors. Moreover, the dynamical system \((\mathcal{A}, \mathcal{G}, \alpha)\) has property (T) if the system \(((\mathcal{A}, \mathcal{A}), \mathcal{G}, \alpha)\) has such property.

It is clear that if \((\mathcal{A}, \mathcal{G}, \alpha)\) has property (T), then so has \(((\mathcal{A}, \mathcal{B}), \mathcal{G}, \alpha)\). Property (T) of the dynamical system \(((\mathcal{A}, \{e\}, id)\) correspond to property (T) of \(\mathcal{A}\), and property (T) of the dynamical system \(((\mathbb{C}, \mathcal{G}, id)\) correspond to property (T) of \(\mathcal{G}\).
Example 3.5. Let \(q \in M \) represent \(\pi \)-representations of \((A, G, \alpha)\). More precisely, given a Hilbert \(\chi \)-module \(M \), let \(\theta \) be a \(\chi \)-invariant character, that is, a non-zero multiplicative linear map \(\chi : C^*\rightarrow \mathbb{C} \) such that \(\chi(\alpha(a)) = \chi(a) \) for all \(\gamma \in G \) and \(a \in A \). If \((A, G, \alpha)\) has property (T), then \(G \) has property (T).

Let us give an example of a dynamical system which does not have property (T).

Example 3.5. Let \(X \) be a smooth vector field on a compact manifold \(M \). Suppose for each point \(q \in M \) there is a unique integral curve \(\theta^q : \mathbb{R} \rightarrow M \) of \(X \) starting at \(q \), and \(p \) be an element in \(M \) such that \(\theta^p \) is the constant curve \(\theta^q(t) \equiv p \). For each \(t \in \mathbb{R} \), we can define a map \(\theta_t \) from \(M \) to itself by sending each point \(q \in M \) to the point obtained by the curve starting at \(q \) for time \(t \):

\[
\theta_t(q) = \theta^q(t).
\]

This defines a family of maps \(\theta_t : M \rightarrow M \) for \(t \in \mathbb{R} \). Let \(C(M) \) denote the unital \(C^*\)-algebra of continuous complex valued functions on \(M \). We obtain a homomorphism \(\alpha : \mathbb{R} \rightarrow Aut(C(M)) \), defined by

\[
\alpha_t(f)(q) = f(\theta_t^{-1}(q)),
\]

and \((C(M), \mathbb{R}, \alpha)\) is a dynamical system. Define an \(\alpha \)-invariant character \(\chi : C(M) \rightarrow \mathbb{C} \) by \(\chi(f) = f(p) \). We know that \(\mathbb{R} \) does not have property (T) (see [2]), it follows from Remark 3.4 that \((C(M), \mathbb{R}, \alpha)\) does not have property (T).

The notion of property (T) for a dynamical system \((A, G, \alpha)\) and for \(C^*\)-algebras associated to it are related via the correspondence between covariant birepresentations and Hilbert bimodules. More precisely, given a Hilbert \(A \times_\alpha G \)-bimodule \(H \), one can define two commuting unitary representations \(\pi_1, \pi_2 \) of \(G \) on the same Hilbert space \(H \) by

\[
\pi_1(\gamma)(\xi) = \delta_\gamma \cdot \xi, \quad \pi_2(\gamma)(\xi) = \xi \cdot \delta_{\gamma^{-1}}.
\]

Viewing \(A \) as a subalgebra of \(A \times_\alpha G \), it is simple to see that \((H, \pi_1, \pi_2)\) is a covariant birepresentation of \((A, G, \alpha)\).

Conversely, suppose \((H, \pi_1, \pi_2)\) is a covariant birepresentation of \((A, G, \alpha)\). Take \(x \in K(G, A) \) and define two operators \(\pi(x) \) and \(\rho(x) \) on \(H \) by

\[
\pi(x)\xi = \sum_\gamma x(\gamma) \cdot \pi_1(\gamma)(\xi), \quad \rho(x)\xi = \sum_\gamma \pi_2(\gamma^{-1})(\xi \cdot x(\gamma)).
\]

Since \(\pi \) is obviously norm decreasing, it extends to a representation of \(\ell^1(G, A) \), hence to that of \(A \times_\alpha G \). Similarly, \(\rho \) extends to a representation of the opposite algebra of \(A \times_\alpha G \). Two representations \(\pi \) and \(\rho \) are commuting, so that \(H \) is a Hilbert bimodule on \(A \times_\alpha G \).

