C*-Extreme Points and C*-Faces of the Epigraph of C*-Affine Maps in *-Rings

Ali Ebrahimi Meymand

Assistant professor, Department of Mathematics, Faculty of Mathematical Sciences, Vali-e-asr university of Rafsanjan, Rafsanjan, Islamic Republic of Iran.

Article Info

Article history:
Received 17 July 2018
Accepted 30 December 2018
Available online 12 January 2019
Communicated by Abbas Salemi

Keywords:
C*-affine map,
C*-convexity,
C*-extreme point,
C*-face.

2000 MSC:
52A01, 16W10, 46L89.

Abstract

In this paper, we define the notion of C*-affine maps in the unital *-rings and we investigate the C*-extreme points of the graph and epigraph of such maps. We show that for a C*-convex map f defined on a unital *-ring R satisfying the positive square root axiom with an additional condition, the graph of f is a C*-face of the epigraph of f. Moreover, we prove some results about the C*-faces of C*-convex sets in *-rings.

© (2018) Wavelets and Linear Algebra

1. Introduction

One of the form of non-commutative convexity is C*-convexity. Formal study of C*-convexity was initiated by Loebl and Paulsen in [9]. Farenick and Morenz proved that each irreducible ele-
Calised the notion of discovered a right analog of linear extreme points, called structural elements to prove a generalised Definition 1.1. A subset the epigraph of \(f \) convex space \(S \) there exists Also, it is said that case \(y \) for some identity element. An element \(f \) (in particular in \(B \)) of \(\mathbb{R} \) is called proper if the condition \(x \leq y \) whenever \(x \in \mathbb{R} \). The involution of \(\mathbb{R} \) may be ordered by writing \(x \leq y \) in case \(y - x \geq 0 \). The involution of \(\mathbb{R} \) is called proper if \(x^*x = 0 \) implies that \(x = 0 \) for every \(x \in \mathbb{R} \). Also, it is said that \(\mathbb{R} \) satisfies the positive square root axiom if for every positive element \(x \in \mathbb{R} \), there exists \(y \in \{x\}'' \) such that \(y \geq 0 \), and \(x = y^2 \), where \(\{x\}'' \) denotes the double commutant of \(\{x\} \) in \(\mathbb{R} \). To study the \(\ast \)-rings and Baer \(\ast \)-rings, the reference [1] is essential.

Definition 1.1. A subset \(K \) of a unital \(\ast \)-ring \(\mathcal{R} \) is called \(C^\ast \)-convex, if
\[
\sum_{i=1}^{n} a_i^* x_i a_i \in K,
\]
whenever \(x_i \in K, a_i \in \mathcal{R} \) for all \(i \) and \(\sum_{i=1}^{n} a_i^* a_i = 1_\mathcal{R} \).

Definition 1.2. Let \(K \) be a \(C^\ast \)-convex subset of \(\mathcal{R} \). An element \(x \in K \) is called a \(C^\ast \)-extreme point of \(K \) if the condition
\[
x = \sum_{i=1}^{n} a_i^* x_i a_i, \quad \sum_{i=1}^{n} a_i^* a_i = 1_\mathcal{R}, \quad x_i \in K, a_i \text{ is invertible in } \mathcal{R}, n \in \mathbb{N}
\]
implies that all \(x_i \) are unitarily equivalent to \(x \) in \(\mathcal{R} \), that is, there exist unitaries \(u_i \in \mathcal{R} \) such that \(x_i = u_i^* x u_i \) for all \(i \).

The set of all \(C^\ast \)-extreme points of \(K \) is denoted by \(C^\ast\text{-ext}(K) \).

In addition, if condition (1) holds, then we say that \(x \) is a proper \(C^\ast \)-convex combination of \(x_1, \ldots, x_n \).

In [4] we defined the notion of \(C^\ast \)-convex maps as the following:

Definition 1.3. Let \(K \) be a \(C^\ast \)-convex subset of \(\mathcal{R} \). We say that a map \(f : K \to K \) is \(C^\ast \)-convex if
\[
f(\sum_{i=1}^{n} a_i^* x_i a_i) \leq \sum_{i=1}^{n} a_i^* f(x_i) a_i
\]
where \(n \in \mathbb{N}, x_i \in K, a_i \in \mathcal{R} \), and \(\sum_{i=1}^{n} a_i^* a_i = 1_\mathcal{R} \). If \(-f \) is \(C^\ast \)-convex, we say that \(f \) is \(C^\ast \)-concave.
In this paper we focus on the equality in the above definition and we call such maps the C^*-affine maps.

