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1. Introduction and Preliminaries

The concept of frames, which are a generalization of the bases in Hilbert spaces, were first
introduced by Duffin and Schaeffer [7] during their study of nonharmonic Fourier series. After
that, Daubechies et al. [5] reintroduced the concept of frames. Now frame theory has been widely
used in many fields. An introduction to frame theory and some details and applications can be
found in [4].

K-frames in Hilbert spaces were introduced by Gavruta [9] to study atomic decomposition
systems, and discussed some properties of them. Actually, K-frames are limited to the range
of a bounded linear operator in Hilbert spaces. Afterward, K-g-frames have been introduced in
[10] and some properties and characterizations of K-g-frames has been given. A recent progress
on continuous frames inspired by the solution of the Kadison-Singer problem is surveyed in [3].
Also, using frame theory techniques, some results concerning atomic decompositions for operators
on reproducing kernel Hilbert spaces is given in [8]. The concept of continuous K-g-frames, or
briefly c-K-g-frames, is introduced in [2]. In this paper, we investigate some features of these
kinds of frames.

Throughout this paper, H is a separable Hilbert space, (Ω, µ) is a measure space, {Hω}ω∈Ω

is a family of separable Hilbert spaces and K is a bounded linear operator on H. Furthermore,
B(H,Hω) shows the set of all bounded linear operators from H into Hω and B(H) is the algebra of
all bounded linear operators on H.

In the following of this section, we review some concepts and results about g-frames and K-g-
frames.

Definition 1.1. Let K ∈ B(H). A sequence { fi}i∈I is called a K-frame for H, if there exist constants
A, B > 0 such that

A‖K∗ f ‖2 ≤
∑
i∈I

|〈 f , fi〉|
2 ≤ B‖ f ‖2, ∀ f ∈ H. (1.1)

We call A, B the lower and the upper frame bounds of K-frame { fn}i∈I , respectively. If only the
right inequality (1.1) is satisfied, { fn}i∈I is called a Bessel sequence. If K = IdH, then it will be an
ordinary frame.

Definition 1.2. Assume that K ∈ B(H) and Λ = {Λi ∈ B(H,Hi) : i ∈ I}. Λ is called a K-g-frame
for H with respect to {Hi}i∈I , if there exist constants A, B > 0 such that

A‖K∗ f ‖2 ≤
∑
i∈I

‖Λi f ‖2 ≤ B‖ f ‖2, ∀ f ∈ H. (1.2)

We call the constants A, B, the lower and upper bounds of K-g-frame, respectively.

The space l2({Hi}i∈I
)

is represented by

l2({Hi}i∈I
)

=

{ai}i∈I | ai ∈ Hi,
∑
i∈I

‖ai‖
2 < ∞

 .



Nobahar Alamdar, Azadi, Doostie/ Wavelets and Linear Algebra 7(1) (2020) 1- 11 3

Let {Λi ∈ B(H,Hi) : i ∈ I} be a K-g-frame for H with respect to {Hi}i∈I . The synthesis operator
T : l2({Hi}i∈I

)
−→ H is defined as follows:

T
(
{gi}i∈I

)
=

∑
i∈I

Λ∗i gi, ∀{gi}i∈I ∈ l2({Hi}i∈I
)
.

Theorem 1.3. ([11]) The sequence Λ = {Λi ∈ B(H,Hi) : i ∈ I} is a g-Bessel sequence for H with
bound B if and only if the operator

T : l2({Hi}i∈I
)
−→ H

T
(
{gi}i∈I

)
=

∑
i∈I

Λ∗i gi

is a well-defined and bounded operator with ‖T‖ ≤
√

B.

The adjoint operator of T is called analysis operator of Λ = {Λi}i∈I and T ∗ : H −→ l2({Hi}i∈I
)

is given by
T ∗ f = {Λi f }i∈I , ∀ f ∈ H.

The frame operator S : H −→ H of Λ = {Λi}i∈I is defined as follows:

S f = TT ∗ f =
∑
i∈I

Λ∗i Λi f , ∀ f ∈ H.