Hence, a non-zero \((A, G)\)-central vector for a covariant birepresentation of \((A, G, \alpha)\) is a non-zero \(A \times_\alpha G \)-central vector.

By the argument of Remark 15 in [1], we know that every unital \(C^*\)-algebra without tracial states has property (T). We will show that a similar fact is true for dynamical systems which the associated \(C^*\)-algebra does not admit \(\alpha \)-invariant tracial states.
Theorem 3.6. Let \((\mathcal{A}, \mathcal{G}, \alpha)\) be a dynamical system such that the unital C*-algebra \(\mathcal{A}\) does not admit \(\alpha\)-invariant tracial states. Then \((\mathcal{A}, \mathcal{G}, \alpha)\) has property (T).

Proof. Assume that \((\mathcal{A}, \mathcal{G}, \alpha)\) does not have property (T). Then, there is a covariant birepresentation \((\mathcal{H}, \pi_1, \pi_2)\) almost has invariant vectors. This implies that there is a net of unit vectors \((\xi_i)_{i \in I}\) in \(\mathcal{H}\) such that:

\[
\lim_i \|a \cdot \xi_i - \xi_i \cdot a\| = 0, \quad \lim_i \|\pi_1(\gamma)\pi_2(\gamma)(\xi_i) - \xi_i\| = 0,
\]

for all \(a \in \mathcal{A}, \gamma \in \mathcal{G}\). For each \(T \in \mathcal{L}(\mathcal{H})\), let \(D_T\) be the closed disc in \(\mathbb{C}\) of radius \(\|T\|\), and consider the product space

\[X = \prod_{T \in \mathcal{L}(\mathcal{H})} D_T,\]

endowed with the product topology. By Tychonoff’s Theorem, \(X\) is compact. Since \(((T\xi_i, \xi_i))_{T \in \mathcal{L}(\mathcal{H})}\) is an element of \(X\) for all \(i \in I\), there exists a subnet \((\xi_j)_{j \in J}\) such that, for all \(T \in \mathcal{L}(\mathcal{H})\), the limit

\[\varphi(T) = \lim_j (T\xi_j, \xi_j)\]

exists. It is clear that \(T \mapsto \varphi(T)\) is a positive linear functional on \(\mathcal{L}(\mathcal{H})\) with \(\varphi(id_{\mathcal{H}}) = 1\). Moreover, for every \(\gamma \in \mathcal{G}\) and \(T \in \mathcal{L}(\mathcal{H})\), we have

\[\varphi(\pi_1(\gamma)\pi_2(\gamma)T) = \varphi(T) = \varphi(T\pi_1(\gamma)\pi_2(\gamma)).\]

Then \(Tr : \mathcal{A} \to \mathbb{C}\) defined by \(Tr(a) = \varphi(\mu(a))\) is an \(\alpha\)-invariant tracial state on \(\mathcal{A}\), where \(\mu\) is the representation on \(\mathcal{H}\) given by, say, the left action of \(\mathcal{A}\).

Example 3.7. Let \(\mathcal{H}\) be an infinite-dimensional Hilbert space and \(\mathcal{U}(\mathcal{H})\) be its unitary group. Suppose \(\mathcal{B} \subset \mathcal{L}(\mathcal{H})\) is a C*-subalgebra containing the identity element of \(\mathcal{L}(\mathcal{H})\), and that \(u \in \mathcal{U}(\mathcal{H})\) is such that \(u^*Bu \subset \mathcal{B}\). Then \(\varphi(a) = uau^*\) is an automorphism of \(\mathcal{L}(\mathcal{H})\). Therefore, we obtain a homomorphism \(\alpha : \mathbb{Z} \to \text{Aut}(\mathcal{L}(\mathcal{H}))\), defined by \(\alpha_n = \phi^n\), and \((\mathcal{L}(\mathcal{H}), \mathbb{Z}, \alpha)\) is a dynamical system. Using Theorem 3.6, so \(((\mathcal{L}(\mathcal{H}), \mathcal{B}, \mathbb{Z}, \alpha)\) has property (T).