Definition 1.4. Let K be a C^*-convex subset of \mathcal{R}. We say that a map $f : K \to K$ is C^*-affine if

$$f(\sum_{i=1}^{n} a_i x_i) = \sum_{i=1}^{n} a_i f(x_i)$$

where $n \in \mathbb{N}$, $x_i \in K$, $a_i \in \mathcal{R}$, and $\sum_{i=1}^{n} a_i a_i = 1_{\mathcal{R}}$.

Note that if \mathcal{R} is a \ast-algebra, then every C^*-affine map is affine in the classical sense.

Example 1.5. The following maps are C^*-affine on \mathcal{R}.

1. $f(x) = nx$ where $n \in \mathbb{N}$.
2. $f(x) = x^\ast$.
3. $f(x) = \alpha x$ where $\alpha \in \mathbb{C}$ and \mathcal{R} is a \ast-algebra.
4. $f(x) = \alpha x + b$ where $\alpha \in \mathbb{C}$, $b \in \mathbb{Z}(\mathcal{R})$ (the center of \mathcal{R}) and \mathcal{R} is a \ast-algebra.

Remark 1.6. The composition of two C^*-affine maps, is also a C^*-affine map.

Definition 1.7. The graph and epigraph of a map $f : \mathcal{R} \to \mathcal{R}$ that we will denote by $\text{graph}(f)$ and $\text{epi}(f)$ respectively, are defined as:

$$\text{graph}(f) = \{(x, y) : x \in \mathcal{R}, y = f(x)\} \subseteq \mathcal{R} \oplus \mathcal{R},$$

$$\text{epi}(f) = \{(x, y) : x \in \mathcal{R}, f(x) \leq y\} \subseteq \mathcal{R} \oplus \mathcal{R}.$$

2. C^*-extreme points of the graph and epigraph of C^*-affine maps

In this section the relation between the C^*-extreme points of the graph and epigraph of a C^*-affine map and the C^*-extreme points of its domain and image are investigated.

It is shown in [3] and [4] that for every C^*-affine map f on a C^*-convex subset K of the unital \ast-ring \mathcal{R}, $\text{graph}(f)$ and $\text{epi}(f)$ are C^*-convex subsets of $\mathcal{R} \oplus \mathcal{R}$ in the sense that

$$\sum_{i=1}^{n} (a_i, a_i)^\ast (x_i, f(x_i))(a_i, a_i) \in \text{graph}(f),$$

and

$$\sum_{i=1}^{n} (a_i, a_i)^\ast (x_i, y_i)(a_i, a_i) \in \text{epi}(f),$$

for every $(x_i, f(x_i)) \in \text{graph}(f)$ and $(x_i, y_i) \in \text{epi}(f)$ and $a_i \in \mathcal{R}$ where $\sum_{i=1}^{n} a_i a_i = 1_{\mathcal{R}}$. Also, the author has proved the following theorem in [3].

Theorem 2.1. Let f be a C^*-affine map on a C^*-convex subset K of the unital \ast-ring \mathcal{R}. Then the following conditions are equivalent,

1) $x \in C^* - \text{ext}(K),$

2) $(x, f(x)) \in C^* - \text{ext}(\text{graph}(f)).$
In this section we investigate some properties of C^*-affine maps preserve C^*-extreme points ([3], Theorem 2.3]). Indeed, the equivalence of the following assertions for every injective C^*-affine map f on a C^*-convex set K has been shown in [3].

1) $x \in C^* - \text{ext}(K)$,
2) $f(x) \in C^* - \text{ext}(f(K))$,
3) $(x, f(x)) \in C^* - \text{ext}(\text{graph}(f))$.

If \mathcal{A} is a unital $*$-algebra, then every C^*-convex set K in \mathcal{A} is a convex set and every C^*-extreme point of K is an extreme point in the usual sense. Since we conclude that if we replace the C^*-convexity and the concept of C^*-extreme point by C^*-convexity and the concept of extreme point in the above corollaries, respectively, we obtain the similar conclusions in the classical convexity immediately ([4], corollaries 2.5, 2.6]).

The author has proved the following theorem ([2], Theorem 2.3]) as a result about the C^*-extreme points of the epigraph of C^*-affine maps on C^*-convex sets.

