[1] O. Axelsson, Z.-Z. Bai and S.-X. Qiu, A class of nested iteration schemes for linear systems with a
coefficient matrix with a dominant positive definite symmetric part,
Numer. Algorithms.,
21(35) (2004),
351-372.
[2] R. Boisvert, R. Pozo, K. Remington, B. Miller and R. Lipman,
Matrix Market, National Institute of Standards
and Technology, http:// math.nist.gov/ matrixMarket/, 1996.
[3] A. Bouhamidi and K. Jbilou, A note on the numerical approximate solutions for generalized Sylvester
matrix equations with applications,
Appl. Math. Comput.,
206 (2008), 687-694.
[4] M. Dehghan and M. Hajarian, An iterative method for solving the generalized coupled Sylvester matrix
equations over generalized bisymmetric matrices,
Appl. Math. Model.,
34 (2010), 639-588.
[5] R.A. Horn and C.R. Jahnson,
Matrix Analysis, Cambridge University Press, United Kingdom, second edition,
2013.
[6] K. Jbilou, A. Messaoudi and H. Sadok, Global FOM and GMRES algorithms for matrix equations,
Appl.
Numer. Math.,
31 (1999), 49-63.
[7] K. Jbilou and A.J. Riquet, Projection methods for large Lyapunov matrix equations,
Linear Algebra Appl.,
415 (2006), 344-358.
[8] Y.F. Ke and C.F. Ma, A preconditioned nested splitting conjugate gradient iterative method for the large
sparse generalized Sylvester equation, Comput. Math. Appl.,
68(10) (2014), 1409-1420.
[9] C.T. Kelley,
Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia, 1995.
[10] M. Khorsand Zak and F. Toutounian, An iterative method for solving the continuous Sylvester equation by
emphasizing on the skew-Hermitian parts of the coeffcient matrices,
Int. J. Comput. Math.,
94 (2017),
633-649.
[11] M. Khorsand Zak and F. Toutounian, Nested splitting CG-like iterative method for solving the continuous
Sylvester equation and preconditioning,
Adv. Comput. Math.,
40(4) (2014), 865-880.
[12] M. Khorsand Zak and F. Toutounian, Nested splitting conjugate gradient method for matrix equation
AXB = C and preconditioning,
Comput. Math. Appl.,
66(3) (2013), 269-278.
[13] F. Panjeh Ali Beik and D. Khojasteh Salkuyeh, On the global Krylov subspace methods for solving general
coupled matrix equations,
Comput. Math. Appl.,
62 (2011), 4605-4613.
[14] F. Panjeh Ali Beik and D. Khojasteh Salkuyeh, The coupled Sylvester- transpose matrix equations over
generalized centro-symmetric matrices,
International J. Comput. Math.,
90(7) (2013), 1546-1566.
[15] J.J. Zhang, A note on the iterative solutions of general coupled matrix equation,
Appl. Math. Comput.,
217
(2011), 8386-9380.
[16] B. Zhou and G.R. Duan, On the generalized Sylvester mapping and matrix equation,
Systems Control
Lett.,
57(3) (2008), 200-2008.