Let \(\mathcal{G}_1 \to \mathcal{G}_2\) be a surjective continuous homomorphism between locally compact groups. It is well-known that if \(\mathcal{G}_1\) has property (T), then \(\mathcal{G}_2\) has property (T). Similarly, let \(\mathcal{A} \to \mathcal{B}\) be a surjective \(*\)-homomorphism between unital C*-algebras. If \(\mathcal{A}\) has property (T), then so has \(\mathcal{B}\). The corresponding statement for dynamical systems is as follows and its proof is straightforward.

Lemma 3.8. Let \((\mathcal{A}, \mathcal{G}, \alpha)\) and \((\mathcal{B}, \mathcal{G}, \beta)\) be two dynamical systems with actions \(\alpha\) and \(\beta\) of a fixed group \(\mathcal{G}\) on \(\mathcal{A}\) and \(\mathcal{B}\), respectively. Let \(f : \mathcal{A} \to \mathcal{B}\) be a surjective \(*\)-homomorphism between \(\mathcal{A}\) and \(\mathcal{B}\) such that

\[\beta_\gamma(f(a)) = f(\alpha_\gamma(a)),\]

for all \(\gamma \in \mathcal{G}, a \in \mathcal{A}\). If \((\mathcal{A}, \mathcal{G}, \alpha)\) has property (T), then \((\mathcal{B}, \mathcal{G}, \beta)\) has also property (T).

Let \(\mathcal{H}\) be a Hilbert bimodule on a C*-algebra \(\mathcal{A}\) and \(\mathcal{B} \subset \mathcal{A}\) a C*-subalgebra containing the identity of \(\mathcal{A}\). Let

\[\mathcal{H}^\mathcal{B} = \{\eta \in \mathcal{H} \mid b \cdot \eta = \eta \cdot b, \forall b \in \mathcal{B}\},\]
and $P^B_H : \mathcal{H} \to \mathcal{H}^B$ be the orthogonal projection from \mathcal{H} over the closed subspace \mathcal{H}^B.

Let us recall a notion of strong property (T) in [4]. The pair $(\mathcal{A}, \mathcal{B})$ has strong property (T) if for any $r > 0$, there exist a finite subset \mathcal{F} of \mathcal{A} and $\varepsilon > 0$ such that the following property holds: if a Hilbert bimodule \mathcal{H} on \mathcal{A} contains a unit vector $\xi \in \mathcal{H}$ which is $(\mathcal{F}, r, \varepsilon)$-central, then $||\xi - P^B_{\mathcal{H}}(\xi)|| < r$. Also, \mathcal{A} has strong property (T) if $(\mathcal{A}, \mathcal{A})$ has such property.

By taking $r < \frac{1}{2}$, we see that strong property (T) implies property (T). If \mathcal{A} has no tracial state, then \mathcal{A} has strong property (T), and so does $(\mathcal{A}, \mathcal{B})$ (see [4]).

Also, suppose (π, \mathcal{H}) is a unitary representation of a locally compact group \mathcal{G} and \mathcal{N} is a closed subgroup of \mathcal{G}. Let

$$\mathcal{H}^N = \{ \eta \in \mathcal{H} \mid \pi(\gamma)(\eta) = \eta, \forall \gamma \in \mathcal{N} \},$$

and $P^N_H : \mathcal{H} \to \mathcal{H}^N$ be the orthogonal projection from \mathcal{H} over the closed subspace \mathcal{H}^N.

Theorem 3.9. Suppose $(\mathcal{A}, \mathcal{B})$ has strong property (T) and \mathcal{G} has property (T). Then $((\mathcal{A}, \mathcal{B}), \mathcal{G}, \alpha)$ has property (T).