Theorem 2.2. For every C^*-affine map f on a C^*-convex set K in the unital $*$-ring \mathcal{R} with the following two conditions:

1) $(2.1)_{\mathcal{R}}^{-1/2}$ exists in \mathcal{R},
2) $x_1^* x_1 + x_2^* x_2 + \cdots + x_n^* x_n = 0$ implies that $x_1 = x_2 = \cdots = x_n = 0$ for every $x_i \in \mathcal{R}$ and $n \in \mathbb{N}$

we have

$$C^* - \text{ext}(\text{epi}(f)) = \text{graph}(f|_{C^* - \text{ext}(K)}) = \{(x, f(x)) \mid x \in C^* - \text{ext}(K)\}.$$

3. C^*-faces

P. B. Morenz extended the notion of face from linear convexity to C^*-face of C^*-convex subsets of a C^*-algebra in [13]. The author and G. H. Esslamzadeh generalised this notion to $*$-rings [4]. In this section we investigate some properties of C^*-faces and specially we show that the graph of a C^*-affine map is a C^*-face of its epigraph provided that it satisfies some conditions.

Definition 3.1. A nonempty subset F of a C^*-convex set $K \subseteq \mathcal{R}$ is called a C^*-face of K, if the condition $x \in F$ and $x = \sum_{i=1}^{n} a_i^* x_i a_i$ as a proper C^*-convex combination of elements $x_i \in K$, implies that $x_i \in F$ for all i.

Example 3.2. (1) Let K be a C^*-convex subset of \mathcal{R}. Then K is a C^*-face of K. Thus the set of C^*-faces of every C^*-convex set is nonempty.

(2) The set $C^*-\text{ext}(K)$ is a C^*-face of K.

Theorem 3.3 ([4], Theorem 3.7). Suppose that F_1 and F_2 are C^*-faces of C^*-convex subsets K_1 and K_2 in \mathcal{R} respectively. Then,

1) $F_1 \cap F_2$ is a C^*-face of $K_1 \cap K_2$ provided that $F_1 \cap F_2 \neq \emptyset$.
2) If $K_1 \subseteq K_2$, then $F_2 \cap K_1$ is a C^*-face of K_1 provided that it is nonempty.
3) If $F \subseteq F_1$ and F is a C^*-face of C^*-co(F_1), then F is a C^*-face of K_1.
4) If $K_1 \subseteq K_2$, then $K_1 \cap C^*-\text{ext}(K_2) \subseteq C^*-\text{ext}(K_1)$.

Theorem 3.4. Let \mathcal{R} be a unital $*$-ring satisfying the positive square root axiom and $x_1^* x_1 + x_2^* x_2 + \cdots + x_n^* x_n = 0$ implies that $x_1 = x_2 = \cdots = x_n = 0$ for every $x_i \in \mathcal{R}$ and $n \in \mathbb{N}$ and f be a C^*-convex map on \mathcal{R}. Then graph(f) is a C^*-face of epi(f).
Proof. Suppose that \((x, f(x)) \in \text{graph}(f)\) and

\[(x, f(x)) = \sum_{i=1}^{n} (a_i, a_i^\ast)(x_i, y_i)(a_i, a_i)\]

is a proper \(C^*\)-convex combination of elements \((x_i, y_i) \in \text{epi}(f)\). We show that \((x_i, y_i) \in \text{graph}(f)\) for each \(i \ (1 \leq i \leq n)\). Since

\[(x, f(x)) = (\sum_{i=1}^{n} a_i^\ast x_i a_i, \sum_{i=1}^{n} a_i^\ast y_i a_i),\]

so,

\[x = \sum_{i=1}^{n} a_i^\ast x_i a_i, \quad f(x) = \sum_{i=1}^{n} a_i^\ast y_i a_i. \tag{3.1}\]

Since \(f\) is a \(C^*\)-convex map, so we have

\[f(x) = f\left(\sum_{i=1}^{n} a_i^\ast x_i a_i\right) \leq \sum_{i=1}^{n} a_i^\ast f(x_i) a_i. \tag{3.2}\]

We conclude from (3.1) and (3.2) that

\[\sum_{i=1}^{n} a_i^\ast y_i a_i \leq \sum_{i=1}^{n} a_i^\ast f(x_i) a_i\]

and hence

\[\sum_{i=1}^{n} a_i^\ast (y_i - f(x_i)) a_i \leq 0. \tag{3.3}\]

On the other hand, \((x_i, y_i) \in \text{epi}(f)\), so \(y_i \geq f(x_i)\), and hence \(y_i - f(x_i) \geq 0\). Thus

\[\sum_{i=1}^{n} a_i^\ast (y_i - f(x_i)) a_i \geq 0. \tag{3.4}\]