Definition 1.4. Let K ∈ B(H) and f : Ω −→ H be a weakly measurable mapping. Then f is called
a cK-frame for H, if there exist constants A, B > 0 such that

A‖K∗ f ‖2 ≤
∫

Ω

|〈 f , f (ω)〉|2dµ(ω) ≤ B‖ f ‖2, ∀ f ∈ H. (1.3)

We call the constants A, B, the lower and upper bounds of cK-frame f , respectively.

Definition 1.5. ([1]) Assume that

Πω∈ΩHω = { f : Ω −→ ∪ω∈ΩHω : f (ω) ∈ Hω}.

We say that F ∈ Πω∈ΩHω is strongly measurable if F as a mapping of Ω to ⊕ω∈ΩHω is measurable.

Now, we review the definition of continuous g-frames.

Definition 1.6. ([1]) A family Λ = {Λω ∈ B(H,Hω) : ω ∈ Ω} is called a continuous g-frame, or
simply a cg-frame, for H with respect to {Hω}ω∈Ω, if:

(i) for each f ∈ H, {Λω f }ω∈Ω is strongly measurable,

(ii) there exist two positive constants A, B such that
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A‖ f ‖2 ≤
∫

Ω

‖Λω f ‖2dµ(ω) ≤ B‖ f ‖2 , ∀ f ∈ H. (1.4)

A and B are called the lower and upper cg-frame bounds, respectively.

Definition 1.7. Consider the set
(
⊕ω∈Ω Hω, µ

)
L2 which is defined as below:F ∈

∏
ω∈Ω

Hω : F is strongly measurable and
∫

Ω

‖F(ω)‖2dµ(ω) < ∞

 .
It can be proved that

(
⊕ω∈Ω Hω, µ

)
L2 is a Hilbert space with the inner product given by

〈F,G〉 =

∫
Ω

〈F(ω),G(ω)〉dµ(ω).

We will denote the norm of F ∈
(
⊕ω∈Ω Hω, µ

)
L2 by ‖F‖2, (see [1]).

Proposition 1.8. ([1]) Let {Λω}ω∈Ω be a cg-Bessel family for H with respect to {Hω}ω∈Ω with Bessel
bound B. Then the operator

T :
(
⊕ω∈Ω Hω, µ

)
L2 −→ H

weakly defined by

〈Tϕ, h〉 =

∫
Ω

〈Λ∗ωϕ(ω), h〉dµ(ω), ∀ϕ ∈
(
⊕ω∈Ω Hω, µ

)
L2 , ∀h ∈ H, (1.5)

is linear and bounded with ‖T‖ ≤
√

B. Moreover, for each h ∈ H and ω ∈ Ω,

T ∗(h)(ω) = Λωh. (1.6)

The operators T and T ∗ are called synthesis and analysis operators of cg-Bessel family {Λω}ω∈Ω,
respectively.

Let {Λω}ω∈Ω be a cg-frame for H with respect to {Hω}ω∈Ω with frame bounds A, B. The operator
S : H −→ H weakly defined by

〈S f , g〉 =

∫
Ω

〈 f ,Λ∗ωΛωg〉dµ(ω), ∀ f , g ∈ H, (1.7)

is called the frame operator of {Λω}ω∈Ω. S is a positive and invertible operator.

Definition 1.9. Suppose that (Ω, µ) is a measure space with positive measure µ and K ∈ B(H). A
family Λ = {Λω ∈ B(H,Hω) : ω ∈ Ω}, is called a continuous K-g-frame, or simply a c-K-g-frame,
for H with respect to {Hω}ω∈Ω, if:

(i) for each f ∈ H, {Λω f }ω∈Ω is strongly measurable,
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(ii) there exist constants 0 < A ≤ B < ∞ such that

A‖K∗ f ‖2 ≤
∫

Ω

‖Λω f ‖2dµ(ω) ≤ B‖ f ‖2, ∀ f ∈ H. (1.8)

The constants A, B are called lower and upper c-K-g-frame bounds, respectively. If A, B can be
chosen such that A = B, then {Λω}ω∈Ω is called a tight c-K-g-frame and if A = B = 1, it is
called Parseval c-K-g-frame. A family {Λω}ω∈Ω is called a c-K-g-Bessel family if the right hand
inequality in (1.8) holds.