Proof. Since \mathcal{G} has property (T), there exist a compact subset \mathcal{Q} of \mathcal{G} and $\varepsilon > 0$ such that for any unitary representation (π, \mathcal{H}) and unit vector $\xi \in \mathcal{H}$ which is $(\mathcal{Q}, \varepsilon)$-invariant, one has a non-zero vector $\eta \in \mathcal{H}$ such that

$$\pi(\gamma)(\eta) = \eta,$$

for all $\gamma \in \mathcal{G}$. Let $h = \min\{\frac{1}{2}, \frac{\varepsilon}{3}\}$. Since $(\mathcal{A}, \mathcal{B})$ has strong property (T), there exist a finite subset \mathcal{F} of \mathcal{A} and $r > 0$ such that for any Hilbert bimodule \mathcal{H} and unit vector $\xi \in \mathcal{H}$ which is (\mathcal{F}, r)-central, one has

$$||\xi - P^B_{\mathcal{H}}(\xi)|| < h.$$

Let $k = \min\{r, \frac{\varepsilon}{4}\}$, and $(\mathcal{H}, \pi_1, \pi_2)$ be a covariant birepresentation of $(\mathcal{A}, \mathcal{G}, \alpha)$ with a unit vector $\xi \in \mathcal{H}$ such that:

$$\max_{\gamma \in \mathcal{F}} ||a \cdot \xi - \xi \cdot a|| < k, \quad \sup_{\gamma \in \mathcal{Q}} ||\pi_1(\gamma)\pi_2(\gamma)(\xi) - \xi|| < k.$$

Then $||\xi - P^B_{\mathcal{H}}(\xi)|| < h$ and $||P^B_{\mathcal{H}}(\xi)|| > \frac{1}{2}$. For all $b \in \mathcal{B}, \gamma \in \mathcal{G}$ and $\zeta \in \mathcal{H}^B$ we have:

$$b \cdot \pi_1(\gamma)\pi_2(\gamma)(\zeta) = \pi_1(\gamma)(\alpha_{\gamma^{-1}}(b) \cdot \pi_2(\gamma)(\zeta)) = \pi_1(\gamma)\pi_2(\gamma)(\alpha_{\gamma^{-1}}(b) \cdot \zeta) = \pi_1(\gamma)\pi_2(\gamma)(\zeta) \cdot \alpha_{\gamma^{-1}}(b)) = \pi_1(\gamma)(\pi_2(\gamma)(\zeta) \cdot b) = \pi_1(\gamma)\pi_2(\gamma)(\zeta) \cdot b.$$

Hence, $\pi(\gamma) = \pi_1(\gamma)\pi_2(\gamma)$ is a unitary representation of \mathcal{G} on \mathcal{H}^B. If we take $\zeta = \frac{P^B_{\mathcal{H}}(\xi)}{||P^B_{\mathcal{H}}(\xi)||}$, then we have

$$\sup_{\gamma \in \mathcal{Q}} ||\pi(\gamma)(\zeta) - \zeta|| < \frac{k}{||P^B_{\mathcal{H}}(\xi)||} + \frac{2h}{2||P^B_{\mathcal{H}}(\xi)||} < \frac{\varepsilon}{2\cdot 2} = \varepsilon.$$
Therefore, there exists a non-zero vector $\eta \in \mathcal{H}^B$ such that

$$\pi_1(\gamma)\pi_2(\gamma)(\eta) = \pi(\gamma)(\eta) = \eta,$$

for all $\gamma \in \mathcal{G}$, which implies that η is a non-zero $(\mathcal{B}, \mathcal{G})$-central vector, as required.

We need the following proposition from [6] to prove the next lemma.

Proposition 3.10. Let \mathcal{G} be a locally compact and σ-compact group and let N be a closed subgroup of \mathcal{G}. The following properties are equivalent:

(i) $(\mathcal{G}, \mathcal{N})$ has property (T),

(ii) for every $r > 0$, there exists a pair (Q, ε) of compact subset Q of \mathcal{G} and $\varepsilon > 0$ such that for any unitary representation (π, \mathcal{H}) of \mathcal{G} which has a (Q, ε)-invariant unit vector ξ, then we have $\|\xi - P_{\mathcal{H}}^Q(\xi)\| \leq r$.