Using the fact that every positive element in \(\mathcal{R}\) has a positive square root, and the assumption \(x_1^\ast x_1 + x_2^\ast x_2 + \cdots + x_n^\ast x_n = 0\) implies that \(x_1 = x_2 = \cdots = x_n = 0\) for every \(x_i \in \mathcal{R}\) and \(n \in \mathbb{N}\), we conclude from (3.3) and (3.4) that

\[\sum_{i=1}^{n} a_i^\ast (y_i - f(x_i)) a_i = 0.\]

and hence for each \(i\),

\[a_i^\ast (y_i - f(x_i)) a_i = 0.\]

The invertibility of \(a_i\) for each \(i\), implies that \(y_i - f(x_i) = 0\). Therefore, \(y_i = f(x_i)\) and the proof is complete. \(\Box\)
Injectivity of g_i for each $1 \leq i \leq n$.

Proposition 3.5. F is a C^*-face of a C^*-convex set K in the unital $*$-ring \mathcal{R} if and only if F^* is a C^*-face of C^*-convex set K^*.

Proof. First note that if K is a C^*-convex subset of \mathcal{R}, then K^* is also a C^*-convex subset of \mathcal{R}. Suppose that F is a C^*-face of K. So F^* is a nonempty subset of K^*. Let $y \in F^*$ and $y = \sum_{i=1}^{n} a_i^* y_i a_i$ be a proper C^*-convex combination of elements $y_i \in K^*$. Then there exist $x(y^*)$ in F and $x_i \in K$ such that $y = x^*$ and $y_i = x_i^*$. So

$$x^* = \sum_{i=1}^{n} a_i^* x_i^* a_i = (\sum_{i=1}^{n} a_i^* x_i a_i)^*,$$

and hence $x = \sum_{i=1}^{n} a_i^* x_i a_i$ is a proper C^*-convex combination of elements $x_i \in K$ ($1 \leq i \leq n$). Thus, $x_i \in F$ and hence $g_i = x_i^* \in F^*$ for each i ($1 \leq i \leq n$). Therefore, F^* is a C^*-face of K^*. The converse is immediate by replacing F^* and K^* instead of F and K respectively.

The following theorem deals with the C^*-faces of invertible C^*-affine maps.

Theorem 3.6. Suppose that K_1 and K_2 are C^*-convex subsets of the unital $*$-ring \mathcal{R} and $g : K_1 \rightarrow K_2$ is a bijective C^*-affine map. Then

1) $g^{-1} : K_2 \rightarrow K_1$ is a C^*-affine map.

2) F is a C^*-face of K_1 if and only if $g(F)$ is a C^*-face of K_2.

3) F is a C^*-face of K_2 if and only if $g^{-1}(F)$ is a C^*-face of K_1.

Proof.

1) Let $\sum_{i=1}^{n} a_i^* y_i a_i$ be a C^*-convex combination of elements $y_i \in K_2$ ($1 \leq i \leq n$). Then there exist $x_i \in K_1$ such that $g(x_i) = y_i$ for each i ($1 \leq i \leq n$). So,

$$g^{-1}(\sum_{i=1}^{n} a_i^* y_i a_i) = g^{-1}(\sum_{i=1}^{n} a_i^* g(x_i) a_i) = g^{-1}(g(\sum_{i=1}^{n} a_i^* x_i a_i)) = \sum_{i=1}^{n} a_i^* x_i a_i = \sum_{i=1}^{n} a_i^* g^{-1}(g(x_i)) a_i = \sum_{i=1}^{n} a_i^* g^{-1}(y_i) a_i.$$

Therefore, g^{-1} is a C^*-affine map.

2) Let F be a C^*-face of K_1, $y \in g(F)$ and $y = \sum_{i=1}^{n} a_i^* y_i a_i$ a proper C^*-convex combination of elements $y_i \in K_2$ ($1 \leq i \leq n$). So there exist $x \in F$ and $x_i \in K_1$ such that $y = g(x)$ and $y_i = g(x_i)$ for each i ($1 \leq i \leq n$). Thus,

$$g(x) = \sum_{i=1}^{n} a_i^* g(x_i) a_i = g(\sum_{i=1}^{n} a_i^* x_i a_i).$$

Injectivity of g implies that

$$x = \sum_{i=1}^{n} a_i^* x_i a_i.$$
Since F is a C^*-face of K_1, $x_i \in F$ ($1 \leq i \leq n)$. So $y_i = g(x_i) \in g(F)$ ($1 \leq i \leq n$) and $g(F)$ is a C^*-face of K_2.