Theorem 1.10. ([2]) Let (Ω, µ) be a measure space, where µ is σ-finite and K ∈ B(H). Suppose
that {Λω ∈ B(H,Hω) : ω ∈ Ω} is a family of operators such that for each f ∈ H, {Λω f }ω∈Ω is
strongly measurable. Then {Λω}ω∈Ω is a c-K-g-frame for H with respect to {Hω}ω∈Ω if and only if
the operator

T :
(
⊕ω∈Ω Hω, µ

)
L2
−→ H

weakly defined by

〈T F, g〉 =

∫
Ω

〈Λ∗ωF(ω), g〉dµ(ω), ∀F ∈
(
⊕ω∈Ω Hω, µ

)
L2
, ∀g ∈ H,

is bounded and R(K) ⊆ R(T ).

For every closed-ranged operator there exists a right-inverse.

Lemma 1.11. ([4]) Let H1 and H2 be Hilbert spaces and suppose that U : H2 −→ H1 is a bounded
operator with closed range R(U). Then there exists a bounded operator U† : H1 −→ H2 for which

N(U†) = R(U)⊥, R(U†) = N(U)⊥, UU† f = f , ∀ f ∈ R(U).

The operator U† is called the pseudo-inverse of U.

Lemma 1.12. ([6]) Suppose that L1 ∈ B(H1,H), L2 ∈ B(H2,H), where H,H1,H2 are Hilbert
spaces. Then the following statements are equivalent:

(1) R(L1) ⊆ R(L2),

(2) L1L∗1 ≤ αL2L∗2 for some α ≥ 0,

(3) there exists a bounded operator Q ∈ B(H1,H2) such that

L1 = L2Q.
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2. Excess of c-K-g-frames

In this section, we investigate the excess of c-K-g-frames. We give some conditions on a c-K-
g-frame such that after an erasure of some elements, it remains still a c-K-g-frame. Before that,
we need to introduce a new notation which is helpful in the following of this section.

Definition 2.1. For each measurable set ∆ ⊆ Ω, we define the operator

T∆ :
(
⊕ω∈Ω Hω, µ

)
L2 −→ H

weakly by

〈T∆ϕ, g〉 =

∫
∆

〈Λ∗ωϕ(ω), g〉dµ(ω), ∀ϕ ∈
(
⊕ω∈Ω Hω, µ

)
L2 , ∀g ∈ H. (2.1)

Next theorem states some conditions that under which we can verify the excess of c-K-g-
frames.

Theorem 2.2. Suppose that {Λω ∈ B(H,Hω) : ω ∈ Ω} is a c-K-g-frame for H with bounds A, B.
Let ∆ ⊆ Ω be measurable and R(K) be closed. Then the following statements are equivalent:

(1) Let
WΩ\∆ := R(TΩ\∆) ⊆ R(K)

and
W∆ := R(T∆) ⊆ R(K)⊥.

Then {Λω ∈ B(H,Hω) : ω ∈ Ω\∆} is a c-K-g-frame for H with bounds A, B.

(2) Let WΩ\∆ ⊆ R(K) and ‖K†‖ <
√

A
B . Then {Λω ∈ B(H,Hω) : ω ∈ Ω\∆} is a c-K-g-frame for

H with bounds A − B‖K†‖2 and B, where K† is the pseudo-inverse of K.

(3) Let {0} , W∆ ⊆ R(K) and WΩ\∆ ⊥ W∆. Then {Λω ∈ B(H,Hω) : ω ∈ Ω\∆} is not a
c-K-g-frame for H.

Proof. (1). For each h ∈ H,∫
Ω\∆

‖Λωh‖2dµ(ω) ≤
∫

Ω

‖Λωh‖2dµ(ω) ≤ B‖h‖2.