Lemma 3.11. Let \mathcal{G} be a countable discrete group with property (T). Then $(C^*(\mathcal{G}), \mathcal{G}, \alpha)$ has property (T) for any action α of \mathcal{G} on $C^*(\mathcal{G})$.

Proof. By Theorem 3.9, it suffices to prove that $C^*(\mathcal{G})$ has strong property (T). Let $r > 0$. Since \mathcal{G} has property (T), by Proposition 3.10 there exist a finite subset Q of \mathcal{G} and $\varepsilon > 0$ such that for any unitary representation (π, \mathcal{H}) and unit vector $\xi \in \mathcal{H}$ which is (Q, ε)-invariant, one has $\|\xi - P_{\mathcal{H}}^Q(\xi)\| \leq \varepsilon$. Let $F = \{\delta_\gamma \mid \gamma \in Q\}$ be the finite subset of $C^*(\mathcal{G})$, and \mathcal{H} a Hilbert bimodule on $C^*(\mathcal{G})$ contains a unit vector $\xi \in \mathcal{H}$ which is (F, ε)-central. Define a unitary representation (π, \mathcal{H}) of \mathcal{G} by

$$\pi(\gamma)(\xi) = \delta_\gamma \cdot \xi \cdot \delta_{\gamma^{-1}}.$$

Hence, ξ is (Q, ε)-invariant, and we have

$$\|\xi - P_{\mathcal{H}}^{C^*(\mathcal{G})}(\xi)\| = \|\xi - P_{\mathcal{H}}^F(\xi)\| < r.$$

In the following, we show that property (T) of a dynamical system $(\mathcal{A}, \mathcal{G}, \alpha)$ such that \mathcal{G} is a discrete group implies property (T) of its C^*-crossed product.

Theorem 3.12. Let $(\mathcal{A}, \mathcal{G}, \alpha)$ be a dynamical system, and that \mathcal{G} is a discrete group. If $(\mathcal{A}, \mathcal{G}, \alpha)$ has property (T), then $\mathcal{A} \rtimes_\alpha \mathcal{G}$ has property (T) (and so does $\mathcal{A} \rtimes_{ar} \mathcal{G}$).

Proof. Since $(\mathcal{A}, \mathcal{G}, \alpha)$ has property (T), there exist a finite subset F of \mathcal{A}, a finite subset Q of \mathcal{G} and $\varepsilon, r > 0$ such that for every covariant birepresentation $(\mathcal{H}, \pi_1, \pi_2)$ of $(\mathcal{A}, \mathcal{G}, \alpha)$ contains a unit vector $\xi \in \mathcal{H}$ which is (F, ε, Q, r)-central, then \mathcal{H} has a non-zero $(\mathcal{A}, \mathcal{G})$-central vector.

Let $D = F \cup \{\delta_\gamma \mid \gamma \in Q\}$ and $\ell = \min(r, \varepsilon)$. Let \mathcal{H} be a Hilbert bimodule on $\mathcal{A} \rtimes_\alpha \mathcal{G}$ contains a unit vector $\xi \in \mathcal{H}$ which is (D, ℓ)-central. Define two commuting unitary representations (π_1, \mathcal{H}) and (π_2, \mathcal{H}) of \mathcal{G} by

$$\pi_1(\gamma)(\xi) = \delta_\gamma \cdot \xi, \quad \pi_2(\gamma)(\xi) = \xi \cdot \delta_{\gamma^{-1}}.$$

