*-Operator Frame for End_{\mathcal{A}}^{\ast}(\mathcal{H})

Document Type: Research Paper

Authors

1 Ibn Tofail University. Kenitra Morocco

2 ibn tofail university

10.22072/wala.2018.79871.1153

Abstract

In this paper, a new notion of frames is introduced: $\ast$-operator frame as generalization of $\ast$-frames in Hilbert $C^{\ast}$-modules introduced by A. Alijani and M. A. Dehghan \cite{Ali} and we establish some results.

Keywords


[1] A. Alijani, Generalized frames with C*-valued bounds and their operator duals, Filomat, 29(7) (2015), 

     1469-1479.

[2] A. Alijani, M. Dehghan, $ast$-frames in Hilbert $mathcal{C}^{ast}$modules, U.P.B. Sci. Bull. (Ser. A).,  

     73(4) (2011), 89-106.


[3] O. Christensen, An Introduction to Frames and Riesz bases, Brikhouser, 2016.


[4] J.B. Conway, A Course in Operator Theory}, AMS, Vol. 21, 2000.


[5] F.R. Davidson, $mathcal{C}^{ast}$-Algebra by Example, Fields Ins. Monog., 1996.

[6] R.J. Duffin and A.C. Schaeffer, A class of nonharmonic fourier series, Trans. Amer. Math. Soc., 72 (1952),
     341-366.

[7] M. Frank and D.R. Larson, Frames in Hilbert $mathcal{C}^{ast}$-modules and 

     $mathcal{C}^{ast}$-algebras, J. Oper. Theory, 48 (2002), 273-314.


[8] A. Khosravi and B. Khosravi, Frames and bases in tensor products of Hilbert spaces and Hilbert 

     $mathcal{C}^{ast}$-modules, Proc. Indian Acad. Sci. (Math. Sci.), 117(1) (2007), 1-12.


[9] A. Khorsavi and B. Khorsavi, Fusion frames and g-frames in Hilbert $mathcal{C}^{ast}$-modules, Int. J. 

     Wavelets Multiresolut. Inf. Process., 6(3) (2008), 433-446.


[10] E.C. Lance, Hilbert $mathcal{C}^{ast}$-Modules: A Toolkit for Operator Algebraists, London Mathematical 

       Society Lecture Note Series, 1995.


[11] Ch.-Y. Li, Operator frames for Banach spaces, Complex Anal. Oper. Theory, 6 (2012), 1-21.

[12] C.Y. Li and H.X. Cao, Operator Frames for $B(mathcal{H})$, in: T. Qian, M. I. Vai, X. Yuesheng (eds.), 

       Wavelet Analysis and Applications, Applications of Numerical Harmonic Analysis, 67-82, Springer, Berlin, 

       2006.    


[13] V.M. Manuilov and E.V. Troitsky, Hilbert $mathcal{C}^{ast}$-Modules, AMS, Vol. 226, 2005.

[14] M. Rossafi and S. Kabbaj, $ast$-g-frames in tensor products of Hilbert $C^{ast}$-modules, Ann. Univ. 

       Paedagog. Crac., Stud. Math., 17 (2018), 15-24.


[15] M. Rossafi and S. Kabbaj, $ast$-K-g-frames in Hilbert $C^{ast}$-modules, J. Linear Topol. Algebra, 7(1) 

       (2018), 63-71.