So {Λω}ω∈Ω\∆ is a c-K-g-Bessel family for H. Now, we show that the lower frame condition holds.
The assumption W∆ ⊆ R(K)⊥ implies that for each f ∈ R(K),∫

∆

‖Λω f ‖2dµ(ω) ≤
∫

Ω

〈Λ∗ωΛω f , f 〉dµ(ω)

= 〈T∆({Λω f }ω∈∆), f 〉 = 0.
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Hence, for each f ∈ R(K) and for almost all ω ∈ ∆,

Λω f = 0. (2.2)

Similarly, by assumption WΩ\∆ ⊆ R(K), for each g ∈ R(K)⊥ and for almost all ω ∈ Ω\∆, we have

Λωg = 0. (2.3)

By (2.2), for each f ∈ R(K),∫
Ω

‖Λω f ‖2dµ(ω) =

∫
Ω\∆

‖Λω f ‖2dµ(ω) +

∫
∆

‖Λω f ‖2dµ(ω)

=

∫
Ω\∆

‖Λω f ‖2dµ(ω).

Since {Λω}ω∈Ω is a c-K-g-frame for H with bounds A, B, then for each f ∈ R(K),

A‖K∗ f ‖2 ≤
∫

Ω

‖Λω f ‖2dµ(ω) ≤ B‖ f ‖2. (2.4)

By (2.3) and (2.4), for each f ∈ R(K), we obtain

A‖K∗ f ‖2 ≤
∫

Ω\∆

‖Λω f ‖2dµ(ω). (2.5)

If g ∈ R(K)⊥, then
〈K∗g, h〉 = 〈g,Kh〉 = 0, ∀ f ∈ H.

That is,

K∗g = 0, g ∈ R(K)⊥. (2.6)

Let h ∈ H, then we can write h as h = f +g, where f ∈ R(K) and g ∈ R(K)⊥. So by (2.5) and (2.6),

A‖K∗h‖2 = A‖K∗ f ‖2 ≤
∫

Ω\∆

‖Λω f ‖2dµ(ω)

=

∫
Ω\∆

‖Λω( f + g)‖2dµ(ω)

=

∫
Ω\∆

‖Λωh‖2dµ(ω).

(2). Assume that h ∈ H, then it can be written as h = f + g, where f ∈ R(K) and g ∈ R(K)⊥. By
Lemma 1.11, for each f ∈ R(K),

‖ f ‖ = ‖(K†|R(K))∗K∗ f ‖ ≤ ‖(K†|R(K))∗‖‖K∗ f ‖ ≤ ‖K†‖‖K∗ f ‖. (2.7)
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From (2.3), (2.6) and (2.7), we obtain∫
Ω\∆

‖Λωh‖2dµ(ω) =

∫
Ω\∆

‖Λω f ‖2dµ(ω)

=

∫
Ω

‖Λω f ‖2dµ(ω) −
∫

∆

‖Λω f ‖2dµ(ω)

≥ A‖K∗ f ‖ − B‖ f ‖2

≥ A‖K∗ f ‖ − B‖K†‖2‖K∗ f ‖2

= (A − B‖K†‖2)‖K∗ f ‖2.

(3). Let 0 , f ∈ W∆ ⊆ R(K). Then there exists a g ∈ H such that f = Kg, so

〈K∗ f , g〉 = 〈K∗Kg, g〉 = ‖Kg‖2 = ‖ f ‖ , 0.

Hence K∗ f , 0. By WΩ\∆ ⊥ W∆, we have∫
Ω\∆

‖Λω f ‖2dµ(ω) =

∫
Ω\∆

〈Λ∗ωΛω f , f 〉dµ(ω)

= 〈TΩ\∆({Λω f }ω∈Ω\∆), f 〉 = 0.

Therefore, the lower frame condition is not satisfied.

3. Some properties of c-K-g-frames

In this section, we extend the concept of atomic systems to continuous version. Then we study
the properties of c-K-g-frames and their relations with new kinds of atomic systems.