In the following, we show that property (T) of a dynamical system $(\mathcal{A}, \mathcal{G}, \alpha)$ such that \mathcal{G} is a discrete group implies property (T) of its C^*-crossed product.
Viewing \mathcal{A} as a subalgebra of $\mathcal{A} \times_{\alpha} \mathcal{G}$, it is clear that $(\mathcal{H}, \pi_1, \pi_2)$ is a covariant birepresentation of $(\mathcal{A}, \mathcal{G}, \alpha)$, and ξ is a $(\mathcal{F}, \varepsilon, \mathcal{Q}, r)$-central. Therefore, there exists a non-zero vector $\eta \in \mathcal{H}$ such that

$$a \cdot \eta = \eta \cdot a, \quad \delta_{\gamma} \cdot \eta = \eta \cdot \delta_{\gamma},$$

for all $a \in \mathcal{A}$ and $\gamma \in \mathcal{G}$. Then for any $x = \sum_{\gamma} x(\gamma)\delta_{\gamma} \in \mathcal{K}(\mathcal{G}, \mathcal{A})$, we have

$$x \cdot \eta = \sum_{\gamma} x(\gamma)\delta_{\gamma} \cdot \eta = \sum_{\gamma} x(\gamma) \cdot \eta \cdot \delta_{\gamma} = \sum_{\gamma} \eta \cdot x(\gamma)\delta_{\gamma} = \eta \cdot x.$$

Since $\mathcal{K}(\mathcal{G}, \mathcal{A})$ is dense in $\ell^1(\mathcal{G}, \mathcal{A})$ and $\ell^1(\mathcal{G}, \mathcal{A})$ is dense in $\mathcal{A} \times_{\alpha} \mathcal{G}$, we obtain $x \cdot \eta = \eta \cdot x$ for all $x \in \mathcal{A} \times_{\alpha} \mathcal{G}$. Since $\mathcal{A} \times_{ar} \mathcal{G}$ is a quotient of $\mathcal{A} \times_{\alpha} \mathcal{G}$, it follows that $\mathcal{A} \times_{ar} \mathcal{G}$ also has property (T).

Remark 3.13. If $(\mathcal{A}, \mathcal{G}, \alpha)$ is a dynamical system, \mathcal{G} is a discrete group and α trivial, then:

$$\mathcal{A} \times_{ar} \mathcal{G} \cong C^*_r(\mathcal{G}) \otimes_{\text{min}} \mathcal{A}, \quad \mathcal{A} \times_{\alpha} \mathcal{G} \cong C^*(\mathcal{G}) \otimes_{\text{max}} \mathcal{A}.$$

By Theorems 3.9 and 3.12 for a discrete group \mathcal{G} with property (T) and a unital C^*-algebra \mathcal{A} with strong property (T), $C^*_r(\mathcal{G}) \otimes_{\text{min}} \mathcal{A}$ and $C^*(\mathcal{G}) \otimes_{\text{max}} \mathcal{A}$ have property (T).

If a locally compact group with property (T) is amenable, then it is compact, a similar fact is true for C^*-algebras with property (T) which are nuclear. A C^*-algebra \mathcal{A} is nuclear if, for any C^*-algebra \mathcal{B}, there is a unique pre-C^*-norm on $\mathcal{A} \otimes \mathcal{B}$. Let Tr be a tracial state on the unital C^*-algebra \mathcal{A}. By the GNS-construction, Tr defines a Hilbert \mathcal{A}-bimodule, denoted by $L^2(Tr)$. In [1], it is shown that if \mathcal{A} is a unital C^*-algebra with property (T) which is nuclear, then for any tracial state Tr on \mathcal{A}, the left action of \mathcal{A} on the Hilbert space $L^2(Tr)$ is completely atomic, that is, $L^2(Tr)$ decomposes as a direct sum of finite dimensional \mathcal{A}-submodules. This implies that if \mathcal{A} is a unital C^*-algebra with property (T), and that there exists a tracial state Tr on \mathcal{A} such that $L^2(Tr)$ is not completely atomic, then \mathcal{A} is not nuclear.

Corollary 3.14. Let $(\mathcal{A}, \mathcal{G}, \alpha)$ be a dynamical system such that \mathcal{G} is a discrete group and \mathcal{A} is nuclear and \mathcal{G} amenable. Suppose that there exists a tracial state Tr of $\mathcal{A} \times_{\alpha} \mathcal{G}$ such that $L^2(Tr)$ is not completely atomic. Then $(\mathcal{A}, \mathcal{G}, \alpha)$ does not have property (T).