Conversely, let $g(F)$ be a C^*-face of K_2, $x \in F$, and $x = \sum_{i=1}^{n} a_i^* x_i a_i$ a proper C^*-convex combination of elements $x_i \in K_1$ ($1 \leq i \leq n$). Then

$$g(x) = g\left(\sum_{i=1}^{n} a_i^* x_i a_i\right) = \sum_{i=1}^{n} a_i^* g(x_i) a_i,$$

where $g(x) \in g(F)$ and $g(x_i) \in K_2$ for each i ($1 \leq i \leq n$). Thus, $g(x_i) \in g(F)$ and since g is injective, $x_i \in F$ for each i ($1 \leq i \leq n$). Therefore, F is a C^*-face of K_1.

3) Since g^{-1} is a bijective C^*-affine map, so part 3) comes from part 2).

Theorem 3.7. Suppose that F_1 and F_2 are C^*-faces of C^*-convex subsets K_1 and K_2 of \mathcal{R} respectively. Then,

1) $K_1 \times K_2$ is a C^*-convex subset of $\mathcal{R} \times \mathcal{R}$ with the pointwise operations. 2) $F_1 \times F_2$ is a C^*-face of $K_1 \times K_2$.

Proof. 1) Suppose that $(x_i, y_i) \in K_1 \times K_2$ and $(a_i, b_i) \in \mathcal{R}$ for each i ($1 \leq i \leq n$) such that

$$\sum_{i=1}^{n} (a_i, b_i)^* (a_i, b_i) = (1_{\mathcal{R}}, 1_{\mathcal{R}}).$$

Since K_1 and K_2 are C^*-convex subsets of \mathcal{R} and

$$\sum_{i=1}^{n} a_i^* a_i = \sum_{i=1}^{n} b_i^* b_i = 1_{\mathcal{R}},$$

we have

$$\sum_{i=1}^{n} (a_i, b_i)^* (x_i, y_i) (a_i, b_i) = \sum_{i=1}^{n} (a_i^* x_i a_i, b_i^* y_i b_i) = \left(\sum_{i=1}^{n} a_i^* x_i a_i, \sum_{i=1}^{n} b_i^* y_i b_i \right) \in K_1 \times K_2.$$

2) Let $(x, y) \in F_1 \times F_2$ and

$$(x, y) = \sum_{i=1}^{n} (a_i, b_i)^* (x_i, y_i) (a_i, b_i) \quad (3.5)$$

be a proper C^*-convex combination of elements $(x_i, y_i) \in K_1 \times K_2$. We show that $(x_i, y_i) \in F_1 \times F_2$ for all i ($1 \leq i \leq n$). The relation (3.3) implies that $x = \sum_{i=1}^{n} a_i^* x_i a_i$ and $y = \sum_{i=1}^{n} b_i^* y_i b_i$. Also,

$$\sum_{i=1}^{n} (a_i, b_i)^* (a_i, b_i) = 1_{\mathcal{R} \times \mathcal{R}} = (1_{\mathcal{R}}, 1_{\mathcal{R}})$$

implies that $\sum_{i=1}^{n} a_i^* a_i = \sum_{i=1}^{n} b_i^* b_i = 1_{\mathcal{R}}$. Moreover, since (a_i, b_i) is invertible in $\mathcal{R} \times \mathcal{R}$, we have a_i and b_i are invertible in \mathcal{R}. Thus, $x = \sum_{i=1}^{n} a_i^* x_i a_i$ and $y = \sum_{i=1}^{n} b_i^* y_i b_i$ are proper C^*-convex combinations of elements $x_i \in K_1$ and $y_i \in K_2$ ($1 \leq i \leq n$) respectively. Since F_1 and F_2 are C^*-faces in K_1 and K_2 respectively, we conclude that $x_i \in F_1$ and $y_i \in F_2$ for each i ($1 \leq i \leq n$). Therefore, $(x_i, y_i) \in F_1 \times F_2$ for each i ($1 \leq i \leq n$) and hence $F_1 \times F_2$ is a C^*-face of $K_1 \times K_2$ in $\mathcal{R} \times \mathcal{R}$.

Acknowledgement. The author would like to thank Dr. I. Nikoufar for careful reading of the manuscript and useful comments.
References