At first, we define atomic cg-systems.

Definition 3.1. Let K ∈ B(H). A family Λ = {Λω ∈ B(H,Hω) : ω ∈ Ω} is called an atomic
cg-system for K if the following conditions hold:

(i) {Λω}ω∈Ω is a c-K-g-Bessel family,

(ii) there exists a C > 0 such that for each f ∈ H, there exists a ϕ ∈
(
⊕ω∈Ω Hω, µ

)
L2 which

satisfies ‖ϕ‖2 ≤ C‖ f ‖ and

〈K f , g〉 =

∫
Ω

〈Λ∗ωϕ(ω), g〉dµ(ω), ∀g ∈ H.

Now, we study the relationship between atomic cg-systems and c-K-g-frames.

Theorem 3.2. Let K ∈ B(H) and {Λω ∈ B(H,Hω) : ω ∈ Ω} be a c-K-g-Bessel family for H. The
following statements are equivalent:

(1) {Λω}ω∈Ω is an atomic cg-system for K.
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(2) {ΛωU ∈ B(H,Hω) : ω ∈ Ω} is an atomic cg-system for U∗K, where U ∈ B(H) is an onto
operator.

(3) {Λω}ω∈Ω is a c-K-g-frame for H.

(4) There exists a c-K-g-Bessel family {Γω}ω∈Ω for H such that

〈K f , g〉 =

∫
Ω

〈Γω f ,Λωg〉dµ(ω), ∀ f , g ∈ H. (3.1)

(5) There exists a c-K-g-Bessel family {Γω}ω∈Ω for H such that

〈K∗ f , g〉 =

∫
Ω

〈Λω f ,Γωg〉dµ(ω), ∀ f , g ∈ H. (3.2)

Proof. (1) ⇒ (2). Suppose that {Λω}ω∈Ω is atomic cg-system for K and U is an onto operator on
H. Then obviously {ΛωU}ω∈Ω is a cg-Bessel family for H. Also, there exists a C > 0 such that for
each f ∈ H, there exists a ϕ ∈

(
⊕ω∈Ω Hω, µ

)
L2 which satisfies ‖ϕ‖2 ≤ C‖ f ‖ and

〈K f , g〉 =

∫
Ω

〈Λ∗ωϕ(ω), g〉dµ(ω), ∀g ∈ H. (3.3)

U is onto, so by (3.3), for each h ∈ H, we have

〈K f ,Uh〉 =

∫
Ω

〈Λ∗ωϕ(ω),Uh〉dµ(ω) =

∫
Ω

〈(ΛωU)∗ϕ(ω), h〉dµ(ω).

Therefore, {ΛωU}ω∈Ω is an atomic cg-system for U∗K.
(2) ⇒ (3). There exists a C > 0 such that for each f ∈ H, there exists a ϕ ∈

(
⊕ω∈Ω Hω, µ

)
L2

which ‖ϕ‖2 ≤ C‖ f ‖ holds and

〈U∗K f , g〉 =

∫
Ω

〈(ΛωU)∗ϕ(ω), g〉dµ(ω), ∀g ∈ H.

Since U is onto, each g ∈ H can be written as g = Uh, for some h ∈ H. Hence for each h ∈ H,

〈K f , h〉 =

∫
Ω

〈Λ∗ωϕ(ω), h〉dµ(ω) = 〈Tϕ, h〉, ∀g ∈ H.

This implies that R(K) ⊆ R(T ). By Theorem 1.10, {Λω}ω∈Ω is a c-K-g-frame for H.
(3)⇒ (4). By Theorem 3.1 in [2], the proof is complete.
(4)⇔ (5). By (4), we have for each f , g ∈ H,

〈K∗ f , g〉 = 〈Kg, f 〉 =

∫
Ω

〈Γωg,Λω f 〉dµ(ω) =

∫
Ω

〈Λωg,Γω f 〉dµ(ω),

which implies (5). Similarly, (5)⇒ (4) holds.
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(4)⇒ (1). suppose that (4) holds. There exists a cg-Bessel family {Γω}ω∈Ω for H such that

〈K f , g〉 =

∫
Ω

〈Γω f ,Λωg〉dµ(ω), ∀ f , g ∈ H. (3.4)

So there exists a C > 0 such that( ∫
Ω

‖Γω f ‖2dµ(ω)
) 1

2
≤ C‖ f ‖, ∀ f ∈ H.