Proof. Since \mathcal{G} is amenable and \mathcal{A} is nuclear, so $\mathcal{A} \times_{\alpha} \mathcal{G}$ is nuclear (see [10]). As cited above $\mathcal{A} \times_{\alpha} \mathcal{G}$ does not have property (T). So by Theorem 3.12, $(\mathcal{A}, \mathcal{G}, \alpha)$ does not have property (T). \qed

Note that even if $\mathcal{A} \times_{\alpha} \mathcal{G}$ has strong property (T) and α is trivial, it does not follow that \mathcal{G} has property (T).

Proposition 3.15. Let \mathcal{G} be a locally compact and σ-compact group and \mathcal{N} a closed subgroup of \mathcal{G}. The following properties are equivalent:

(i) $(\mathcal{G}, \mathcal{N})$ has property (T),

(ii) if a unitary representation (π, \mathcal{H}) of \mathcal{G} almost has invariant vectors, that is, if it has $(\mathcal{Q}, \varepsilon)$-invariant vectors for every compact subset \mathcal{Q} of \mathcal{G} and every $\varepsilon > 0$, then \mathcal{H} contains a non-zero finite dimensional subspace which is invariant under \mathcal{N}.
We will now use the same technique as in the proof of Theorem 6 in [1] to obtain the following theorem, using the above proposition from [1].

Theorem 3.16. Let \mathcal{A} be a commutative unital C^*-algebra, and \mathcal{G} a countable discrete group such that there exists a faithful representation of \mathcal{A} to the Hilbert space $\ell^2(\mathcal{G})$. If $C_r^*(\mathcal{G}) \otimes_{\text{min}} \mathcal{A}$ has property (T), then \mathcal{G} has property (T).

Proof. Viewing $C_r^*(\mathcal{G}) \otimes_{\text{min}} \mathcal{A}$ as $\mathcal{A} \times_{ar} \mathcal{G}$ in dynamical system $(\mathcal{A}, \mathcal{G}, \alpha)$ with α trivial, suppose $\mathcal{A} \times_{ar} \mathcal{G}$ has property (T). Choose a finite subset \mathcal{F} of $\mathcal{A} \times_{ar} \mathcal{G}$ and $\varepsilon > 0$ as in Definition 3.1. We may assume that $\|y\| \leq 1$ for all $y \in \mathcal{F}$. Take an element $\xi_0 \in \ell^2(\mathcal{G})$ such that $\|\xi_0\| = 1$. One can check that there exists a finite subset \mathcal{Q} of \mathcal{G} such that:

$$\sum_{\gamma \in \mathcal{G} \setminus \mathcal{Q}} \|y(\delta_e \otimes \xi_0)(\gamma)\|^2 < \frac{\varepsilon^2}{9},$$

for all $y \in \mathcal{F}$. Assume that (π, \mathcal{H}) is a unitary representation of \mathcal{G} almost has invariant vectors. Choose a unit vector $\xi \in \mathcal{H}$ such that is (\mathcal{Q}, ξ)-invariant vector. Define a representation μ of \mathcal{A} as well as two unitary representations π_1, π_2 of \mathcal{G} on the Hilbert space tensor product $\ell^2(\mathcal{G}, \ell^2(\mathcal{G})) \otimes \mathcal{H}$ by

$$\mu(a) = \pi_a(a) \otimes \text{id},$$

and,

$$\pi_1(\gamma) = \lambda_\gamma(\gamma) \otimes \text{id}, \quad \pi_2(\gamma) = \mu_\gamma(\gamma) \otimes \pi(\gamma),$$

for all $a \in \mathcal{A}, \gamma \in \mathcal{G}$, where μ_γ is a representation of \mathcal{G} on the Hilbert space $\ell^2(\mathcal{G}, \ell^2(\mathcal{G}))$ defined by $\mu_\gamma(\gamma)\xi(s) = \xi(s \gamma)$ for all $\gamma, s \in \mathcal{G}$ and $\xi \in \ell^2(\mathcal{G}, \ell^2(\mathcal{G}))$.