For a given f ∈ H, put ϕ = {Γω f }ω∈Ω, then ϕ ∈
(
⊕ω∈Ω Hω, µ

)
L2 and by (3.4),

〈K f , g〉 =

∫
Ω

〈Λ∗ωϕ(ω), g〉dµ(ω), ∀ f , g ∈ H.

Therefore, {Λω}ω∈Ω is an atomic cg-system for K.

In the following, we verify the relationship between c-K-g-frames and R(K). We present the set
of all c-K-g-frames for H with respect to {Hω}ω∈Ω by CG(K) and the set of all tight c-K-g-frames
for H with respect to {Hω}ω∈Ω by CGT (K).

Proposition 3.3. Suppose that K1,K2 ∈ B(H) are non-zero operators such that R(K2) ⊆ R(K1).
Then CG(K1) ⊆ CG(K2).

Proof. By Lemma 1.12, there exists α > 0 such that

‖K∗2 f ‖2 ≤ α2‖K∗1 f ‖2, ∀ f ∈ H.

If {Λω}ω∈Ω is a c-K1-g-frame for H with bounds A, B, then

A
α
‖K∗2 f ‖2 ≤

∫
Ω

‖Λω f ‖2dµ(ω) ≤ B‖ f ‖2, ∀ f ∈ H.

Proposition 3.4. If CGT (K1) ⊆ CG(K2), then R(K2) ⊆ R(K1).

Proof. If {Λω}ω∈Ω is a tight c-K1-g-frame for H with bound A, then

A‖K∗1 f ‖2 =

∫
Ω

‖Λω f ‖2dµ(ω), ∀ f ∈ H. (3.5)

By inclusion CGT (K1) ⊆ CG(K2), {Λω}ω∈Ω is a c-K2-g-frame for H. So, there exist constants
C,D > 0 such that

C‖K∗2 f ‖2 ≤
∫

Ω

‖Λω f ‖2dµ(ω) ≤ D‖ f ‖2, ∀ f ∈ H. (3.6)

From (3.5) and (3.6), we have

‖K∗2 f ‖2 ≤
A
C
‖K∗1 f ‖2, ∀ f ∈ H.

So Lemma 1.12 implies that R(K2) ⊆ R(K1).
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Remark 3.5. Consider the family {Λω ∈ B(H,Hω) : ω ∈ Ω}. By Remark 2.12 in [12], the fam-
ily {uω,k}ω∈Ω,k∈Kω

is called the family induced by {Λω}ω∈Ω with respect to {eω,k}ω∈Ω,k∈Kω
, where

{eω,k}ω∈Ω,k∈Kω
is an orthonormal basis for Hilbert space ⊕ω∈ΩHω such that for each ω ∈ Ω, {eω,k}k∈Kω

is an orthonormal basis of Hω. More precisely,

uω,k = Λ∗eω,k, ω ∈ Ω, k ∈ Kω. (3.7)

Proposition 3.6. Let {Λω ∈ B(H,Hω) : ω ∈ Ω} be a family such that for each f ∈ H, {Λω f }ω∈Ω
is strongly measurable. Then {Λω}ω∈Ω is a c-K-g-frame for H if and only if {uω,k}ω∈Ω,k∈Kω

is a
cK-frame for H.

Proof. By Remark 3.5, ∫
Ω

‖Λωh‖2dµ(ω) =

∫
Ω

∑
k∈Kω

|〈h, uω,k〉|2dµ(ω)

=

∫
Ω

( ∫
K
|〈h, uω,k〉|2dl(k)

)
dµ(ω),

where l : K −→ K is the counting measure on K. So the proof is complete.
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