Since (μ, π_1) and (μ, π_2) are covariant representations, are equivalent to multiples of the regular representation (π_a, λ_γ), they extend to commuting representations of $\mathcal{A} \times_{ar} \mathcal{G}$, so that $\ell^2(\mathcal{G}, \ell^2(\mathcal{G})) \otimes \mathcal{H}$ is a Hilbert bimodule on $\mathcal{A} \times_{ar} \mathcal{G}$.

Let $\bar{\eta} = \bar{\xi} \otimes \xi$, where $\bar{\xi} \in \ell^2(\mathcal{G}, \ell^2(\mathcal{G}))$ is defined by $\bar{\xi}(e) = \xi_0$ and $\bar{\xi}(\gamma) = 0$ otherwise. For any $y \in \mathcal{F}$, we have

$$\|y \cdot \bar{\eta} - \bar{\eta} \cdot y\|^2 = \sum_{\gamma \in \mathcal{G}} \|y(\delta_e \otimes \xi_0)(\gamma)\|^2 \|\pi(\gamma)(\xi) - \xi\|^2$$

$$\leq \frac{4\varepsilon^2}{9} + \sum_{\gamma \in \mathcal{Q}} \|y(\delta_e \otimes \xi_0)(\gamma)\|^2 \|\pi(\gamma)(\xi) - \xi\|^2$$

$$\leq \frac{4\varepsilon^2}{9} + \frac{\varepsilon^2}{9} < \varepsilon^2.$$

Therefore, there exists a non-zero vector η in $\ell^2(\mathcal{G}, \ell^2(\mathcal{G})) \otimes \mathcal{H}$ which is $\mathcal{A} \times_{ar} \mathcal{G}$-central. Viewing η as a non-zero vector in the Hilbert space $\ell^2(\mathcal{G}, \ell^2(\mathcal{G}, \mathcal{H}))$, in particular, we have

$$\eta(\gamma \tau \gamma^{-1})(s) = \pi(\gamma)(\eta(t)(s)),$$
for all $\gamma, t, s \in G$. Then $\gamma \mapsto ||\eta(\gamma)||$ is a non-zero function in $\ell^2(G)$ which is invariant under conjugation by elements of G. Let $t_0 \in G$ be such that $\eta(t_0) \neq 0$. It follows that $\{\gamma t_0 \gamma^{-1} \mid \gamma \in G\}$ is a finite subset of G. Let $s_0 \in G$ be such that $\eta(t_0)(s_0) \neq 0$. Then $\{\eta(\gamma t_0 \gamma^{-1})(s_0) \mid \gamma \in G\}$ is finite, hence $\{\pi(\gamma)(\eta(t_0))(s_0) \mid \gamma \in G\}$ is a finite subset of \mathcal{H} and its linear span defines a non-zero finite dimensional invariant subspace under G. It follows from Proposition 3.15 that G has property (T).

Remark 3.17. (i) Let G be a countable discrete group. Since all finite dimensional C^*-algebras have strong property (T) (see [4]), using Theorems 3.9, 3.12 and 3.16, G has property (T) if and only if $C^*_r(G)$ has property (T). This is a well-known result of Bekka (see [1]).

(ii) Let G be a countable discrete abelian group. Since G is amenable there exists a faithful representation of $C^*(G)$ in the Hilbert space $\ell^2(G)$. In fact the regular representation can be extended to an *-isomorphism between the group C^*-algebra $C^*(G)$ and the reduce group C^*-algebra $C^*_r(G)$, and we have $C^*(G) \cong C^*_r(G)$. Using Lemma 3.11 and Theorems 3.12, 3.16 it follows that G has property (T) if and only if $C^*_r(G) \otimes_{\text{min}} C^*_r(G)$ has property (T), by choosing $\mathcal{A} = C^*(G)$ and α trivial in dynamical system (\mathcal{A}, G, α).

References